大黄酸在LPS活化巨噬细胞中发挥抗炎与促炎双向作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于甾体抗炎药和环氧酶抑制剂的使用可能引起严重的副作用,IκB激酶p(IKKβ)/核转录因子(NF-κB)这条炎症通路成为了最具前景的抗炎候选药物研究靶点。大黄酸是骨关节炎治疗药双醋瑞因的活性代谢产物(双醋瑞因在体内会完全代谢为大黄酸发挥作用),具有良好的抗炎特性且不会造成胃肠道损伤。然而,在对大黄酸的研究过程中,我们意外地发现大黄酸在LPS活化RAW264.7细胞中发挥既抗炎又促炎的双向作用:即大黄酸在抑制上清中一氧化氮(NO)和白细胞介素6(IL-6)生成的同时,还能促进肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)和高迁移率族蛋白B1(HMGB1)的分泌。为了排除细胞特异性可能造成的结果误差,我们又采用了小鼠原代腹腔巨噬细胞重复实验,却得到了相同的结果。于是,我们进一步对其作用机制展开了研究。
     结果发现,在转录水平,大黄酸能通过抑制IKKβ (IC50≈11.79μM)进而抑制NF-κB的活化及其下游调控的细胞因子诱生型一氧化氮合酶(iNOS)、TNF-α, IL-6和IL-1p的mRNA,呈现出单向的抗炎作用,提示大黄酸促进TNF-α和IL-1β的分泌是在转录后环节发挥作用的。由于HMGB1是高度保守的核蛋白,其转录也不受NF-κB的调控,故我们并未对其mRNA进行研究。为了排除抑制剂可能造成的脱靶效应,我们把IKKβ shRNA质粒转染至RAW264.7细胞中将胞内的IKKβ基因特异性“静默”掉,得到了稳定的IKKβ(-)细胞。结果显示,当IKKβ(-)细胞受到LPS刺激时,也表现出与大黄酸处理普通巨噬细胞之后类似的异常现象,表明IKKβ的抑制正是造成这种异常现象的主要原因。
     由于IL-1β和HMGB1的分泌均需要依赖Caspase-1的活化,我们进一步研究了大黄酸对Caspase-1活性的影响。结果发现,虽然大黄酸对Caspase-1没有直接的作用,但可通过抑制胞内原位的IKKβ间接地增强Caspase-1活性,进而促进IL-1p和HMGB1的分泌,且这种促进作用可被大黄酸减少胞内超氧阴离子(O2.-)的作用所放大。此外,我们还发现,大黄酸对巨噬细胞的吞噬功能也有增强作用,且与对TNF-α释放的作用一样,该增强作用也不依赖LPS的存在,提示大黄酸可能通过另一未知的转录后机制促进TNF-α的分泌并增强巨噬细胞的吞噬功能。
     本研究首次明确了大黄酸/双醋瑞因是一个IKKβ抑制剂,除了能帮助我们更为深入地了解这两个药物在炎症疾病中可能的作用机制之外,也为临床上更为合理地使用这两个药物提供了药理学依据。此外,本研究首次发现大黄酸作为一个天然的IKKβ小分子抑制剂在同一种细胞中展现出前所未知的既能抗炎又能促炎的双向作用,揭示了包括大黄酸和双醋瑞因在内的IKKP抑制剂在临床使用中的复杂性:在不同的组织器官和炎症进程中,由于微环境的不同,IKKβ本身具备的抗炎和促炎两种力量的主次程度不同,抑制IKKβ所产生的效果也可能完全不同。我们建议在投入使用IKKβ抑制剂之前,需要充分考察炎症所处的阶段以及炎症发生处的微环境,以保证所采取的治疗手段的科学性。
Since steroids and cyclooxygenase inhibitors may cause serious side effects, the IκB kinase (IKK)β/nuclear factor-KB (NF-κB) system becomes an intriguing candidate anti-inflammatory target. Rhein, the active metabolite of diacerein, possesses anti-inflammatory ability with gastrointestinal protective effect. However, in our preliminary study, we accidentally found that rhein showed both anti-and pro-inflammatory activities in lipopolysaccharide (LPS)-activated macrophages:rhein reduces proinflammatory mediators nitric oxide (NO) and interleukin-6(IL-6), but enhances tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β) and high mobility group box1(HMGB1) release. To exclude the effect of cell specificity, we carried out parallel experiments in Balb/c mice peritoneal macrophages. Similar results were also observed in mice peritoneal macrophages. Thus, in this study, we explored the underlying molecular mechanisms of the dual effect of rhein.
     In LPS-activated macrophages, the supernatant NO was determined by Griess method, other proinflammatory mediators IL-6, TNF-a, IL-1β and HMGB1were assayed by ELISA kits. The transcriptional levels of proinflammatory cytokines were determined by Western blot and qPCR, respectively. All protein expressions were determined by Western blot. NF-κB and AP-1activation were investigated by luciferase assay. IKKP kinase activity assay was performed using IκBa as a substrate. IKKβ (-) cells were obtained by using IKKP shRNA plasmid.
     The obtained results indicated that rhein inhibits LPS-induced NF-κB activation and sequentially suppresses its downstream inducible nitric oxide synthase (iNOS), IL-6, TNF-a and IL-1β transcriptions and supernatant NO and IL-6levels by inhibiting IKKP (IC50≈11.79μM). To verify whether the pro-and anti-inflammatory actions of rhein attribute to the IKKP inhibition and exclude the off-target effects by IKKβ inhibitors, we conditionally knocked down the IKKβ gene in RAW264.7cells using KKβ shRNA plasmid and obtained stable IKKP (-) cells. Its responses to LPS were similar to rhein-treated macrophages, suggesting that rhein exerted anti-and pro-inflammatory activities by virtue of targeting IKKβ inhibition, In the meantime, rhein enhances the activity of caspase-1through inhibiting intracellular (in situ) IKβ, in turn increasing the IL-1β and HMGB1release, which can be amplified by rhein's reductive effect on intracellular superoxide anion (O2-). Unexpectedly, it is because of IKKβ inhibition that rhein significantly enhances TNF-a secretion and phagocytosis in macrophages with or without LPS.
     In summary, the above results indicate that rhein exerts anti-and pro-inflammatory activities by targeting IKKβ inhibition, providing a molecular mechanism for the unanticipated role of rhein in macrophages for the first time. Furthermore, our study also highlights the potential complications of IKKβ inhibitors (e.g. rhein and diacerein, etc.) application in inflammation disorders, for the overall effects of IKKβ inhibition in different organ systems and disease processes are not easily predictable under all circumstances. Considering diacerein having been widely used clinically and its apparent safety in patients, we conclude that direct inhibition IKKβ is a hitherto unrecognized property of rhein or diacerein, which may lead to the development of previously undescribed therapeutic repositioning strategies for the treatment of various human inflammatory diseases, as well as OA. Although IKKβ inhibitors are likely to be potent anti-inflammatory agents, the fact that IKKβ displays opposite functions in macrophages raises the question whether IKKP inhibitors are excellent anti-inflammatory agents in various tissues or different stages of inflammatory diseases. Answering the question would be good for the rational use of rhein or diacerein clinically.
引文
[1]Akira S, Takeda K and Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity [J]. Nat. Immunol.,2001,2(8):675-680.
    [2]Kleiman A and Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy:lessons from conditional knockout mice [J]. Mol. Cell Endocrinol.,2007,275(1-2):98-108.
    [3]Cohen J. The immunopathogenesis of sepsis [A]. Nature,2002,420(6917): 885-891.
    [4]Moreira CG, Herrera CM, Needham BD, Parker CT, Libby SJ, Fang FC, Trent MS and Sperandio V. Virulence and stress-related periplasmic protein (VisP) in bacterial/host associations [J]. Proc Natl Acad Sci U S A,2013,110(4):1470-1475.
    [5]Sung MH, Li N, Lao Q, Gottschalk RA, Hager GL and Fraser ID. Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-κB signaling [J]. Sci Signal.2014,7(308):ra6.
    [6]Fontaine C, Rigamonti E, Nohara A, Gervois P, Teissier E, Fruchart JC, Staels B and Chinetti-Gbaguidi G. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages [J]. Circ. Res.,2007,101(1): 40-49.
    [7]Reimer T, Brcic M, Schweizer M and Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages [J]. J. Leukoc. Biol.,2008,83(5):1249-1257.
    [8]Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F and Verma IM. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1) [J]. Proc Natl Acad Sci U S A,2005,102(35):12425-12430.
    [9]Nam NH. Naturally occurring NF-kappaB inhibitors [A]. Mini. Rev. Med. Chem., 2006,6(8):945-951.
    [10]Wang GJ, Chen SM, Chen WC, Chang YM and Lee TH. Selective inducible nitric oxide synthase suppression by new bracteanolides from Murdannia bracteata [J]. J Ethnopharmacol.,2007,112(2):221-227.
