受体来源大鼠ADSCs分化的类肝细胞诱导大鼠肝移植免疫耐受的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠原位肝移植模型的建立
     目的:建立稳定的大鼠肝移植反应模型的方法,为肝移植的相关研究提供稳定可靠的模型基础。同时对比DA→Lewis与SD→SD大鼠组合,了解高排斥反应组合模型DA-Lewis术后的生存率和生存时间。为进一步的实验摸索条件。
     方法:通过Kamad“二袖套法”,建立大鼠肝移植模型。并观察大鼠术后存活率和并发症的发生情况。第一阶段:进行200次双人肝移植训练,主要是熟悉手术过程,总结经验,同时对二袖套管法进行改进;第二阶段:进行了DA→Lewis与SD→SD大鼠组合肝移植对比,对比一般状态、生存期、肝功能、病理表现。
     结果:总共实施大鼠原位肝移植248例,在训练阶段主要要克服麻醉问题,血管吻合问题,如何缩短无肝期以及无肝期结束后的管理问题;在成熟期时手术,供体手术时间(35.78±5.78)min,热缺血时间(0.5±0.22)min,供肝修整时间(15.13±3.45)min,受体手术时间(57±16.5)min,受体手术开始至无肝期开始(37±7.11)min,无肝期为(21.33±3.65)min,无肝期结束至关腹(13.98±3.83)min,手术成功率为93.5%,成功地建立了稳定的大鼠肝移植模型。在正式实验中DA-Lewis表现出高排斥反应的表现,存活时间短,平均时间为8.900±0.390天,术后肝功能急剧上升,病理表现出明显的重度排斥反应。
     结论:大鼠原位肝移植模型的建立,需要在一定的显微外科基础和熟悉大鼠的腹部解剖结构的前提下,经过4-6月的不间断训练,方能获得成功。正确的供肝灌注、严密的腹腔止血、熟练的显微血管缝合技术、尽量缩短的无肝期、完善的术中补液纠酸及术后复温是保证手术成功的关键。DA-Lewis组合可以成功地复制出大鼠高排斥肝移植模型。
     第二部分大鼠脂肪源性干细胞诱导形成的类肝细胞的免疫调节作用的体外实验研究
     目的:在脂肪源性干细胞传统的分离方法的基础上进行改进,克隆筛选纯化脂肪源性干细胞;建立大鼠脂肪源性干细胞转化为类肝细胞的程序化诱导体系。并在诱导过程中观察细胞分化的变化及对类肝细胞功能进行鉴定;并进一步研究该类肝细胞的免疫特性并探讨可能的机理。
     方法:
     1.消化离心法分离Lewis大鼠脂肪源性干细胞,有限密度稀释法克隆化及条件培养基筛选,进行原代培养,以克隆筛选的脂肪源性干细胞为实验组,未克隆筛选的脂肪源性干细胞为对照组,观察细胞形态,对比生长曲线、倍增时间,流式细胞仪鉴定脂肪源性干细胞表面标记CD49d、 CD34. CD44。
     2.将分离纯化的Lewis大鼠脂肪源性干细胞,分三个阶段加入含有FGF-4、 FGF-a. HGF及OSM细胞因子的诱导培养体系中,使脂肪源性干细胞向肝细胞转化。用RT-PCR检测ALB、 AFP及CK18mRNA的动态变化,进一步采用免疫荧光组织化学法及对氨的代谢及尿素合成能力鉴定该细胞向肝细胞转化的性能。
     3.检测诱导前后的Lewis大鼠脂肪源性干细胞对DA/lewis大鼠脾T淋巴细胞混合培养体系的免疫调节作用,并检测上清液中的IL-2、IL-10的浓度。
     结果:
     1.经克隆筛选的脂肪源性干细胞与未经克隆筛选的脂肪源性干细胞相比,前者形态均一,生长力旺盛,倍增时间短,多代培养后生长曲线无明显改变,通过流式细胞仪鉴定,实验组与对照组在3-6代之间均表达表面标记CD49d、CD44, CD34亻(?)表达。
     2.纯化后的脂肪源性干细胞大鼠脂肪源性干细胞通过向肝细胞的分段诱导方案,在0、14、21、28d分别检测ALB、AFP及CK18mRNA的表达,表达随诱导的延长而增强,通过荧光免疫分析,类肝细胞具有合成白蛋白的功能。对氨的代谢和尿素的合成功能在9-12d出现并持续存在。
     3.通过混合淋巴细胞培养以DA大鼠脾T淋巴细胞为刺激细胞,Lewis大鼠脾淋巴细胞为反应细胞的体系中淋巴细胞的增殖反应受到Lewis大鼠脂肪源性干细胞的抑制,抑制的强度与干细胞的浓度正相关,与是否诱导无关。
     结论:结果证实克隆筛选的纯化方法是脂肪源性干细胞原代培养的有效、经济的纯化方法。脂肪源性干细胞在体外通过阶段诱导可成功转化为类肝细胞,该诱导分化方法可为肝细胞移植、肝组织工程等临床治疗提供一个有效可靠的种子细胞来源。经过纯化的脂肪源性干细胞在体外可以成功转化为类肝细胞,该细胞同时具有干细胞下调免疫反应及肝细胞的特征的双重特性。
     第三部分脂肪源性干细胞诱导形成的类肝细胞对大鼠肝移植免疫排斥的影响
     目的:在大鼠原位肝移植高排斥模型(DA→Lewis)术中经门静脉注入由脂肪源性干细胞诱导形成的类肝细胞之后,研究由脂肪源性干细胞诱导形成的类肝细胞在移植肝的定位,及其对受体肝功能、免疫排斥、生存期的影响,初步探讨脂肪源性干细胞及其分化而来的类肝细胞运用于器官移植的安全性、效能以及机制。
     方法:
     1.随机DA与Lewis大鼠分为4组,每组各31对,采用改良Kamada两袖套法建立DA-Lewis大鼠肝移植模型:a.A组(排斥组)行原位肝移植术;b.B组(免疫抑制组)行原位肝移植术+口服他克莫司胶囊FK506(0.15mg/kg/d,灌胃1次/d×14d,术后2d开始);c. C组行原位肝移植术+术中门静脉输注ADSCs:d.D组行原位肝移植+术中门静脉输注诱导后的类肝细胞;
     2.观察并记录每组实验大鼠的一般情况(大鼠皮毛、眼睛色泽、活动和精神状态);每组各留6只观察生存期;
     3..每组术后第3、7、10、14天随机活杀6只大鼠,进行抽血,测定肝功能并用ELISA法测定外周血的细胞因子(IL-2、INF-Y、IL-10及IL-4)水平;
     4.用BrdU体外标记脂肪源性干细胞及类肝细胞,并用免疫荧光染色单标及双标记的方法了解BrdU标记的成功与否,在4个时相点将一部分肝组织制作成冰冻切片,行BrdU免疫荧光检测,了解类肝细胞在肝脏中的定位情况;
     5.取每只大鼠肝脏组织做成石蜡切片,HE染色光镜下观察,并计算排斥指数了解移植肝的排斥程度;
     6.于实验第30d将实验各组中尚存活的大鼠中,挑选出状态最好的大鼠进行取材,行混合淋巴培养,了解术后T淋巴细胞增殖能力。用流式细胞仪测定各组CD4+、CD8+变化,计算CD4+/CD8+。
