黄芩有效活性成分与环糊精超分子体系的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章本章分别概述了超分子,黄芩有效成分以及环糊精的基本内容,综述了近年来黄芩有效成分包括黄芩苷,黄芩素以及汉黄芩素与超分子(包括环糊精和生物大分子)相互作用的研究进展,作用机理,制备方法以及分析方法。
     第二章用紫外吸收法,荧光法,相溶解度法以及核磁共振的方法对在溶液中黄芩苷与β-CD和HP-β-CD形成的包合物进行表征。黄芩苷与β-CD和HP-β-CD的固体包合物采用共沉淀的方法制备,用红外(IR),差示热扫描(DSC)的方法进行表征。用荧光法及相溶解度法对包合物的包合常数(K)进行计算。结果表明在溶液中HP-β-CD的包合能力大于β-CD,在研究浓度范围内包合是按1:1进行的。药物与包合物的抗氧化能力通过对DPPH·清除能力大小的比较,结果表明包合物清除率大于游离药物。包合机理通过核磁共振法证明。
     第三章用紫外吸收法,荧光法对黄芩素与β-CD及β-CD衍生物(HP-β-CD和Me-β-CD)形成包合物进行表征,同时用相溶解度法以及核磁共振的方法对在溶液中黄芩素与β-CD和HP-β-CD形成的包合物进行表征。黄芩素与β-CD和HP-β-CD的固体包合物采用共沉淀的方法制备,用红外(IR),差示热扫描(DSC)的方法进行表征。用荧光法及相溶解度法对包合物的包合常数(K)进行计算。结果表明在溶液中包合能力顺序为HP-β-CD>Me-β-CD>β-CD,在研究浓度范围内主-客体包合是按1:1进行的。实验条件包括不同浓度的环糊精及不同溶液pH对包合作用的影响。药物与包合物的抗氧化能力通过对DPPH·清除能力大小的比较,结果表明包合物清除率大于游离药物。包合机理通过核磁共振法证明。
     第四章用紫外吸收法,荧光法和核磁共振的方法对在溶液中汉黄芩素与β-CD和HP-β-CD形成的包合物进行表征。汉黄芩素与β-CD和HP-β-CD的固体包合物采用共沉淀的方法制备,用红外(IR),差示热扫描(DSC)的方法进行表征。用荧光法及相溶解度法对包合物的包合常数(K)进行计算。结果表明在溶液中HP-β-CD的包合能力大于β-CD,在研究浓度范围内包合是按1:1进行的。药物与包合物的抗氧化能力通过对DPPH·清除能力大小的比较,结果表明包合物清除率大于游离药物。包合机理通过核磁共振法证明。
     第五章本文利用紫外可见分光光度法、荧光光谱法、核磁共振法研究了β-CD的衍生物2-Me-β-CD对诺氟沙星分子的识别作用。实验研究了在室温条件下不同浓度的Me-β-CD以及不同的酸碱度对包合作用的影响。结果表明,诺氟沙星在不同的pH溶液中存在三种分子形式,分别为酸性,中性和碱性形式;Me-β-CD更容易在酸性条件下与诺氟沙星进行包合,采用荧光法对包合常数(K)以及包合比进(n)行了计算,得出分子是按1:1进行饱和的。同时,包合机理被核磁共振法所证明。
     第六章本文对第二,第三,第四章的内容进行了总结概括,分别从三种黄芩分子的结构,光学特征,抗氧化活性以及与多种环糊精包合能力及机理等几个方面加以总结和比较。
Chapter 1 In this chapter,the fundamental constents of supramolecular,the active components including Baicalin,Baicalein and Wogonin,cyclodextrins were briefly introduced.In recent years,the studying progress of the interactions between Huangqin and cyclodextrins or bimolecular,the interaction mechanism,the methods of preparation and the analytical methods were reviewed in details.
     Chapter 2 The formation of the complexes of BG withβ-CD and HP-β-CD was studied by UV-Vis absorption spectroscopy,fluorescence spectra, Phase-solubility measurements and nuclear magnetic resonance spectroscopy (NMR) in solution.The formation constants(K) of complexes were determined by fluorescence method and Phase-solubility measurements.The results showed that the inclusion ability ofβ-CD and its derivatives was the order:HP-β-CD>β-CD.In addition,the experimental resulted confirmed the existence of 1:1 inclusion complex of BG with CDs.
     Kinetic studies of DPPH·with BG and CDs complexes were done.The results obtained indicated that the BG/HP-β-CD complex was the most reactive form.Special configuration of complex has been proposed on NMR technique.