    [I11]Stuart LM and Ezekowitz RA. Phagocytosis:elegant complexity [A]. Immunity, 2005,22(5):539-550.
    [12]Kochan T, Singla A, Tosi J and Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus [J]. Infect. Immun.,2012,80(6):2076-2088.
    [13]Lin CY, Tsai IF, Ho YP, Huang CT, Lin YC, Lin CJ, Tseng SC, Lin WP, Chen WT and Sheen IS. Endotoxemia contributes to the immune paralysis in patients with cirrhosis [J]. J. Hepatol.,2007,46(5):816-826.
    [14]Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N and Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells [J]. Int Immunol,2010,22(4): 271-280.
    [15]Wright SD, Romos RA, Tobias PS, Ulevitch RJ and Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein [J]. Science, 1990,249(4975):1431-1433.
    [16]Mathison JC, Tobias PS, Wolfson E abd Ulevitch RJ.. Plasma lipopolysaccharide (LPS)-bingding protein. A key component in macrophage recognition of gram-negative LPS [J]. J Immunol,1992,149(1):200-206.
    [17]Hernandez C, Ortega F, Garcia-Ramirez M, Villarroel M, Casado J, Garcia-Pascual L, Fernandez-Real JM and Simo R. Lipopolysaccharide-binding protein and soluble CD 14 in the vitreous fluid of patients with proliferative diabetic retinopathy [J]. Retina,2010,30(2):345-352.
    [18]Barochia A, Solomon S, Cui X, Natanson C and Eichacker PQ. Eritoran tetrasodium (E5564) treatment for sepsis:review of preclinical and clinical studies [J]. Expert Opin Drug Metab Toxicol.2011,7(4):479-494.
    [19]孙大业,崔素娟,孙颖.细胞信号转导[M].北京:科学出版社,2010:274-275.
    [20]景志忠.Toll样受体与天然免疫[M].兰州:兰州大学出版社,2012:135-143.
    [21]Ghosh S, May MJ and Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses [A]. Annu. Rev. Immunol.,1998,16: 225-260.
    [22]Zandi E, Chen Y and Karin M. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta:discrimination between free and NF-kappaB-bound substrate [J]. Science, 1998,281(5381):1360-1363.
    [23]Lawrence T, Bebien M, Liu GY, Nizet V and Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation [J]. Nature,2005,434(7037):1138-1143.
    [24]Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ and Cerretti DP. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells [J]. Nature,1997,385(6618):729-733.
    [25]Rubartelli A, Cozzolino F, Talio M and Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence [J]. EMBO J.,1990,9(5): 1503-1510.
    [26]Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A and Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice [J]. Science,1999,285(5425):248-251.
    [27]Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD and Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia [J]. J. Immunol.,2010,185(7):4385-4392.
    [28]Cyong J, Matsumoto T, Arakawa K, Kiyohara H, Yamada H and Otsuka Y. Anti-Bacteroides fragilis substance from rhubarb [J]. J. Ethnopharmacol.,1987, 19(3):279-283.
    [29]吴连英,玉梅梅.中药大黄炮制研究Ⅷ—炮制对大黄解热作用的影响[J].中药通报,1986,11(6):24-26.
    [30]Kageura T, Matsuda H, Morikawa T, Toguchida I, Harima S, Oda M and Yoshikawa M. Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages:structural requirements of stilbenes for the activity [J]. Bioorg. Med. Chem.,2001,9(7):1887-1893.
    [31]国家中医药管理局《中华本草》编委会.中华本草(上册)[M].上海:上海科学与技术出版社,1998:355-372.
    [32]Zhang A, Sun H, Yang B and Wang X. Predicting new molecular targets for rhein using network pharmacology [J]. BMC Syst. Biol.,2012,6:20.
    [33]Wang CC, Huang YJ, Chen LG, Lee LT and Yang LL. Inducible nitric oxide synthase inhibitors of Chinese herbs III. Rheum palmatum [J]. Planta Med.,2002, 68(10):869-874.
    [34]Domagala F, Martin G, Bogdanowicz P, Ficheux H and Pujol JP. Inhibition of interleukin-1 beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappaB and AP-1:potential mechanism for Diacerein effects in osteoarthritis [J]. Biorheology,206,43(3-4):577-587.
    [35]Dougados M, Nguyen M, Berdah L, Mazieres B, Vignon E and Lequesne M. Evaluation of the structure-modifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial. Evaluation of the Chondromodulating Effect of Diacerein in OA of the Hip [J]. Arthritis Rheum., 2001,44(11):2539-2547.
    [36]Fernand VE, Losso JN, Truax RE, Villar EE, Bwambok DK, Fakayode SO, Lowry M and Warner IM. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro [J]. Chem. Biol. Interact,2011,192(3):220-232.
    [37]Dhaneshwar S, Patel V, Patil D and Meena G. Studies on synthesis, stability, release and pharmacodynamic profile of a novel diacerein-thymol prodrug [J]. Bioorg. Med. Chem. Lett.,2013,23(1):55-61.
    [38]李晓红.大黄酸抗炎作用及机理研究[D].北京:中国医学科学院药用植物研究所,2010.
    [1]Layoun A and Santos MM. Bacterial cell wall constituents induce hepcidin expression in macrophages through MyD88 signaling [J]. Inflammation,2012,35(4): 1500-1506.
    [2]Kim SA, Kim YC, Kim SW, Lee SH, Min JJ, Ahn SG and Yoon JH. Antitumor activity of novel indirubin derivatives in rat tumor model [J]. Clin. Cancer Res., 2007,13(1):253-259.
    [3]Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays [J]. J. Immunol. Methods,1983,65(1-2): 55-63.
    [4]Li M, Gao F, Zhou ZS, Zhang HM, Zhang R, Wu YF, Bai MH, Li JJ, Lin SR and Peng JY. Arecoline inhibits epithelial cell viability by upregulating the apoptosis pathway:Implication for oral submucous fibrosis [J]. Oncol Rep.2014, doi: 10.3892/or.2014.3091.
    [5]Park ES, Kang JC, Jang YC, Park JS, Jang SY, Kim DE, Kim B and Shin HS. Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H2O2-induced apoptosis [J]. J Ethnopharmacol.2014, pii:S0378-8741(14)00132-9. doi:10.1016/j.jep.2014.02.019.
    [6]Gao LJ, Gu PQ, Zhao W, Ding WY, Zhao XQ, Guo SY and Zhong TY. The role of globular heads of the Clq receptor in HPV 16 E2-induced human cervical squamous carcinoma cell apoptosis is associated with p38 MAPK/JNK activation [J]. J Transl Med.,2013,11:118. doi:10.1186/1479-5876-11-118.
    [7]Fotakis G and Timbrell J A. In vitro cytotoxicity assays:comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride [J]. Toxicol. Lett.,2006,160(2):171-177.
    [1]Fontaine C, Rigamonti E, Nohara A, Gervois P, Teissier E, Fruchart JC, Staels B and Chinetti-Gbaguidi G. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages [J]. Circ. Res.,2007,101(1): 40-49.
    [2]Reimer T, Brcic M, Schweizer M and Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages [J]. J. Leukoc. Biol.,2008,83(5):1249-1257.
    [3]Nam NH. Naturally occurring NF-kappaB inhibitors [A]. Mini. Rev. Med. Chem., 2006,6(8):945-951.
    [4]Wang GJ, Chen SM, Chen WC, Chang YM and Lee TH. Selective inducible nitric oxide synthase suppression by new bracteanolides from Murdannia bracteata [J]. J Ethnopharmacol.,2007,112(2):221-227.
    [5]Wang HQ and Smart RC. Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion [J]. J. Cell Sci.,1999,112(Pt 20):3497-3506.
    [6]Weinberg JB, Fermor B and Guilak F. Nitric oxide synthase and cyclooxygenase interactions in cartilage and meniscus:relationships to joint physiology, arthritis, and tissue repair [J]. Subcell Biochem.,2007,42:31-62.
    [7]Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F and Verma IM. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1) [J]. Proc Natl Acad Sci U S A,2005,102(35):12425-12430.
    [8]Stuart LM and Ezekowitz RA. Phagocytosis:elegant complexity [A]. Immunity, 2005,22(5):539-550.
    [9]Kochan T, Singla A, Tosi J and Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus [J]. Infect. Immun.,2012,80(6):2076-2088.
    [10]Lin CY, Tsai IF, Ho YP, Huang CT, Lin YC, Lin CJ, Tseng SC, Lin WP, Chen WT and Sheen IS. Endotoxemia contributes to the immune paralysis in patients with cirrhosis [J]. J. Hepatol.,2007,46(5):816-826.