     结果:
     1.4组均在相同的条件下采用相同的手术方式(改良两袖套法)建立动物模型,在术前体重及手术时间的比较4组间无明显差异(P>0.05),即具有可比性。存活率为94.66%(124/131)。
     2.从术后3天以细胞核BrdU染色阳性的脂肪源性干细胞及其形成的类肝细胞开始出现,散在分布于肝组织,同时有部份阳性细胞密集于汇管区及血管旁,随着时间的延长,逐渐形成灶状分布。
     3.B、C、D组中位生存时间明显高于A组(对照组),均存在统计学差异(P<0.05),D组中位生存时间最长,与C组相比有统计学意义,与B组相比无统计学差异。
     4.移植术后各组大鼠血清生化检查:在移植术后3、7、10d, B、C、D组肝功能逐渐好转,A组ALT、AST、TBIL急剧上升,与存活时间表现一致。在术后第14天,A组动物已完全死亡,数据缺失;B、C、D组肝功能进一步恢复,B、D组恢复较快,C组较慢,在部分指标(ALT、AST) D组优于B组(P<0.05)。
     5.A组IL-2、INF-Y明显高于其它各组(P<0.05), B、C、D组水平逐渐下降,B、D组与C组比较,下降更明显(P<0.05),B、D组之间无明显差异(P>0.05);A组IL-10及IL-4明显低于其它各组(P<0.05), B、C、D组水平逐渐升高,B、D组与C组比较,升高更明显(P<0.05)。
     6.肝脏病理示术后7d、10d,A组的急性排斥评分明显高于B、C、D组(p<0.05),B、D组随着时间延长,呈下降趋势,但两者之间无明显差异(P>0.05),C组排斥指数高于B、D组(P<0.05)。
     7.混合淋巴细胞培养:以DA大鼠脾细胞为刺激细胞,移植受体的脾细胞为反应细胞的混合淋巴培养体系中,B、C及D组OD值较阳性对照组降低(p<0.05),以SD大鼠脾细胞为刺激细胞移植受体的脾细胞为反应细胞的的混合淋巴培养体系中,B组的OD值低于阳性对照组,而C、D组与SD阳性对照组之间的比较没有明显差异,C、D实验组对DA及SD两种不同的刺激细胞反映出的OD值之间的比较有统计学差异(P<0.01),说明脂肪源性干细胞处理组及类肝细胞对DA刺激细胞刺激后建立起来的免疫下调状态是特异性的。
     8.A组CD4+/CD8+的比值进行性上升,显著高于B组、C和D组(P<0.05),第10天达到高峰(4.683±0.775)。术后3-10天B组、C和D组比值缓慢上升,到14天开始回落,但各时间点各组差异不大,无显著性差异。
     结论
     1.成功建立大鼠肝移植高排斥模型。
     2.单纯脂肪源性干细胞治疗组的移植肝内有肝纤维化出现以及脂肪变性,MSCs可能参与此过程的发生,可能影响其在体内的分化,不足以完全抑制移植术后的免疫排斥反应。
     3.由脂肪源性干细胞分化形成的类肝细胞治疗组受鼠对供肝产生耐受,且为供者特异性免疫耐受。
     4.由脂肪源性干细胞分化形成的类肝细胞治疗组对耐受的产生发挥一定的作用,并促进了肝细胞再生从而避免使用免疫抑制剂。
Part One Establishment of Orthotopic Liver Transplantation Model in Rats
     Objective:To investigate the establishing methods of orthotopic liver transplantation model in rats and provide a stable basic model for liver tansplantation research. And then we deal orthotopic liver transplantation model in rats with DA-Lewis and SD-SD, to take knowledge of the high lever of immunity rejection in DA-Lewis in survival time and pathology.
     Methods:Using Kamda two-cuff-technique to establish rat orthotopic liver transplantation model. During pre-experiment, SD rats were exceuted with orthotopic liver transplantation, while in formal orthotopic liver transplantation experiment, DA and Lewis rats were used as donors and recipients respectively. After the operation, recipient survival rate and liver function and pathology were observed.
     Results:Orthotopic liver transplantation models were successfully established in248rats. The main problems in the training phase were to overcome the problem of anesthesia, vascular anastomosis, to shorten the time of the anhepatic phase, to improve the management after the anhepatic phase. Analyzing50model standard operations, donor operation time was35.78±5.78min,warm ischemia time was0.5±0.22min, donor truing time was15.13±3.45min, recipient operation time was40±10.5min, the time before anhepatic was37±7.11min, anhepatic time was21.33±3.65min, the time after anhepatic is13.98±3.83min,operation success rate was97.3%. At the formal examination, the model from DA to Lewis showed high lever of immunity rejection by survival rate shortened and liver function increased rapidly and severe pathology.