     Chapter 3 The formation of the complexes of Baicalein withβ-CD andβ-CD derivatives(HP-β-CD and Me-β-CD) was studied by UV-Vis absorption spectroscopy and fluorescence method,in addition the inclusion betweenβ-CD and HP-β-CD were studied by nuclear magnetic resonance spectroscopy(NMR) and phase-solubility measurement.The solid inclusion complexes of Baicalein with CDs were synthesized by the co-precipitation method.The characterizations of the solid inclusion complexes have been proved by infrared spectra(IR)and differential scanning calorimetry(DSC). Experimental conditions including the concentration of various CDs and media acidity were investigated in detail.The results suggested that the inclusion ratio of HP-β-CD with Baicalein was the highest among the three kinds of CDs,and then was Me-β-CD whileβ-CD was the lowest.β-CD and HP-β-CD were more suitable for inclusion in the acidic solution.The binding constants(K) of the inclusion complexes were determined by fluorescence method and phase-solubility measurement,and all of the inclusion ratios were found to be 1:1.Kinetic studies of DPPH·with Baicalein and CDs complexes were done.The results obtained indicated that the Baicalein/HP-β-CD complex was the most reactive form.A mechanism is proposed to explain the inclusion process by NMR.
     Chapter 4 The formation of the complexes of Wogonin withβ-CD and HP-β-CD was studied by UV-Vis absorption spectroscopy,fluorescence spectra and nuclear magnetic resonance spectroscopy(NMR).The solid inclusion complexes of Wogonin with CDs were synthesized by the co precipitation method.The characterizations of the inclusion complexes have been proved by infrared spectra(IR)and differential scanning calorimetry (DSC).The formation constants(K) of complexes were determined by fluorescence method.The results suggested that HP-β-CD was easier to form inclusion with Wogonin thanβ-CD.In addition,the experimental resulted confirmed the existence of 1:1 inclusion complex of Wogonin with CDs. Kinetic studies of DPPH·with Wo and CDs complexes were done.The results obtained indicated that the Wo/HP-β-CD complex was the most reactive form.Special configuration of complex has been proposed on NMR technique.
     Chapter 5 The formation of the complexes of Norfloxacin with 2-Methyl-β-cyclodextrin(Me-β-CD) was studied by UV-Vis absorption spectroscopy,Fluorescence and nuclear magnetic resonance spectroscopy (NMR).Experimental conditions including Me-β-CD concentration and media acidity were investigated in detail at room temperature.The results suggest that Norfloxacin exists in three molecular forms in aqueous solution at different pH values,namely,the acidic form,the neutral form and the alkaline form.Me-β-CD was more suitable for inclusion of Norfloxacin in the acidic medium.The binding constant(K) of the inclusion complex was determined by fluorescence measurement,and the complexation ratio was determined as 1:1 in the concentration range used in this study.A mechanism was proposed to explain the inclusion process based on the experimental NMR data.
     Chapter 6 In this chapter,the contents from chapter 2 to chapter 4 have been summarized.Several factors have been compared in details,such as the structures of the three kind active components of Huangqin including Baicalin,Baicalein and Wogonin,the antioxidant ability,the inclusion abilities with several cyclodextrins and interaction mechanism.
引文
[1]Breslow,R.,Dong,S.D.Chem.Rev.,1998,98:1997.
    [2]Saenger,W.,Angew.Chem.Int.Ed.Engl.,1980,19:344.
    [3]Szejtli,J.,Chem.Rev.,1998,98:1743.
    [4]LebrillaC.B.Acc.Chem.Res.2001,34,653.
    [5]Affibarro M.,GesslerK.,Us6nI.,SheldrickG.M.,Harata K.,Uekama K,HirayamaF.,AbeY.,SaengerW.J.Am.Chem.Soc.2o01,123:11854.
    [6]RamirezJ.,Ahn S.,Grigorean G.,Lebrilla C.B.J.Am.Chem.Soc.2000122:6884.
    [7]Connors K.A.Chem.Rev.1997,97:1325.
    [8]Inoue Y.Chem.Rev.1998,98:1875.
    [9]Ikeda H.Chem.Rev.1998,98:1755.
    [10]Takahashi K.Chem.Rev.1998,98:2013.
    [11]Damodaran K.V.BanbaS.Brooks Ill,C.L.J.Phys.Chem B2001,105:9316.
    [12]Clark J.L.,Booth B.R.,Stezowski J.J.J.Am.Chem.Soc.2001,123:9889.
    [13]Btthlmann P.Aoki H.,Umezawa.Y.Langmuir 20oO.16:1388.
    [14]Higashi M.J.Phys.Chem.A 1998,102:1523.
    [15]Kano K.,Hasegawa H.J.Am.Chem.Soc.2001,123:10616.
    [16]Osella D.,Carretta A.,Nervi C.,Ravera M.Gobetto R.Organometallics 200019:2791.
    [17]Kurrinen K.A.,Men'shov A.I.,Palladiev A.A.Otkrytiya,Izobret.1987,45:82.
    [18]JWolfram S.,Mathim N.Angew.Chem.1974,86:594.