    [11]Li M, Zhang L, Cai RL, Gao Y and Qi Y. Lipid-soluble extracts from Salvia miltiorrhiza inhibit production of LPS-induced inflammatory mediators via NF-kappaB modulation in RAW 264.7 cells and perform antiinflammatory effects in vivo [J]. Phytother. Res.,2012,26(8):1195-1204.
    [12]Chen X, Zong CJ, Gao Y, Cai RL, Fang L, Lu J, Liu F and Qi Y. Curcumol exhibits anti-inflammatory proterties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW 264.7 cells [J]. Eur. J. Pharmacol.,2014,723: 339-345.
    [13]Wang M, Xie C, Cai RL, Li XH, Luo XZ and Qi Y. Studies on antioxidant activities of breviscapine in the cell-free system [J]. Am. J. Chin. Med.,2008,36(6): 1199-1207.
    [14]Ragsdale RL and Grasso RJ. An improved spectrofluorometric assay for quan-titating yeast phagocytosis in cultures of murine peritoneal macrophages [J]. J. Immunol. Methods,1989,123(2):259-267.
    [15]Wan CP, Park CS and Lau BH. A rapid and simple microfluorometric phagocytosis assay [J]. J. Immunol. Methods,1993,162(1):1-7.
    [16]陈叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2005:413-414.
    [17]Pinho BR, Sousa C, Valentao P and Andrade PB. Is nitric oxide decrease observed with naphthoquinones in LPS stimulated RAW 264.7 macrophages a beneficial property [J]? PloS One,2011,6(8):e24098.
    [18]Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL and Peitzman AB. Nitrogen oxide levels in patients after trauma and during sepsis [J]. Ann. Surg.,1991,214(5):621-626.
    [19]MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, Chen H and Mudget JS. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase [J]. Cell,1995,81(4):641-650.
    [20]Wang QZ, Jacobs J, DeLeo J, Kruszyna H, Kruszyna R, Smith R and Wilcox D. Nitric oxide hemoglobin in mice and rats in endotoxic shock [J]. Life Sci.,1991, 49(11):PL55-60.
    [21]Murphy S. Production of nitric oxide by glial cells:regulation and potential roles in the CNS [J]. Glia,2000,29(1):1-13.
    [22]Sweet MJ and Hume DA. Endotoxin signal transduction in macrophages [J]. J. Leukoc. Biol.,1996,60(1):8-26.
    [23]Zakharova M and Ziegler HK. Paradoxical anti-inflammatory actions of TNF-alpha: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells [J]. J. Immunol.,2005,175(8):5024-5033.
    [24]El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr and Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer [J]. Nature,2000,404(6776):398-402.
    [25]Stein B and Sutherland MSK. IL-6 as a drug discover target [A]. Drug Discovery Today,1998,3:202-213.
    [26]Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A and Tracey KJ. HMG-1 as a late mediator fof endotoxin lethality in mice [J]. Science,1999,285(5425):248-251.
    [27]Nam NH. Naturally occurring NF-kappaB inhibitors [J]. Mini. Rev. Med. Chem. 2006,6(8):945-951.
    [28]Kox WJ, Volk T, Kox SN and Volk HD. Immunomodulatory therapies in sepsis [J]. Intensive Care Med.,2000,26(Suppl 1):S124-128.
    [29]Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS [J]. Crit. Care Med.,1996, 24(7):1125-1128.
    [30]Schultz MJ, Olszyna DP, de Jonge E, Verbon A, van Deventer SJ and van der Poll T. Reduced ex vivo chemokine production by polymorphonuclear cells after in vivo exposure of normal humans to endotoxin [J]. J. Infect. Dis.,2000,182(4): 1264-1267.
    [31]Pharham P. The immune system [M]. New York:Garland Science Publising,2005, 2nd edition.
    [32]李平.甘露糖受体MR参与隐球菌免疫逃逸及S100A10促进隐球菌穿过血脑屏障的机制研究[D].上海:中国人民解放军第二军医大学,2013.
    [1]Fontaine C, Rigamonti E, Nohara A, Gervois P, Teissier E, Fruchart JC, Staels B and Chinetti-Gbaguidi G. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages [J]. Circ. Res.,2007,101(1): 40-49.
    [2]Reimer T, Brcic M, Schweizer M and Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages [J]. J. Leukoc. Biol.,2008,83(5):1249-1257.
    [3]Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD and Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia [J]. J. Immunol.,2010,185(7):4385-4392.
    [4]Li M, Zhang L, Cai RL, Gao Y and Qi Y. Lipid-soluble extracts from Salvia miltiorrhiza inhibit production of LPS-induced inflammatory mediators via NF-kappaB modulation in RAW 264.7 cells and perform antiinflammatory effects in vivo [J]. Phytother. Res.,2012,26(8):1195-1204.
    [5]Dieffenbach CW and Dveksler GS. PCR primer:a laboratory manual [M]. New York:Cold Spring Harbor Laboratory Press,1995:1,23.
    [6]陈叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2005:650-651.
    [7]Gao Y, Fang L, Cai RL, Zong CJ, Chen X, Lu J and Qi Y. Shuang-Huang-Lian exerts anti-inflammatory and ant-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages [J]. Phytomedicine,2014,21(4):461-469.
    [8]Chen X, Zong CJ, Gao Y, Cai R, Fang L, Lu J, Liu F and Qi Y. Curcumol exhibits anti-inflammatory proterties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells [J]. Eur. J. Pharmacol.,2014,723: 339-345.
    [1]Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits [A]. Biochim. Biophys. Acta,2005,1754(1-2):253-262.
    [2]Lu YC, Yeh WC and Ohashi PS. LPS/TLR4 signal tranduction pathway [A]. Cytokine,2008,42(2):145-151.
    [3]Chen X, Zong C, Gao Y, Cai R, Fang L, Lu J, Liu F and Qi Y. Curcumol exhibits anti-inflammatory properties by interfering with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells [J]. Eur. J. Pharmacol.,2014,723: 339-345.
    [4]Li M, Zhang L, Cai RL, Gao Y and Qi Y. Lipid-soluble extracts from Salvia miltiorrhiza inhibit production of LPS-induced inflammatory mediators via NF-kappaB modulation in RAW 264.7 cells and perform antiinflammatory effects in vivo [J]. Phytother. Res.,2012,26(8):1195-1204.
    [5]Singh H, Sen R, Baltimore D and Sharp PA. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes [J]. Nature,1986,319(6049):154-158.
    [6]Ghosh S, May MJ and Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses [J]. Annu. Rev. Immunol.,1998,16: 225-260.
    [7]Silverman N and Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity [J]. Genes Dev.,2001,15(18):2321-2342.
    [8]Ghosh S and Karin M. Missing pieces in the NF-kappaB puzzle [J]. Cell,2002, 109(Suppl):S81-S96.
    [9]Yamamoto Y and Gaynor RB. IkappaB kinases:key regulators of the NF-kappaB pathway [A]. Trends Biochem. Sci.,2004,29(2):72-79.
    [10]Beyaert R, Heyninck K and Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis [J]. Biochem. Pharmacol.,2000,60(8):1143-1151.
    [1]Aupperle KR, Yamanishi Y, Bennett BL, Mercurio F, Boyle DL and Firestein GS. Expression and regulation of inducible IkappaB kinase (IKK-i) in human fibroblast-like synoviocytes [J]. Cell Immunol.,2011,214(1):54-59.
    [2]Lawrence T, Bebien M, Liu GY, Nizet V and Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation [J]. Nature,2005,434(7037):1138-1143.
    [3]Takeda K and Akira S. TLR signaling pathways [A]. Semin. Immunol.,2004,16(1): 3-9.
    [4]Cohen AN, Veena MS, Srivatsan ES and Wang MB. Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase [J]. Arch. Otolaryngol. Head Neck Surg.,2009,135(2):190-197.
    [5]Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M and Lawrence T. An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation [J]. J. Exp. Med.,2008,205(6):1269-1276.
    [6]Hayden MS and Ghosh S. NF-κB in immunobiology [A]. Cell Res.,2011,21(2): 223-244.
    [7]Lawrence T, Bebien M, Liu GY, Nizet V and Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation [J]. Nature,2005,434(7037):1138-1143.
    [8]Newton R, Holden NS, Catley MC, Oyelusi W, Leigh R, Proud D and Barnes PJ. Repression of inflammatory gene expression in human pulmonary epithelial cells by small-molecule IkappaB kinase inhibitors [J]. J. Pharmacol. Exp. Ther.,2007, 321(2):734-742.
    [9]Catley MC, Sukkar MB, Chung KF, Jaffee B, Liao SM, Coyle AJ, Haddad el-B, Barnes PJ and Newton R. Validation of the anti-inflammatory properties of small-molecule IkappaB Kinase (TKK)-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle [J]. Mol. Pharmacol.,2006,70(2):697-705.