     Conclusion:To establish methods of orthotopic liver transplantation model in rats successfully, operators must have the process of orthotopic liver transplantation the techniques extent microsurgery、the knowledge of rat abdomen anatomy and the manipulate of aseptic surgery, and lastly hard training for half of a year was inevitable. Key factors for successful operation include right liver infusion methods, rigorous peritoneal hemostasis、skilled microvessel suture technique, shortened anhepatic time, improved fluid therapy, corrected acid and alkali balance during operation and rewarming after operation. The model of liver transplantation from DA to Lewis can successfully replicate the high rejection in rat liver transplantation model.
     Part Two the research of the immunologic characteristics of the hepatic-like cells differentiationed from adipose tissue-derived stem cell in vitro
     Objective:To investigate the effect of the improved method of Monoclonal screening which was used to purification adipose tissue-derived stem cells(ADSCs) in the original generation culture.To differentiated the rat ADSCs into the hepatic-like cell (iPS) in vitro by procedure induction. The rat adipose tissue-derived stem cells were differentiated into the hepatic-like cells in vitro and the immunologic characteristics of iPS were investigated.
     Methods.
     After isolated the Lewis rat ADSCs with the digestion centrifuge process, The ADSCs was taken with the limited density dilution method cloning and condition-culture medium screening in the original generation culture.The group with clone screening ADSCs was taken as the experimental group, without clone screening as the control group, comparied the cellular appearance, growth curve and the cell doubling generation time; the surface marks CD49d, CD34, CD44of ADSCs were determined by flow cytometry.
     The rat ADSCs was differentiationed into iPS in the procedure culture system by tris-step including FGF-4、FGF-α、HGF、dexamethasone and OSM. The ALB、AFP、 CK18mRNA were determined by RT-PCR and Urine and transferring Ammonia were monitored during inducing differentiation periods. The ALB was determined by fluorescence immunohistochemisty at last. To detect the Immunoregulation function of rat ADSCs and the iPS differentiationed from ADSCs by mixed lymphocyte culture of the system of the DA/Lewis spleen cell, and the effect of immuno-regulation on IL-2and IL-10of spleen cell were determined by ELISA analyze.