    [19]邵伟,王大庆,米广太等.芦丁-β-环糊精包合物的研究.中药材,1998;21(1):31.
    [20]徐乃焕.巴豆油-β-环糊精包合物的研究.中药材,1995;18(6):308.
    [21]陈星灿,陈济民,姚崇舜等.莪术油-β-环糊精包结物的研究.中草药,1990;21(8)11.
    [22]陆彬,周春林,石玉惠等.陈皮挥发油-β-环糊精包合物的研究.华西药学杂志,1991:6(1):10.
    [23]张纯,高杰,林厚文等.正交设计法研究丹皮酚-β-环糊精包合物的制备工艺.中成药,1996;18(11):1.
    [24]富志军,周自新.胶体磨应用于肉桂油-β-环糊精包合物制备工艺条件的实验筛选.中成药,1994;16(12):6.
    [25]肖爱荣,夏恒建,王春庭等.胶体磨应用于薄荷油-β-环糊精 包合物的实验研究.中成药,1992;(12):8.
    [26]李楷,武铁生,汝连春等.研磨法制备莪术油-β-环糊精包结物.中国中医药科技,1997;4(5):289.
    [27]刘树芬,杨晓红,李晓红等.苍术挥发油-β-环糊精包合物的研究.中国药学杂志,1992:27(11):658.
    [28]林桂涛,徐淑国.β-环状糊精包封中药挥发油新方法的探讨.中国中药杂志,1992:17(5):283.
    [29]张纯,郭澄,高杰.丹皮酚-β-环糊精的理化性质.第二军医大学学报,1997;18(1):95.
    [30]何进,毕殿洲,刘宝庆等.大蒜油-β-环糊精包合物的稳定性考察.中国药学杂志,1997;32(4):216.
    [31]孔祥臣,王光军,郝巨祥.β-环糊精包结尿塞通挥性成分的研究.中医药信息,1996:13(3):50.
    [32]宋庆君,王建华.香附胶囊制备工艺研究.中成药,1995;17(12):6.
    [33]Uekama K,Hirayama F,Esaki k et al.Inclusion complexes of cyclodextrin with cinnamic acid derivatives:dissolution and thermal behavior.Chem Pharm Bull,1979:27(1):76.
    [34]王晓平,廖工铁,侯世祥等.β-环糊精在六神丸中的应用-2种六神丸的药剂学对比研究.中国中药杂志,1993;18(7):415
    [35]蔡溱,钟贵陵,高申.用正交实验法研究β-环糊精对陈皮挥发油的包合作用.中国医院药学杂志,1995;15(7):291.
    [36]王平,张蕙云,王平山.阿魏油-β-环糊精包结物的质量研究和稳定性考察.中成药,1996;18(4):4.
    [37]李树珍,官仕杰.生姜挥发油-β-环糊精包结物的稳定性考察.中国中药杂志,1992:17(8):481.
    [38]颜耀东,冯波,黄晓洁等.齐墩果酸-β-环糊精包合物的研究.中成药,1995;17(6):2.
    [39]方红英,吕坚,吴锡铭.β-环糊精对甘草酸二铵胶囊体外溶出度和体内生物利用度的影响.现代应用药学,1995;12(3):56.
    [40]钟述华,句凤华,张素云.β-环状糊精在中成药制剂中应用.中成药研究,1985;7(11):5.
    [41]孙敬勇,杨书斌,刘晓等.β-环糊精包结通宣理肺胶囊中紫苏叶挥发油的研究.中成药,1994;16(10):2.
    [42]吴展顺.β-环糊精在冲剂中的应用.中药材,1994;17(7):43.
    [43]于莲,张丽华,高萍等.β-环糊精包结羚羊感冒片中三种挥发油成分的研究.中成药,1991;13(9):4.
    [44]李芳荣,何风雷,贾本真.山苍子油-β-环糊精包合物的制备工艺研究.中成药,1998:20(1):4.
    [45]夏开元,包如才.环状糊精在中药冲剂中的应用.中成药研究,1985;(8):3.
    [46]C.A.1985;103:20086.
    [47]淡家林.食品与发酵工业.1984;(1):43.
    [48]奚念朱.药剂学.第3版,北京:人民卫生出版社,1995:364-365
    [49]刘书堂,郑国和,闫亚强.β-环糊精挥发油粉末化技术在中药制剂中的研究与应用.中草药,1997;28(12):749.
    [50]汪宝琪,庞志功,张汉利.秦皮甲素、乙素在兔体内的药代动力学研究.沈阳药科大学学报1998;15(1):3.
    [51]庞志功,汪宝琪,朱慧勤.用β-环糊精单分子胶囊荧光法测定秦艽中龙胆苦甙的含量研究.药物分析,1994;14(4):50.