    [10]Ankermann T, Reisner A, Wiemann T, Krams M, Kohler H and Krause MF. Topical inhibition of nuclear factor-kappaB enhances reduction in lung edema by surfactant in a piglet model of airway lavage [J]. Crit. Care. Med.,2005,33(6):1384-1391.
    [11]Nagarajan S, Doddareddy Mr, Choo H, Cho YS, Oh KS, Lee BH and Pae AN. IKKbeta inhibitors identification part I:homology model assisted structure based virtual screening [J]. Bioorg. Med. Chem.,2009,17(7):2759-2766.
    [12]Nagarajan S, Choo H, Cho YS, Oh KS, Lee BH, Shin KJ and Pae AN. IKKbeta inhibitors identification part Ⅱ:ligand and structure-based virtual screening [J]. Bioorg. Med. Chem.,2010,18(11):3951-3960.
    [13]Farrell RE. RNA分离与鉴定实验指南-RNA研究方法[M].北京:化学工业出版社,2007:333-337.
    [14]Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O'Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L and Karin M. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta [J]. Cell,2007,130(5):918-931.
    [15]Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M and Lawrence T. An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation [J]. J. Exp. Med.,2008,205(6):1269-1276.
    [16]Li Q, Van Antwerp D, Mercurio F, Lee KF and Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene [J]. Science,1999, 284(5412):321-325.
    [17]Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A, Krampert M, Goebeler M, Gillitzer R, Israel A, Krieg T, Rajewsky K and Haase I. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2 [J]. Nature,2002,417(6891):861-866.
    [18]Liu X and Sun J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways [J]. Biomaterials, 2010,31(32):8198-8209.
    [19]Kojima M, Oguro K, Sawabe K, Iida Y, Ikeda R, Yamashita A, Nakanishi N and Hasegawa H. Rapid turnover of tryptophan hydroxylase is driven by proteasomes in RBL2H3 cells, a serotonin producing mast cell line [J]. J. Biochem.,2000,127(1): 121-127.
    [20]Elie BT, Gocheva V, Shree T, Dalrymple SA, Holsinger LJ and Joyce JA. Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model [J]. Biochimie,2010, 92(11):1618-1624.
    [21]Donia M, Mangano K, Fagone P, De Pasquale R, Dinotta F, Coco M, Padron J, Al-Abed Y, Giovanni Lombardo GA, Maksimovic-Ivanic D, Mijatovic S, Zocca MB, Perciavalle V, Stosic-Grujicic S and Nicoletti F. Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells [J]. Oncol Rep.,2012,28(2):682-688.
    [22]Dewan MZ, Tomita M, Katano H, Yamamoto N, Ahmed S, Yamamoto M, Sata T, Mori N and Yamamoto N. An HIV protease inhibitor, ritonavir targets the nuclear factor-kappaB and inhibits the tumor growth and infiltration of EBV-positive lymphoblastoid B cells [J]. Int. J. Cancer,2009,124(3):622-629.
    [23]Uen YH, Liu DZ, Weng MS, Ho YS and Lin SY. NF-kappaB pathway is involved in griseofulvin-induced G2/M arrest and apoptosis in HL-60 cells [J]. J. Cell Biochem.,2007,101(5):1165-1175.
    [24]Tsuchiya Y, Asano T, Nakayama K, Kato T Jr, Karin M and Kamata H. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation [J]. Mol. Cell.,2010,39(4):570-582.
    [25]Lee JH, Choi YH, Kang HS and Choi BT. An aqueous extract of Platycodi radix inhibits LPS-induced NF-kappaB nuclear translocation in human cultured airway epithelial cells [J]. Int. J. Mol. Med.,2004,13(6):843-847.
    [26]Yuda H, Adachi Y, Taguchi O, Gabazza EC, Hataji O, Fujimoto H, Tamaki S, Nishikubo K, Fukudome K, D'Alessandro-Gabazza CN, Maruyama J, Izumizaki M, Iwase M, Homma I, Inoue R, Kamada H, Hayashi T, Kasper M, Lambrecht BN, Barnes PJ and Suzuki K. Activated protein C inhibits bronchial hyperresponsiveness and Th2 cytokine expression in mice [J]. Blood,2004,103(6):2196-2204.
    [27]Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T and Gorlach A. Reactive oxygen species activate the HIF-1 alpha promoter via a functional NFkappaB site [J]. Arterioscler Thromb Vasc Biol,2007,27(4):755-761.
    [28]Bao Z, Lim S, Liao W, Lin Y, Thiemermann C, Leung BP and Wong WS. Glycogen synthase kinase-3beta inhibition attenuates asthma in mice [J]. Am. J. Respir. Crit. Care Med.,2007,176(5):431-438.
    [29]Cuzzocrea S, Crisafulli C, Mazzon E, Esposito E, Muia C, Abdelrahman M, Di Paola R and Thiemermann C. Inhibition of glycogen synthase kinase-3beta attenuates the development of carrageenan-induced lung injury in mice [J]. Br. J. Pharmacol.,2006,149(6):687-702.
    [30]Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K and Kracht M. Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity [J]. J. Biol. Chem.,2004,279(48):49571-49574.
    [31]Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, Matthay MA. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats [J]. Am. J. Respir. Cell Mol. Biol.,2007,37(2):186-192.
    [1]Rubartelli A, Cozzolino F, Talio M and Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence [J]. EMBO J.,1990,9(5): 1503-1510.
    [2]Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A and Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice [J]. Science,1999,285(5425):248-251.
    [3]Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD and Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia [J]. J. Immunol.,2010,185(7):4385-4392.
    [4]Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O'Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L and Karin M. NF-kappaB is a negative regulator of IL-lbeta secretion as revealed by genetic and pharmacological inhibition of IKKbeta [J]. Cell,2007,130(5):918-931.
    [5]El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr and Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer [J]. Nature,2000,404(6776):398-402.
    [6]朱敏,崔彬,焦玉莲,王来城,曲芸芸,孙新平,刘晓雯,徐洁和赵跃然.重组人HMGB1 A box的表达纯化及对单核细胞的抑制作用[J].细胞与分子免疫学杂志,2010,26(4):333-336.
    [1]Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T and Gorlach A. Reactive oxygen species activate the HIF-1 alpha promoter via a functional NFkappaB site [J]. Arterioscler Thromb Vasc Biol,2007,27(4):755-761.
    [2]Meissner F, Molawi K and Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock [J]. Nat. Immunol.,2008,9(8):866-872.
    [3]Rubartelli A, Cozzolino F, Talio M and Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence [J]. EMBO J.,1990,9(5): 1503-1510.
    [4]Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD and Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia [J]. J. Immunol.,2010,185(7):4385-4392.
    [5]Cathcart R, Schwiers E and Ames BN. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem.,1983, 134(1):111-116.
    [6]Sarna LK, Wu N, Hwang SY, Siow YL and O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages [J]. Can. J. Physiol. Pharmacol.,2010,88(3):369-378.
    [7]Nishikimi M, Appaji N and Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen [J]. Biochem. Biophys. Res. Commun.,1972,46(2):849-854.
    [8]Lee IT and Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases [A]. Biochem. Pharmacol.,2012, 84(5):581-590.
    [9]Gao Y, Fang L, Cai RL, Zong CJ, Chen X, Lu J and Qi Y. Shuang-Huang-Lian exerts anti-inflammatory and ant-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages [J]. Phytomedicine,2014,21(4):461-469.
    [10]Morgan MJ and Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling [A]. Cell Res.,2011,21(1):103-115.
    [11]Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems [A]. Antioxid. Redox. Signal.,2000,2(4):811-820.
    [12]Rhee SG, Yang KS, Kang SW, Woo HA and Chang TS. Controlled elimination of intracellular H(2)O(2):regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification [J]. Antioxid. Redox. Signal.,2005, 7(5-6):619-626.
    [13]Sies H. Oxidative stress:oxidants and antioxidants [A]. Exp. Physiol.,1997,82(2): 291-295.
    [14]Brown DI and Griendling KK. Nox proteins in signal transduction [A]. Free Radic. Biol. Med.,2009,47(9):1239-1253.
    [15]Lambeth JD. NOX enzymes and the biology of reactive oxygen [A]. Nat. Rev. Immunol.,2004,4(3):181-189.
    [1]Lawrence T and Fong C. The resolution of inflammation:anti-inflammatory roles for NF-kappaB [A]. Int. J. Biochem. Cell Biol.,2010,42(4):519-523.
    [2]Baue AE, Durham R and Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF):are we winning the battle [A]? Shock,1998,10(2):79-89.;
    [3]Duffield JS. The inflammatory macrophage:a story of Jekyll and Hyde [A]. Clin Sci (Lond),2003,104(1):27-38.
    [4]Fontaine C, Rigamonti E, Nohara A, Gervois P, Teissier E, Fruchart JC, Staels B and Chinetti-Gbaguidi G. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages [J]. Circ. Res.,2007,101(1): 40-49.
    [5]Reimer T, Brcic M, Schweizer M and Jungi TW. poly(I:C) and LPS induce distinct IRF3 and NF-kappaB signaling during type-I IFN and TNF responses in human macrophages [J]. J. Leukoc. Biol.,2008,83(5):1249-1257.
    [6]Nam NH. Naturally occurring NF-kappaB inhibitors [A]. Mini. Rev, Med. Chem., 2006,6(8):945-951.
    [7]Wang GJ, Chen SM, Chen WC, Chang YM and Lee TH. Selective inducible nitric oxide synthase suppression by new bracteanolides from Murdannia bracteata [J]. J Ethnopharmacol.,2007,112(2):221-227.
    [8]Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F and Verma IM. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1) [J]. Proc Natl Acad Sci U S A,2005,102(35):12425-12430.
    [9]Stuart LM and Ezekowitz RA. Phagocytosis:elegant complexity [A]. Immunity, 2005,22(5):539-550.
    [10]Tucsek Z, Radnai B, Racz B, Debreceni B, Priber JK, Dolowschiak T, Palkovics T, Gallyas F Jr, Sumegi B and Veres B. Suppressing LPS-induced early signal transduction in macrophages by a polyphenol degradation product:a critical role of MKP-1 [J]. J. Leukoc. Biol.,2011,89(1):105-111.
    [11]Bonizzi G and Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity [A]. Trends Immunol.,2004,25(6):280-288.
    [12]Nagarajan S, Doddareddy Mr, Choo H, Cho YS, Oh KS, Lee BH and Pae AN. IKKbeta inhibitors identification part Ⅰ:homology model assisted structure based virtual screening [J]. Bioorg. Med. Chem.,2009,17(7):2759-2766.
    [13]Nagarajan S, Choo H, Cho YS, Oh KS, Lee BH, Shin KJ and Pae AN. IKKbeta inhibitors identification part II:ligand and structure-based virtual screening [J]. Bioorg. Med. Chem.,2010,18(11):3951-3960.
    [14]Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O'Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L and Karin M. NF-kappaB is a negative regulator of IL-lbeta secretion as revealed by genetic and pharmacological inhibition of IKKbeta [J]. Cell,2007,130(5):918-931.
    [15]Rubartelli A, Cozzolino F, Talio M and Sitia R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence [J]. EMBO J.,1990,9(5): 1503-1510.
    [16]Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD and Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia [J]. J. Immunol.,2010,185(7):4385-4392.
    [17]Li Q, Van Antwerp D, Mercurio F, Lee KF and Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene [J]. Science,1999, 284(5412):321-325.
    [18]Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A, Krampert M, Goebeler M, Gillitzer R, Israel A, Krieg T, Rajewsky K and Haase I. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2 [J]. Nature,2002,417(6891):861-866.
    [19]Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M and Lawrence T. An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation [J]. J. Exp. Med.,2008,205:1269-1276.
    [20]Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B and Dixon JE. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease [J]. Science,2000,290(5496):1594-1597.
    [21]Zheng Y1, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB and Bliska JB. A Yersinia effector with enhanced inhibitory activity on the NF-kappaB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages [J]. PLoS Pathog.,2011,7(4):e1002026.
    [22]Taylor PR and Gordon S. Monocyte heterogeneity and innate immunity [J]. Immunity,2003,19(1):2-4.
    [23]Gordon S and Taylor PR. Monocyte and macrophage heterogeneity [J]. Nat. Rev. Immunol.,2005,5(12):953-964.
    [24]Timmer AM and Nizet V. IKKbeta/NF-kappaB and the miscreant macrophage [J]. J. Exp. Med.,2008,205(6):1255-1259.
    [25]Karin M, Yamamoto Y and Wang QM. The IKK NF-κB system:a treasure trove for drug development [A]. Nat. Rev. Drug Discov.,2004,3(1):17-26.
    [26]Lane NE. Clinical practice. Osteoarthritis of the hip [J]. N. Engl. J. Med.,2007, 357(14):1413-1421.
    [27]Eckmann L, Nebelsiek T, Fingerle AA, Dann SM, Mages J, Lang R, Robine S, Kagnoff MF, Schmid RM, Karin M, Arkan MC and Greten FR. Opposing functions of IKKbeta during acute and chronic intestinal inflammation [J]. Proc. Natl. Acad. Sci. U S A,2008,105(39):15058-15063.
    [28]Felson DT. Clinical practice. Osteoarthritis of the knee [J]. N. Engl. J. Med.,2006, 354(8):841-848.
    [1]Sen R and Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences [J]. Cell,1986,46(5):705-716.
    [2]Yamamoto Y and Gaynor RB. IkappaB kinases:key regulators of the NF-kappaB pathway [J]. Trends Biochem. Sci.,2004,29(2):72-79.
    [3]Chen ZJ, Parent L and Maniatis T. Site-specific phosphorylation of IkappaB alpha by a novel ubiquitination-dependent protein kinase activity [J]. Cell,1996,84(6): 853-862.
    [4]Woronicz JD, Gao X, Cao Z, Rothe M and Goeddel DV. IkappaB kinase-beta: NF-kappa B activation and complex formation with I kappa B kinase-alpha and NIK [J]. Science,1997,278(5339):866-869.
    [5]Rushe M, Silvian L, Bixler S, Chen LL, Cheung A, Bowes S, Cuervo H, Berkowitz S, Zheng T, Guckian K, Pellegrini M and Lugovskoy A. Structure of a NEMO/IKK-associating domain reveals architecture of the interaction site [J]. Structure,2008,16(5):798-808.
    [6]Adli M and Baldwin AS. IKK-i/IKK epsilon controls constitutive, cancer cell-associated NF-kappa B activity via regulation of Ser-536 p65/RelA phosphorylation [J]. J. Biol. Chem.,2006,281(37):26976-26984.
    [7]Chau T-L, Gioia R, Gatot J-S, Patrascu F, Carpentier I, Chapelle J-P, O'Neil L, Beyaert R, Piette J and Chariot A. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? [J]. Trends Biochem. Sci.,2008,33(4):171-180.
    [8]Czabanka M, Korherr C, Brinkmann U and Vajkoczy P. Influence of TBK-1 on tumor angiogenesis and microvascular inflammation [J]. Front. Biosci.,2008,13: 7243-7249.
    [9]Eddy SF, Guo SQ, Demicco EG, Romieu-Mourez R, Landesman-Borag E, Seldin DC and Sonenshein GE. Inducible IkappaB kinase/IkappaB kinase epsilon expression is induced by CK2 and promotes aberrant nuclear factor-kappa B activation in breast cancer cells [J]. Cancer Res.,2005,65(24):11375-11383.
    [10]Gamble C, McIntosh K, Scott R, Ho KH, Plevin R and Paul A. Inhibitory kappa B Kinases as targets for pharmacological regulation [J]. Br. J. Pharmacol.,2012, 165(4):802-819.
    [11]Schmidt C, Peng BL, Li ZK, Sclabas GM, Fujioka S, Niu JG, Schmidt-Supprian M, Evans DB, Abbruzzese JL and Chiao PJ. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappa B activation [J]. Mol. Cell,2003,12(5): 1287-1300.
    [12]DiDonato J, Mercurio F, Rosette C, WuLi J, Suyang H, Ghosh S and Karin M. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation [J]. Mol. Cell. Biol.,1996,16(4):1295-1304.
    [13]Malek S, Chen Y, Huxford T and Ghosh G. IkappaB beta but not I kappa B alpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells [J]. J. Biol. Chem.,2001, 276(48):45225-45235.
    [14]Sakurai H, Chiba H, Miyoshi H, Sugita T and Toriumi W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain [J]. J. Biol. Chem.,1999,274(43):30353-30356.
    [15]Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL and Goeddel DV. Embryonic lethality, liver degeneration, and impaired NF-kappaB activation in IKK-beta-deficient mice [J]. Immunity,1999,10(4):421-429.
    [16]Wullaert A, Bonnet MC and Pasparakis M. NF-kappaB in the regulation of epithelial homeostasis and inflammation [J]. Cell Res.,2011,21(1):146-158.
    [17]Karin M, Yamamoto Y and Wang QM. The IKK NF-kappaB system:a treasure trove for drug development [J]. Nat. Rev. Drug Discov.,2004,3(1):17-26.
    [18]Senftleben U, Cao YX, Xiao GT, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu YL, Fong A, Sun SC and Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappaB signaling pathway [J]. Science,2001,293(5534):1495-1499.
    [19]Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD and Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression [J]. Nature,2003,423(6940):659-663.
    [20]Prajapati S, Tu Z, Yamamoto Y and Gaynor RB. IKKalpha regulates the mitotic phase of the cell cycle by modulating Aurora A phosphorylation [J]. Cell Cycle, 2006,5(20):2371-2380.