    [52]汪宝琪,庞志功,李生有.β-环糊精单分子胶囊荧光法测定大黄素、大黄酚、大黄酸的含量.中国药科大学学报,1991;22(6):375.
    [53]杨造萍.环糊精及其衍生物在药物分析中的应用.国外医学药学分册,1994;21(5):257.
    [54]俞加林,李莉.环状糊精在中药制剂中的应用.中药通报,1988;13(9):29.
    [60]胡世莲,刘圣.β-环糊精包合青皮,木香挥发油的工艺研究.中国药房.1998,9(1):11-12.
    [61]姚波,廖工铁,郭若羚,等.蟾酥β-环糊精包合物制备工艺的研究[J].中成药,1989,11(1):4-6.
    [62]杨晓东等,金华佛手挥发油β-环糊精包合物的制备.金华职业技术学院学报,2003(1):40-41.
    [63]余丽丽等,白术挥发油/β-环糊精包合物的表征.中国药学杂志,2005,40(2):90-93.
    [64]魏敏,周莉玲.香砂养胃制剂挥发油包结前后的GC-MS分析.中药材.1999,22(5):257.
    [65]姚松林等,茶芎挥发油β-环糊精包合物的制备工艺研究.江西中医学院学报.2002,14(2)24-25,28.
    [66]曾平,张佳佳.β-环糊精包合川芎茶调散挥发油的实验研究.中国药业.2004,13(4):59-60.
    [67]宋晓虹等,黄酮类化合物与β-环糊精包合物的光谱学表征.分析测试学报.2004,23(1):36-38.
    [68]葛月宾等,大豆苷元-羟丙基β-环糊精包合物的研究.中国中药杂志.2006,31(24):2039-2041.
    [69]王晓平,廖工铁,侯世祥.蟾酥冰片β-环糊精包合物的制备与鉴定[J],华西药学杂志,1992,7(3):138-142.
    [70]李俊芬等,因丹参酮与环糊精包结物的制备于光谱研究.分析科学学报.2004,20(3):229-232.
    [71]赵长春,应光谱法研究β-环糊精对小檗碱的包合作用.徐州师范大学学报.2002:20(4):71-73.
    [72]程建明等,黄芩苷-羟丙基-β-环糊精包合物制备工艺研究.南京中医药大学学报2003年11月第19卷第6期.
    [73]Wu Wei,Guo Mingquan,Liu Shuying.黄芩苷与环糊精非共价复合物的电喷雾串联质谱研究.Journal of Chinese Mass Spectrometry Society.Vol.25Suppl.Oct.2004.
    [74]于生兰,孙玲,张龙,张小华.黄芩苷-β-环糊精包合物的研究.中兽医医药杂志2003年第6期.
    [75]Jun Liu,Liyan Qiu,Jianqing Gao,Yi Jin.Preparation,characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-_-cyclodextrin.International Journal of Pharmaceutics 312(2006) 137-143.
    [76]Yongchun Liu,Wenying He,Wenhua Gao,Zhide Hua,Xingguo Chen.Binding of wogonin to human gammaglobulin.International Journal of Biological Macromolecules 37(2005) 1-11.
    [77]Jian Bo Xiao,Jing Wen Chenb,,Hui Cao.Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method.Journal of Photochemistry and Photobiology A:Chemistry 191(2007) 222-227.
    [78]Yantao Sun,Shuyun Bi,Daqian Song.Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi.Sensors and Actuators B 129(2008) 799-810
    [1]A.D.Hamilton,Molecular Recognition(Tetrahedron symposia No.56),Tetrahedron 51(1995) 343.
    [2]Szejtli,J.,1998.Introduction and general overview of cyclodextrin chemistry.Chem.Rev.98,1743-1754.
    [3]Uekama,K.,Hirayama,F.,Irie,T.,1998.Cyclodextrin drug carrier systems.Chem.Rev.98,2045-2076.
    [4]Cortes,M.E.,Sinisterra,R.D.,Avilacampos,M.J.,Yortamano,N.,Rocha,R.G.,2001. The chlorhexidine: β-cyclodextrin inclusion compound: preparation, characterization and microbiological evaluation. J. Incl. Phenom. Macrocycl. Chem. 40, 297-302.
    [5] Hirayama, F., Uekama, K., 1999. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125-141.
    [6] Ono, N., Arima, H., Hirayama, F., Uekama, K., 2001. A moderate interaction of maltosyl-_-cyclodextrin with Caco-2 cells in comparison with the parent cyclodextrin. Biol. Pharm. Bull. 24, 395-402.
    [7]Kubo, M., Kimura, Y., Odani, T., Tani, T., Namba, K., 1981. Studies on Scutellaria radix. Part 2: the antibacterial substance. Planta. Med. 43, 194-201.