    [21]Massa PE, Li X, Hanidu A, Siamas J, Pariali M, Pareja J, Savitt AG, Catron KM, Li J and Marcu KB. Gene expression profiling in conjunction with physiological rescues of IKKalpha-null cells with wild type or mutant IKK alpha reveals distinct classes of IKKalpha/NF-kappaB-dependent genes [J]. J. Biol. Chem.,2005,280(14): 14057-14069.
    [22]Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S and Gaynor RB. Regulation of beta-catenin function by the IkappaB kinases [J]. J. Biol. Chem.,2001, 276(45):42276-42286.
    [23]Maniatis T. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways [J]. Genes Dev.,1999,13(5):505-510.
    [24]Carayol N and Wang CY. IKKalpha stabilizes cytosolic beta-catenin by inhibiting both canonical and non-canonical degradation pathways [J]. Cell Signal.,2006, 18(11):1941-1946.
    [25]Albanese C, Wu K, D'Amico M, Jarrett C, Joyce D, Hughes J, Hulit J, Sakamaki T, Fu M, Ben-Ze'ev A, Bromberg JF, Lamberti C, Verma U, Gaynor RB, Byers SW and Pestell RG. IKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf [J]. Mol. Biol. Cell,2003,14(2):585-599.
    [26]Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV and Karin M. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development [J]. Cell,2001,107(6):763-775.
    [27]Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP and Verma UN. IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation [J]. J. Biol. Chem.,2005,280(40):33945-33952.
    [28]Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S and Kaisho T. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9 [J]. Nature,2006,440(7086): 949-953.
    [29]Yamamoto Y, Verma UN, Prajapati S, Kwak YT and Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression [J]. Nature,2003,423(6940):655-659.
    [30]Anest V, Cogswell PC and Baldwin AS, Jr. IkappaB kinase alpha and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IkappaBalpha degradation [J]. J. Biol. Chem.,2004,279(30): 31183-31189.
    [31]Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD and Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression [J]. Nature,2003,423(6940):659-663.
    [32]Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ and O'Malley BW. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase [J]. Mol. Cell. Biol.,2002,22(10):3549-3561.
    [33]Park KJ, Krishnan V, O'Malley BW, Yamamoto Y and Gaynor RB. Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation [J]. Mol. Cell,2005,18(1):71-82.
    [34]Huang WC, Ju TK, Hung MC and Chen CC. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB [J]. Mol. Cell,2007,26(1):75-87.
    [35]Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA and Karin M. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin [J]. Nature,2007,446(7136):690-694.
    [36]Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA and Shuai K. Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity [J]. Cell,2007,129(5):903-914.
    [37]Hu Y, Baud V, Oga T, Kim KI, Yoshida K and Karin M. IKKalpha controls formation of the epidermis independently of NF-kappaB [J]. Nature,2001, 410(6829):710-714.
    [38]Liu B, Xia X, Zhu F, Park E, Carbajal S, Kiguchi K, DiGiovanni J, Fischer SM and Hu Y IKKalpha is required to maintain skin homeostasis and prevent skin cancer [J]. Cancer Cell,2008,14(3):212-225.
    [39]Sil AK, Maeda S, Sano Y, Roop DR and Karin M. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis [J]. Nature,2004, 428(6983):660-664.
    [40]Gareus R, Huth M, Breiden B, Nenci A, Rosch N, Haase 1, Bloch W, Sandhoff K and Pasparakis M. Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted KK1 ablation [J]. Nat. Cell Biol.,2007,9(4):461-469.
    [41]Liu B, Park E, Zhu F, Bustos T, Liu J, Shen J, Fischer SM and Hu Y. A critical role for IkappaB kinase alpha in the development of human and mouse squamous cell carcinomas [J]. Proc. Natl. Acad. Sci. USA,2006,103(46):17202-17207.
    [42]Beinke S, Robinson MJ, Hugunin M and Ley SC. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105 [J]. Mol. Cell Biol.,2004,24(21):9658-9667.
    [43]Waterfield M, Jin W, Reiley W, Zhang M and Sun SC. IkappaB kinase is an essential component of the Tp12 signaling pathway [J]. Mol. Cell Biol.,2004,24(13): 6040-6048.
    [44]Gantke T, Sriskantharajah S, Sadowski M and Ley SC. IkappaB kinase regulation of the TPL-2/ERK MAPK pathway [J]. Immunol. Rev.,2012,246(1):168-182.
    [45]Tilg H and Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance [J]. Mol Med,2008,14(3-4):222-231.
    [46]Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED and Sylla BS. IkappaB kinase beta phosphorylates Dokl serines in response to TNF, IL-1, or gamma radiation [J]. Proc. Natl. Acad. Sci. USA,2004,101(50):17416-17421.
    [47]Gringhuis SI, Garcia-Vallejo JJ, van Het Hof B and van Dijk W. Convergent actions of IkappaB kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14-3-3 beta complexed with tristetraprolin [J]. Mol. Cell Biol., 2005,25(15):6454-6463.
    [48]Hu MC, Lee DF, Xia W, Golfinan LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R and Hung MC. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a [J]. Cell,2004,117(2):225-237.
    [49]Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH and Hung MC. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway [J]. Cell,2007,130(3): 440-455.
    [50]Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB and Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP [J]. Proc. Natl. Acad. Sci. USA,2009,106(8):2629-2634.
    [51]Irelan JT, Murphy TJ, DeJesus PD, Teo H, Xu D, Gomez-Ferreria MA, Zhou Y, Miraglia LJ, Rines DR, Verma IM, Sharp DJ, Tergaonkar V and Chanda SK. A role for IkappaB kinase 2 in bipolar spindle assembly [J]. Proc. Natl. Acad. Sci. USA, 2007,104(43):16940-16945.
    [52]Giet R, Uzbekov R, Cubizolles F, Le Guellec K and Prigent C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5 [J]. J. Biol. Chem.,1999,274(21):15005-15013.
    [53]Suzuki K and Verma IM. Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation [J]. Cell,2008,134(3):485-495.
    [54]Jahn R and Sudhof TC. Membrane fusion and exocytosis [J]. Annu. Rev. Biochem., 1999,68:863-911.
    [55]贾春宏IKKβ通过p85 S6K1调节过氧化氢诱导的细胞死亡[D].广州:南方医科大学,2012.
    [56]Cornwell EW, Mirbod A, Wu CL, Kandarian SC and Jackman RW. C26 cancer-induced muscle wasting is IKKbeta-dependent and NF-kappaB-independent [J]. Plos One,2014,9(1):e87776.
    [57]Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD and Yan C. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism [J]. Proc. Natl. Acad. Sci. USA, 2010,107(21):9795-9800.
    [58]Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang XX, Iotzova VS, Clarke W, Strnad J, Qiu YP and Zusi FC. BMS-345541 is a highly selective inhibitor of IkappaB kinase that binds at an allosteric site of the enzyme and blocks NF-kappaB-dependent transcription in mice [J]. J. Biol. Chem.,2003, 278(3):1450-1456.
    [59]McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, Zhou XD, Qiu YP, Zusi FC and Burke JR. A highly selective inhibitor of IkappaB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice [J]. Arthritis Rheum.,2003,48(9):2652-2659.
    [60]Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, Mellor GW, Evans C and Roshak AK. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB kinase 2, TPCA-1 (2-(aminocarbonyl)amino-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation [J]. J. Pharmacol. Exp. Ther.,2005,312(1):373-381.
    [61]Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T and Tripp CS. A selective IKK-2 inhibitor blocks NF-kappaB-dependent gene expression in interleukin-lbeta-stimulated synovial fibroblasts [J]. J. Biol. Chem.,2003,278(35): 32861-32871.
    [62]Kobori M, Yang Z, Gong D, Heissmeyer V, Zhu H, Jung YK, Gakidis MAM, Rao A, Sekine T, Ikegami F, Yuan C and Yuan J. Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK Complex [J]. Cell Death Differ., 2004,11(1):123-130.
    [63]Asamitsu K, Yamaguchi T, Nakata K, Hibi Y, Victoriano A-FB, Imai K, Onozaki K, Kitade Y and Okamoto T. Inhibition of Human Immunodeficiency Virus Type 1 Replication by Blocking IkappaB Kinase with Noraristeromycin [J]. J. Biochem., 2008,144(5):581-589.
    [64]Gupta SC, Kim JH, Prasad S and Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals [A]. Cancer Metastasis Rev.,2010,29(3): 405-434.
    [65]Luqman S and Pezzuto JM. NFkappaB:A Promising Target for Natural Products in Cancer Chemoprevention [A]. Phytother. Res.,2010,24(7):949-963.
    [66]Grivennikov SI, Greten FR and Karin M. Immunity, Inflammation, and Cancer [A]. Cell,2010,140(6):883-899.
    [67]Yamasaki S, Kawakami A, Nakashima T, Nakamura H, Kamachi M, Honda S, Hirai Y, Hida A, Ida H, Migita K, Kawabe Y, Koji T, Furuichi I, Aoyagi T and Eguchi K. Importance of NF-kappaB in rheumatoid synovial tissues:in situ NF-kappaB expression and in vitro study using cultured synovial cells [J]. Ann. Rheum. Dis., 2001,60(7):678-684.
    [68]Campbell IK, Gerondakis S, O'Donnell K and Wicks IP. Distinct roles for the NF-kappaB 1 (p50) and c-Rel transcription factors in inflammatory arthritis [J]. J. Clin. Invest.,2000,105(12):1799-1806.
    [69]Han ZN, Boyle DL, Manning AM and Firestein GS. AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis [J]. Autoimmunity,1998,28(4):197-208.
    [70]Schopf L, Savinainen A, Anderson K, Kujawa J, DuPont M, Silva M, Siebert E, Chandra S, Morgan J, Gangurde P, Wen D, Lane J, Xu Y, Hepperle M, Harriman G, Ocain T and Jaffee B. KKbeta inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis [J]. Arthritis Rheum.,2006,54(10): 3163-3173.
    [71]Yin MJ, Yamamoto Y and Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IkappaB kinase-beta [J]. Nature,1998,396(6706): 77-80.
    [72]Thiele K, Bierhaus A, Autschbach F, Hofmann M, Stremmel W, Thiele H, Ziegler R and Nawroth PP. Cell specific effects of glucocorticoid treatment on the NF-kappa Bp65/I kappaB alpha system in patients with Crohn's disease [J]. Gut,1999,45(5): 693-704.
    [73]Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Scholmerich J and Gross V. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa [J]. Gastroenterology,1998,115(2): 357-369.
    [74]Ellis RD, Goodlad JR, Limb GA, Powell JJ, Thompson RPH and Punchard NA. Activation of nuclear factor kappaB in Crohn's disease [J]. Inflamm. Res.,1998, 47(11):440-445.
    [75]Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T and Koide Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice [J]. Gastroenterology,2002,123(6):1912-1922.
    [76]MacMaster JF, Dambach DM, Lee DB, Berry KK, Qiu Y, Zusi FC and Burke JR. An inhibitor of IkappaB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice [J]. Inflamm. Res.,2003,52(12):508-511.
    [77]Dave SH, Tilstra JS, Matsuoka K, Li F, Karrasch T, Uno JK, Sepulveda AR, Jobin C, Baldwin AS, Robbins PD and Plevy SE. Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide [J]. J. Immunol.,2007,179(11):7852-7859.
    [78]Egan LJ, Mays DC, Huntoon CJ, Bell MP, Pike MG, Sandbora WJ, Lipsky JJ and McKean DJ. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity [J]. J. Biol. Chem.,1999,274(37):26448-26453.
    [79]Scheinman RI, Cogswell PC, Lofquist AK and Baldwin AS. Role of transcriptional activation of IkappaBalpha in mediation of immunosuppression by glucocorticoids. [A]. Science,1995,270(5234):283-286.
    [80]Valentine R, Dawson CW, Hu C, Shah KM, Owen TJ, Date KL, Maia SP, Shao J, Arrand JR, Young LS and O'Neil JD. Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation [J]. Mol. Cancer,2010,9:1.
    [81]Tysnes BB. Tumor-Initiating and -Propagatin Cells:Cells That We Would Like to Identify and Control [J]. Neoplasia,2010,12(7):506-515.
    [82]Katoh M and Katoh M. AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNF alpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis [J]. Int. J. Mol. Med.,2007,19(4): 699-703.
    [83]Arun P, Brown MS, Ehsanian R, Chen Z and Van Waes C. Nuclear NF-kappaB p65 Phosphorylation at Serine 276 by Protein Kinase A Contributes to the Malignant Phenotype of Head and Neck Cancer [J]. Clin. Cancer Res.,2009,15(19): 5974-5984.
    [84]Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Buttarelli M, Jacquemier J, Chaffanet M, Maraninchi D, Viens P and Birnbaum D. How different are luminal A and basal breast cancers? [J]. Int. J. Cancer,2009,124(6):1338-1348.
    [85]Wharry CE, Haines KM, Carroll RG and May MJ. Constitutive non-canonical NFkappaB signaling in pancreatic cancer cells [J]. Cancer Biol. Ther.,2009,8(16): 1567-1576.
    [86]Olsen LS, Hjarnaa PJV, Latini S, Holm PK, Larsson R, Bramm E, Binderup L and Madsen MW. Anticancer agent CHS 828 suppresses nuclear factor-kappaB activity in cancer cells through downregulation of ikk activity [J]. Int. J. Cancer,2004, 111(2):198-205.
    [87]Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Ching WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, Braggio E, Henry T, Zhu YX, Fogle H, Price-Troska T, Ahmann G, Mancini C, Brents LA, Kumar S, Greipp P, Dispenzieri A, Bryant B, Mulligan G, Bruhn L, Barrett M, Valdez R, Trent J, Stewart AK, Carpten J and Bergsagel PL. Promiscuous mutations activate the noncanonical NF-kappa B pathway in multiple myeloma [J]. Cancer Cell,2007,12(2):131-144.
    [88]Lee DF and Hung MC. Advances in targeting IKK and IKK-related kinases for cancer therapy [J]. Clin. Cancer Res.,2008,14(18):5656-5662.
    [89]Barre B and Perkins ND. A cell cycle regulatory network controlling NF-kappaB subunit activity and function [J]. Embo J.,2007,26(23):4841-4855.
    [90]Tu Z, Prajapati S, Park KJ, Kelly NJ, Yamamoto Y and Gaynor RB. IKKalpha regulates estrogen-induced cell cycle progression by modulating E2F1 expression [J]. J. Biol. Chem.,2006,281(10):6699-6706.
    [91]Descargues P, Sil AK and Karin M. IKK alpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer [J]. Embo J.,2008,27(20): 2639-2647.
    [92]Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB and Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP [J]. Proc. Natl. Acad. Sci. USA,2009,106(8):2629-2634.
    [93]Luo J-L, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA and Karin M. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin [J]. Nature,2007,446(7136):690-694.
    [94]Ammirante M, Luo J-L, Grivennikov S, Nedospasov S and Karin M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer [J]. Nature,2010, 464(7286):302-U187.
    [95]Sweeney C, Li L, Shanmugam R, Bhat-Nakshatri P, Jayaprakasan V, Baldridge LA, Gardner T, Smith M, Nakshatri H and Cheng L. Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate [J]. Clin. Cancer Res., 2004,10(16):5501-5507.
    [96]Janssens S and Tschopp J. Signals from within:the DNA-damage-induced NF-kappaB response [J]. Cell Death Differ.,2006,13(5):773-784.
    [97]Wu L, Shao L, An N, Wang J, Pazhanisamy S, Feng W, Hauer-Jensen M, Miyamoto S and Zhou D. IKKbeta Regulates the Repair of DNA Double-Strand Breaks Induced by Ionizing Radiation in MCF-7 Breast Cancer Cells [J]. Plos One,2011, 6(4):e18447.
    [98]Guo X, Xu B, Pandey S, Goessl E, Brown J, Armesilla AL, Darling JL and Wang W. Disulfiram/copper complex inhibiting NF kappaB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines [J]. Cancer Lett.,2010, 290(1):104-113.
    [99]Sethi G, Sung B, Kunnumakkara AB and Aggarwal BB. Targeting TNF for Treatment of Cancer and Autoimmunity [J]. Adv. Exp. Med. Biol.,2009,647:37-51.
    [100]Chen Z, Ricker JL, Malhotra PS, Nottingham L, Bagain L, Lee TL, Yeh NT and Van Waes C. Differential bortezomib sensitivity in head and neck cancer lines corresponds to proteasome, nuclear factor-kappaB and activator protein-1 related mechanisms [J]. Mol. Cancer Ther.,2008,7(7):1949-1960.
    [101]Gao ZW, Zhang DL and Guo CB. Paclitaxel Efficacy is Increased by Parthenolide via Nuclear Factor-KappaB Pathways in In Vitro and In Vivo Human Non-Small Cell Lung Cancer Models [J]. Curr. Cancer Drug Targets,2010,10(7):705-715.
    [102]Garber K. The second wave in kinase cancer drugs [J]. Nat. Biotechnol.,2006, 24(2):127-130.
    [103]Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M and Wu H. Crystal structure of inhibitor of kappa B kinase beta [J]. Nature,2011,472(7343): 325-U222.
    [1]Bennett JW and Klich M. Mycotoxins [J]. Clin. Microbiol. Rev.,2003,16(3): 497-516.