    [8] Wu, J.A., Attele, A.S., Zhang, L., Yuan, Ch.S., 2001. Anti-HIV activity of medicinal herbs: Usage and potential development. Am. J. Chin. Med. 29, 69-81.
    [9] Shao, Z.H., Li, C.Q., Vanden Hoek, T.L., Becker, L.B., Schumacker, P.T., Wu, J.A., Attele, A.S., Yuan, C.S., 1999. Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. J. Mol. Cell. Cardiol. 31, 1885-1895.
    [10]Shao, Z.H., Vanden Hoek, T.L., Qin, Y., Becker, L.B., Schumacker, P.T., Li, C.Q., Dey, L., Barth, E., Halpern, H., Rosen, G.M., Yuan, C.S., 2002. Baicalein attenuates oxidant stress in cardiomyocytes. Am. J. Physiol. Heart Circul. Physiol. 282, 999-1006.
    [11] Gao, Z., Huang, K., Xu, H., 2001. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxideinduced oxidative stress in HS-SY5Y cells. Pharmacol. Res. 43, 173- 178.
    [12] Qain, L., Okita, K., Murakami, T., Takahashi, M., 1990. Inhibitory effect of baicalein on the growth of cultured hepatoma cells (HUH-7). Biotherapy 4, 1664-1670.
    [13] Huang, H.C., Wang, H.R., Hsieh, L.M., 1994. Antiproliferative effect of baicalein, a flavonoid from a Chinese herb, on vascular smooth muscle cell. Eur. J. Pharmacol. 251,91-93.
    [14] Inoue, T., Jackson, E.K., 1999. Strong antiproliferative effects of baicalein in cultured rat hepatic stellate cells. Eur. J. Pharmacol. 378, 129-135.
    [15] Matsuzaki, Y., Kurokawa, N., Terai, S., Matsumura, Y., Kobayashi, N., Okita, K., 996. Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn. J. Cancer Res. 87, 170-177.
    [16] Li, Y.C., Tyan, Y.S., Kuo, H.M., Chang, W.C., Hsia, T.C., Chung, J.G., 2004. Baicalein induced in vitro apoptosis undergo caspases activity in human promyelocytic leukemia HL-60 cells. Food Chem. Toxicol. 42, 37-43.
    [17] Higuchi, T., Connors, K.A., 1965. Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117-212.
    
    [18]Monika Strazisar, Samo Andrensek, Andrej Smidovnik . Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chemistry (2008), doi: 10.1016/j.foodchem.2008.02.051
    [19] K. A. Connors, Binding constants. The measurement of Molecular complex stability, Wiley, New York, 1987.
    [20] Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity Relation. Journal of Agricultural and Food Chemistry, 47, 1453-1459.
    [21] Kokkinou, A., Makedonopoulou, S., & Mantzafos, D. (2000). The crystal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid. Carbohydrate Research, 328, 135-140.
    [1]Kubo,M.,Kimura,Y.,Odani,T.,Tani,T.,Namba,K.,1981.Studies on Scutellaria radix.Part 2:the antibacterial substance.Planta.Med.43,194-201.
    [2]Wu,J.A.,Attele,A.S.,Zhang,L.,Yuan,Ch.S.,2001.Anti-HIV activity of medicinal herbs:Usage and potential development.Am.J.Chin.Med.29,69-81.
    [3]Shao,Z.H.,Li,C.Q.,Vanden Hoek,T.L.,Becker,L.B.,Schumacker,P.T.,Wu,J.A.,Attele,A.S.,Yuan,C.S.,1999.Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes.J.Mol.Cell.Cardiol.31,1885-1895.
    [4]Shao,Z.H.,Vanden Hoek,T.L.,Qin,Y.,Becker,L.B.,Schumacker,P.T.,Li,C.Q.,Dey,L.,Barth,E.,Halpern,H.,Rosen,G.M.,Yuan,C.S.,2002.Baicalein attenuates oxidant stress in cardiomyocytes.Am.J.Physiol.Heart Circul.Physiol.282,999-1006.
    [5]Gao,Z.,Huang,K.,Xu,H.,2001.Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxideinduced oxidative stress in HS-SY5Y cells. Pharmacol. Res. 43, 173- 178.
    [6] Qain, L., Okita, K., Murakami, T., Takahashi, M., 1990. Inhibitory effect of baicalein on the growth of cultured hepatoma cells (HUH-7). Biotherapy 4, 1664-1670.
    [7] Huang, H.C., Wang, H.R., Hsieh, L.M., 1994. Antiproliferative effect of baicalein, a flavonoid from a Chinese herb, on vascular smooth muscle cell. Eur. J. Pharmacol. 251, 91-93.
    [8] Inoue, T., Jackson, E.K., 1999. Strong antiproliferative effects of baicalein in cultured rat hepatic stellate cells. Eur. J. Pharmacol. 378, 129-135.