    [2]Kuiper-Goodman T, Scott PM and Watanabe H. Risk assessment of the mycotoxin zearalenone [J]. Regul. Toxicol. Pharmacol.,1987,7(3):253-306.
    [3]Egmond HPV and Jonker MA. Worldwide regulations for mycotoxins in food and feed in 2003 [M]. Rome:Food and Agriculture Organization of the United Nations, 2004:165.
    [4]Kong WJ, Li JY, Qiu F, Wei JH, Xiao XH, Zheng Y and Yang MH. Development of a sensitive and reliable high performance liquid chromatography method with fluorescence detection for high-throughput analysis of multi-class mycotoxins in Coix seed [J]. Anal, Chim, Acta.,2013,799:68-76.
    [5]Trucksess MW and Scott PM. Mycotoxins in batanicals and dried fruits:a review [A]. Food Addit. Contain. Part A Chem. Anal. Control Expo. Risk Assess,2008, 25(2):181-192.
    [6]黄莉,张浩,丁伟琴,单琪媛,陈晨,郑开逸和胡育筑.中药中真菌毒素污染问题[J].海峡药学,2009,21(6):95-99.
    [7]Burkin AA, Kononenko GP and Soboleva NA. Production and analytical properties of antibodies with high specificity to zearalenone [J]. Prikl. Biokhim. Mikrobiol., 2002,38(3):305-311.
    [8]Teshima R, Kawase M, Tanaka T, Hirai K, Sato M, Sawada J, Ikebuchi H, Ichinoe M and Terao T. Production and characterization of a specific monoclonal antibody against mycotoxin zearalenone [J]. J. Agric. Food Chem.,1990,38(7):1618-1622.
    [9]Erbs M, Hartmann N and Bucheli TD. Determination of the cross-reactivities for alpha-zearalenol, beta-zearalenol, zearalanone, alpha-zearalanol, and beta-zearalanol on three commercial immunoaffinity columns targeting zearalenone [J]. J. AOAC Int.,2007,90(4):1197-1202.
    [10]Liu MT, Ram BP, Hart LP and Pestka JJ. Indirect enzyme-linked immunosorbent assay for the mycotoxin zearalenone [J]. Appl. Environ. Microbiol.,1985,50(2): 332-336.
    [11]Dietrich R, Schneider E, Usleber E and Martlbauer E. Use of monoclonal antibodies for the analysis of mycotixins [J]. Nat. Toxins,1995,3(4):288-293.
    [12]Kolosova AY, De Saeger S, Sibanda L, Verheijen R and Van Peteghem C. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol [J]. Anal. Bioanal. Chem., 2007,389(7-8):2103-2107.
    [13]Basova EY, Goryacheva IY, Rusanova TY, Burmistrova NA, Dietrich R, Martlbauer E, Detavernier C, Van Peteghem C and De Saeger S. An immunochemical test for rapid screening of zearalenone and T-2 toxin [J]. Anal. Bioanal. Chem.,2010, 397(1):55-62.
    [14]Thouvenot D and Morfin RF. Radioimmunoassay for zearalenone and zearalanol in human serum:production, properties, and use of porcine antibodies [J]. Appl. Environ. Microbiol.,1983,45(1):16-23.
    [15]Burkin AA, Kononenko GP and Soboleva NA. Group-specific antibodies against zearalenone and its metabolites and synthetic analogs [J]. Prikl. Biokhim. Mikrobiol.,2002,38(2):194-202.
    [16]Usleber E, Renz V, Martlbauer E and Terplan G. Studies on the application of enzyme immunoassays for the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone [J]. Zentralbl. Veterinarmed B.,1992,39(8): 617-627.
    [17]Thongrussamee T, Kuzmina NS, Shim WB, Jiratpong T, Eremin SA, Intrasook J and Chung DH. Monoclonal-based enzyme-linked immunosorbent assay for the detection of zearalenone in cereals [J]. Food. Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk. Assess.,2008,25(8):997-1006.
    [18]Urraca JL, Benito-Pena E, Perez-Conde C, Moreno-Bondi MC and Pestka JJ. Analysis of zearalenone in cereal and Swine feed samples using an automated flow-through immunosensor [J]. J. Agric. Food. Chem.,2005,53(9):3338-3344.
    [19]Maragos CM and Kim EK. Detection of zearalenone and related metabolites by fluorescence polarization immunoassay [J]. J. Food. Prot.,2004,67(5):1039-1043.
    [20]Bennett GA, Nelsen TC and Miller BM. Enzyme-linked immunosorbent assay for detection of zearalenone in corn, wheat, and pig feed:collaborative study [J]. J. Aoac. Int.,1994,77(6):1500-1509.
    [21]Yuan Q, Clarke JR, Zhou HR, Linz JE, Pestka JJ and Hart LP. Molecular cloning, expression, and characterization of a functional single-chain Fv antibody to the mycotoxin zearalenone [J]. Appl. Environ. Microbiol.,1997,63(1):263-269.
    [22]Warner R, Ram BP, Hart LP and Pestka JJ. Screening for zearalenone in corn by competitive direct enzyme-linked immunosorbent assay [J]. J. Agric. Food Chem., 1986,34(4):714-717.
    [23]李沐洁,张明洲,奚茜,陈宗伦,王唯芬,龚云飞.玉米赤霉烯酮单克隆抗体制备及免疫分析[J].中国食品学报,2013,13(1):145-152.
    [24]James LC and Tawfik DS. The specificity of cross-reactivity:promiscuous antibody biding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness [J]. Protein. Sci.,2003,12(10):2183-2193.
    [25]Tanaka T, Teshima P, Ikebuchi H, Sawada J and Ichinoe M. Sensitive enzyme-linked immunosorbent assay for the mycotoxin zearalenone in barley and Job's-tears [J]. J. Agric. Food Chem.,1995,43(4):946-950.
    [26]Muckerheide A, Apple RJ, Pesce AJ and Michael JG. Cationization of protein antigens. I. Alteration of immunogenic properties [J]. J. Immunol,1987,138(3): 833-837.
    [27]Chu FS, Lau HP, Fan TS and Zhang GS. Ethylenediamine modified bovine serum albumin as protein carrier in the production of antibody against mycotoxins [J]. J. Immunol. Methods,1982,55(1):73-78.
    [28]Jean J, Turcotte C, Simard RE and Fliss I. Production and characterization of polyclonal antibodies against cholecalciferol (vitamin D3) [J]. J. Immunol. Methods, 1999,223(2):155-163.
    [29]Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB, Chamberlin AR, Towers NR and Dietrich DR. Congener-independent immunoassay for microcystins and nodularins [J]. Environ. Sci. Technol.,2001,35(24):4849-4956.
    [30]Muckerheide A, Domen PL and Michael JG. Cationization of protein antigens. II. Alteration of regulatory properties [J]. J. Immunol.,1987,138(9):2800-2804.
    [31]Apple RJ, Domen PL, Muckerheide A and Michael JG. Cationization of protein antigens. IV. Increased antigen uptake by antigen-presenting cells [J]. J. Immunol., 1988,140(10):3290-3295.
    [32]Hermanson GT. Bioconjugate techniques [M]. San Diego:Academic Press,1996: 785.
    [33]Zhou Y, Wu J, Yu W, Xu Y, Wang P, Xie B and Chen F. Preparation of aflatoxin B(1)-cationized bovine serum albumin based on Mannich-type reaction [J]. J. Immunol. Methods,2007,328(1-2):79-88.
    [1]Zhou Y, Wu J, Yu W, Xu Y, Wang P, Xie B and Chen F. Preparation of aflatoxin B(1)-cationized bovine serum albumin based on Mannich-type reaction [J]. J. Immunol. Methods,2007,328(1-2):79-88.
    [2]Muckerheide A, Apple RJ, Pesce AJ and Michael JG. Cationization of protein antigens. I. Alteration of immunogenic properties [J]. J. Immunol,1987,138(3): 833-837.
    [3]Jean J, Turcotte C, Simard RE and Fliss I. Production and characterization of polyclonal antibodies against cholecalciferol (vitamin D3) [J]. J. Immunol. Methods, 1999,223(2):155-163.
    [1]霍华德GC和凯瑟MR.抗体制备与使用实验指南[M].北京:科学出版社,2010:20-23.
    [2]辛华.现代细胞生物学技术[M].北京:科学出版社,2010:178.
    [3]李云霞,司静,李煜.狂犬疫苗单克隆抗体制备过程中细胞融合条件的探索[J].生物技术通报,2010,第12期:167-172.
    [4]朱立平,陈雪清.免疫学常用实验方法[M].北京:人民军医出版社,2000:32.
    [1]朱立平,陈雪清.免疫学常用实验方法[M].北京:人民军医出版社,2000:345-346.
    [2]陈叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2005:410.
    [3]霍华德GC,凯瑟MR.抗体制备与使用实验指南[M].北京:科学出版社,2010:20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700