    
    [9] Matsuzaki, Y., Kurokawa, N., Terai, S., Matsumura, Y., Kobayashi, N., Okita, K., 1996. Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn. J. Cancer Res. 87, 170-177.
    
    [10] Li, Y.C., Tyan, Y.S., Kuo, H.M., Chang, W.C., Hsia, T.C., Chung, J.G., 2004. Baicalein induced in vitro apoptosis undergo caspases activity in human promyelocytic leukemia HL-60 cells. Food Chem. Toxicol. 42, 37—43.
    [11] J. Szejeli, Cyclodextrin Technology, Kluwer Academic publishers, Dordrecht, 1998.
    [12] D. Duchene, in: Proceeding of the Furth International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1988 (265-275).
    [13] Szejtli, J., 1998. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743-1754.
    [14] Uekama, K., Hirayama, F., Irie, T., 1998. Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045-2076.
    
    [15] Cortes, M.E., Sinisterra, R.D., Avilacampos, M.J., Tortamano, N., Rocha, R.G., 2001. The chlorhexidine: -cyclodextrin inclusion compound: preparation, characterization and microbiological evaluation. J. Incl. Phenom. Macrocycl. Chem. 40, 297-302.
    [16] Hirayama, F., Uekama, K., 1999. Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125-141.
    
    [17] Ono, N., Arima, H., Hirayama, F., Uekama, K., 2001. A moderate interaction of maltosyl-_-cyclodextrin with Caco-2 cells in comparison with the parent cyclodextrin. Biol. Pharm. Bull. 24, 395-402.
    [18] Higuchi, T., Connors, K.A., 1965. Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117-212.
    [19]Monika Strazisar, Samo Andrensek, Andrej Smidovnik(2008). Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chemistry, 02,051.
    [20] K. A. Connors, Binding constants. The measurement of Molecular complex stability, Wiley, New York, 1987.
    [21] Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity Relation. Journal of Agricultural and Food Chemistry, 47, 1453-1459.
    [22] Kokkinou, A., Makedonopoulou, S., & Mantzafos, D. (2000). The crystal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid. Carbohydrate Research, 328, 135-140.
    [1]A.D.Hamilton,Molecular Recognition(Tetrahedron symposia No.56),Tetrahedron 51(1995) 343.
    [2]Szejtli,J.,1998.Introduction and general overview of cyclodextrin chemistry.Chem.Rev.98,1743-1754.
    [3]Uekama,K.,Hirayama,F.,Irie,T.,1998.Cyclodextrin drug carrier systems.Chem.Rev.98,2045-2076.
    [4]Cortes,M.E.,Sinisterra,R.D.,Avilacampos,M.J.,Tortamano,N.,Rocha,R.G.,2001.The chlorhexidine:β-cyclodextrin inclusion compound:preparation,characterization and microbiological evaluation.J.Incl.Phenom.Macrocycl.Chem.40,297-302.
    [5]Hirayama,F.,Uekama,K.,1999.Cyclodextrin-based controlled drug release system.Adv.Drug Deliv.Rev.36,125-141.
    [6] Ono, N., Arima, H., Hirayama, F., Uekama, K., 2001. A moderate interaction of maltosyl-_-cyclodextrin with Caco-2 cells in comparison with the parent cyclodextrin. Biol. Pharm. Bull. 24, 395-402.
    [7] S.C. Ma, J. Du, P.P.H. But, X.L. Deng, Y.W. Zhang, V.E.C. Ooi, H.X. Xu, S.H.S. Lee and S.F. Lee, J. Ethnopharmacol. 79 (2002), pp. 205-211.
    [8] S. Ikemoto, K. Sugimura, N. Yoshida, R. Yasumoto, S. Wada, K. Yamamoto and T. Kishimoto, Urology 55 (2000), pp. 951-955.
    [9] R.L. Huang, C.C. Chen, H.L. Huang, C.G. Chang, C.F. Chen, C.M. Chang, M.T. Hsieh, Planta Med. 66 (2000) 694.
    [10]Monika Strazisar, Samo Andrensek, Andrej Smidovnik(2008). Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chemistry, 02,051.
    [11] K. A. Connors, Binding constants. The measurement of Molecular complex stability, Wiley, New York, 1987.
    
    [12] Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity Relation. Journal of Agricultural and Food Chemistry, 47, 1453-1459.
    
    [13] Kokkinou, A., Makedonopoulou, S., & Mantzafos, D. (2000). The crystal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid. Carbohydrate Research, 328, 135-140.
    [1]J.M.Lehn.Supramolecular reactivity and catalysis.Applied Catalysis A:General,Volume 113,Issue 2,23 June 1994,Pages 105-114.
    [2]Tamara D.Hamilton,Giannis S.Papaefstathiou,Leonard R.MacGillivray.Template-controlled reactivity:Following nature's way to design and construct metal-organic polyhedra and polygons.Journal of Solid State Chemistry,Volume 178, Issue 8,August 2005,Pages 2409-2413.
    [3]Szejtli,J..Introduction and general overview of cyclodextrin chemistry.Chem.Rev.1998,1743-1754.
    [4]Jing-Jau Tang,L.J.Cline Love.Formation constants of polynuclear aromatic compounds and β-cyclodextrin inclusion complexes in β-cyclodextrin modified mobile phase high performance liquid chromatography system.Analytica Chimica Acta,Volume 344,Issues 1-2,30 May 1997,Pages 137-143.
    [5]A.Munoz de la Pena,F.Salinas,M.J.Gomez,M.Sanchez-Pena,I.Duran-Meras.Host-guest stabilized room temperature phosphorescence in β-cyclodextrin/bromoalcohol solutions from 2-naphthyl-oxy-acetic acid and 1-naphthyl-acetic acid.Talanta,Volume 40,Issue 11,November 1993,Pages 1657-1664.
    [6]A.Munoz de la Pena,I.Duran-Meras,F.Salinas,I.M.Warner and,T.T.Ndou.Cyclodextrin-induced fluid solution room-temperature phosphorescence from acenaphthene in the presence of 2-bromoethanol.Analytica Chimica Acta,Volume 255,Issue 2,24 December 1991,Pages 351-357.
    [7]L.A.Hergert,G.M.Escandar.Spectrofluorimetric study of the β-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum.Talanta,Volume 60,Issues 2-3,13 June 2003,Pages 235-246.
    [8]I.Duran Meras,A.Espinosa-Mansilla,D.Airado Rodriguez.Complexation study of cinalukast and montelukast with cyclodextrines.Journal of Pharmaceutical and Biomedical Analysis,Volume 43,Issue 3,19 February 2007,Pages 1025-1032.
    [9].Bryan Vincent,Gyula Vigh.Nonaqueous capillary electrophoretic separation of enantiomers using the single-isomer heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin as chiral resolving agent.Journal of Chromatography A,Volume 816,Issue 2,14 August 1998,Pages 233-241.
    [10]R.J.Hurtubise,Phosphorimetry.Theory,Instrumentation and Applications,VCH,New York,1990,pp.320-328.
    [11]Carmen Lucas-Abella'n,Isabel Fortea,Jose' Manuel Lo'pez-Nicola's,Estrella Nu'nez-Delicado Cyclodextrins as resveratrol carrier system.Food Chemistry 104(2007) 39-44.
    [12]J.Szejeli,Cyclodxtrin Techenology,Kluwer Academic Publishers,Dordrecht,1998.
    [13]D.Duchene, in: Proceeding of the Found International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1988, pp. 265-275.
    [14] Kokkinou, A., Makedonopoulou, S., & Mantzafos, D. The crystal structure of the 1:1 complex of β-cyclodextrin with trans-cinnamic acid. Carbohydrate Research, 328(2000), 135-140.
    [15]K. George, V. Willingham, H. Wu, D. Gridley, G. Nelson, F. A. Cucinotta. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding. Advances in Space Research, Volume 30, Issue 4, 2002, Pages 891-899.
    [16]Lisa A. Blyshak, Mae Rollie-Taylor, Denise W. Sylvester, Arthur L. Underwood, Gabor Patonay, Isiah M. Warner. Characterization of naphthoate surfactants in normal and reverse micellar systems via luminescence spectroscopy. Journal of Colloid and Interface Science, Volume 136, Issue 2, May 1990, Pages 509-518.
    [17] J. A. Arancibia, G. M. Escandar .Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, Volume 60, Issue 6, 29 August 2003, Pages 1113-1121.
    [18]J. A. Arancibia, G. M. Escandar. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, Volume 60, Issue 6, 29 August 2003, Pages 1113-1121.
    [19]G. M. Escandar, D. Gonzalez Gomez, A. Espinosa Mansilla, A. Munoz de la Pena, H. C. Goicoechea. Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Analytica Chimica Acta, Volume 506, Issue 2, 24 March 2004, Pages 161-170.
    [20]Thomas A. Betts, Gino C. Catena, Jingfan Huang, Kevin S. Litwiler, Jing Zhang, JoAnn Zagrobelny, Frank V. Bright. Fiber-optic-based immunosensors for haptens. Analytica Chimica Acta, Volume 246, Issue 1, 15 May 1991, Pages 55-63.
    [21] X. X. Zhu, F. Brizard, J. Piché, C. T. Yim, G. R. Brown. Bile Salt Anion Sorption by Polymeric Resins: Comparison of a Functionalized Polyacrylamide Resin with Cholestyramine. Journal of Colloid and Interface Science, Volume 232, Issue 2, 15 December 2000, Pages 282-288.
    [22]M. E. Amato, D. Carbone, S. Fisichella, G. Scarlata. Infrared and ultraviolet spectra of some(Z)-α-phenyl-β(2-thienyl) acrylonitriles.Spectrochimica Acta Part A:Molecular Spectroscopy,Volume 38,Issue 10,1982,Pages 1079-1082.
    [23]C.L.Chen,M.J.Tan.Effect of grain boundary character distribution(GBCD) on the cavitation behaviour during superplastic deformation of Al 7475.Materials Science and Engineering A,Volume 338,Issues 1-2,15 December 2002,Pages 243-252.
    [24]Caihong Zhang,Weili Shen,Guangming Wen,Jianbin Chao,Liping Qin,Shaomin Shuang,Chuan Dong,Martin M.F.Choi.Spectral study on the interaction of cryptophane-A and neutral molecules CH_nCl_(4-n)(n=0,1,2).Talanta,Volume 76,Issue 2,15 July 2008,Pages 235-240.
    [25]Ding Haiyun,Chao Jianbin,Zhang Guomei,Shuang Shaomin,Pan Jinhao.Preparation and spectral investigation on inclusion complex of β-cyclodextrin with rutin.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,Volume 59,Issue 14,December 2003,Pages 3421-3429.
    [26]W.J.Wang,J.A.Baldock,R.C.Dalal,P.W.Moody.Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis.Soil Biology and Biochemistry,Volume 36,Issue 12,December 2004,Pages 2045-2058.
    [27]S.Lemaire,F.Van Bambeke,P.Tulkens,Y.Glupczynski.P703 Comparative activity of moxifioxacin vs.trimethoprim-sulfamethoxazole,cloxacillin,linezotid,clindamycin,and ciprofioxacin against intracellular methicillin-sensitive and community-acquired methicillin-resistant S.aureus.International Journal of Antimicrobial Agents,Volume 29,Supplement 2,March 2007,Page S170
    [28]G.Puglisi,M.Fresta,G.Giammona,C.A.Ventura.Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation.International Journal of Pharmaceutics,Volume 125,Issue 2,31 October 1995,Pages 283-287.
    [29]M.Matsushima,Japan Patent 94(1994) 343,419.
    [30]Microgenic Corp,EU Patent 301(1989)847.
    [31]Erik G.Nelson,Raul Hinojosa,Vijay S.Dayal.Quantitative evaluation of sensorineural structures following stapes surgery.American Journal of Otolaryngology,Volume 10,Issue 1,January-February 1989,Pages 13-25.
    [32]Lisa A.Blyshak,Isiah M.Warner,Gabor Patonay.Evidence for non-inclusional association between α-cyclodextrin and polynuclear aromatic hydrocarbons. Analytica Chimica Acta, Volume 232,1990, Pages 239-243.
    
    [33] Waxman E., Rusinova E., Hasselbacher C. A., Schwartz G. P., Laws W. R., Ross J. B. A..Determination of the Tryptophan:Tyrosine Ratio in Proteins. Analytical Biochemistry, Volume 210, Issue 2, 1 May 1993, Pages 425-428
    [34]Sun Hanwen, He Pan, Lv Yunkai, Zhao Xiaoli, Liang Shuxuan. Simultaneous determination of ciprofloxacin, ofloxacin and norfloxacin in pharmaceutical preparations by capillary electrophoresis.32-33.
    [35]Wang J., Warner I. M. Studies of the Naproxen: β-Cyclodextrin Inclusion Complex. Microchemical Journal, Volume 48, Issue 2, October 1993, Pages 229-239.
    [36]A.K. Ghosh. Spectrophotometric study of molecular complex formation of asphaltene with two isomeric chloranils. Fuel, Volume 84, Issues 2-3, January-February 2005, Pages 153-157.
    [37] Y.Inoue, T.Hakuhsi, Y.Liu, L.J. Tong, B.J.Shen, D.S.Jin, J.Am. Computer simulations on the electrical resistivities of metallic superlattices based on simple model. 475-478.
    [38]Y.Inoue, Y.Liu, L.H.ong, B.J.Shen, D.S.Jin, J.Am.Artificial Control of Catalytic Activity of Pd by A Shear Horizontal Surface Acoustic Wave. 1839-1842.
    [1]中华人民共和国卫生部药典委员会.中国药典一部[M].北京:化学工业出版社,2005.211-212.
    [2]杨娟,傅军鹏.黄芩活性成分及药效研究近况[J].实用医药杂志,2004,21(3):271-273.
    [3]姚亚红,张立伟.黄芩素稳定性研究.光谱实验室.2006,23(2),346-348.
    [4]Liu Yuping,Purusotam Basnet,Katsuko Komatsu,Cao Hui.A Novel Approach to Quality Evaluation of Root of Scutellaria baicalensis by DPPH Free Radical Scavenging.China Journal of Chinese Materia Medica.2002,27(8):575-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700