     Result:The appearance of ADSCs which undergone clone screening has been homogeneous. The appearance were the doubling time was shorten, the change of growth curves was not obviously after many generation, growing-power after long-term culture was vigorous and stable, and the surface marks CD49d, CD44were high expressed while the surface marks of CD34was low in both the control group and the the experimental group examined by FCM.Rat ADSCs was successfully differentiationed into iPS by the21d culture system in vitro. The expression of ALB、 AFP and CK18mRNA was determined fortified by degrees at7thd、14thd and21thd. The protein ALB was determined by immunohistochemisty. It was occurred and persistenced of Metabolism of ammonia and urea synthesis after9th-12th d. It was shown that both Lewis rat ADSCs and iPS can down-regulate the immunologic reaction of the co-culture of DA and Lewis rat spleen cell indifferently, and the immuno suppression effect was enhanced by concentration of Lewis rat ADSCs and iPS.
     Conclusion:The clone screening purification method is effective、economical purification method of ADSCs. Rat ADSCs was successfully differentiationed into iPS in vitro after procedure-induction. The method of induction can provide a valid and reliable source of seed cells for hepatocytes transplantation, the clinical treatment of liver tissue engineering. Rat ADSCs was successfully differentiationed into iPS in vitro, the iPS have the characteristics both function of Liver cell regeneration and immunosuppression effect.
     Part Three the influence to the immunity rejection of the orthotopic liver transplantation model in rats induced by the hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells.
     Objectives:After injected the hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells by portal vein in the process of the model of the orthotopic liver transplantation in rats of the model with high-lever rejection (DA-Lewis). To investigate the homing position in the rat liver, and the influence on the liver function the degree of immunity rejection survival time. The safety、 efficiency and mechanism of the hepatic-like cells differentiation from adipose-derived mesenchymal stem cells in the orthotopic liver transplantation model in rats were discussed.
     Methods:
     1. The model of the orthotopic liver transplantation in rats with high-lever rejection (DA-Lewis) was established with Kamada two-cufft technique, divided the DA and Lewis rat into4group(31recipient/group) randomizing,
     1) The group A (reject group):operation without any other management
     2) The group B (the immunosuppressant group) operation and take FK506capsule orally (0.15mg/kg/d by Gastric lavage qdX14d begin after the second day of operation)
     3) The group C:operation and injected the adipose-derived mesenchymal stem cells by portal vein in the process of operation.
     4) The group D:operation and injected the hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells by portal vein in the process of operation.
     2. The general condition of the luster of eyes、rat hair、activity and mental state of each experiment rat were observed and recorded;6rat were left to observe the survival time each group;
     3.6rats were killed at the4th、7th、10th、14th day after operation each group. The liver function and cytokine (IL-2, INF-y and IL-10and IL-4) were detected. Cytokine were detected by the ELIS A method.
     4. Brdu was used to mark the adipose-derived mesenchymal stem cell and hepatic-like cells differentiationed from adipose-derived mesenchymal stem cell in vitro. Identification of the mark of Brdu by fluorescence immunohistochemical, and detected the homing position of the cell in vivo marked by Brdu with fluorescence immunohistochemical methods.
     5. The hematoxylin-eosin staining of rat liver was taken to observe the rejection activity index.
     6. The mixed lymphocytes culture test was taken at30th after operation. CD4+、CD8+were measuresed by flow cytometry.
     Result:
     1. The animal model were built up in all4group rat under the same condition, including weight and operation time without obvious difference (P>0.05), the survival rate is94.66%.(124/131).
     2. The adipose-derived mesenchymal stem cell and the hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells marked with Brdu began to appear after3days of the operation, which nucleus positive of red dye by fluorescence immunohistochemical scattered in liver tissue, and some parts of the positive cells to collect and dense around the blood vessels and abbacy. With the extension of time, gradually formed shape distributings oven.
     3. Group B, C, D of median survival time is obviously higher than that of the group A (control group)(P<0.05), group D of median survival time was the longest in all group, and were longer than C group,but is no statistical difference compared with group B.
     4. Liver function of ALT, AST, TBIL of group A rising sharply, but B、C、D group gradually declined in the postoperative day7th and10th, In the postoperative day14th, animals of group A has completely death, data lost; liver function of group B、C、D further recovery, group B、D recovery degree is better than group C, group D better than B group in some data(ALT,AST)(P<0.05).
     5. The lever of IL-2、INF-gamma of group A higher than other group significantly (P<0.05), while level of the group B、C、D gradually declined in the postoperative day7th、10th and14th, the lever of group B and D declined more than group C (P<0.05); the lever of IL-10and IL-4of group A was significantly lower than the other group (P<0.05), but group B、C、D gradually raised, group B and D raised more than group C (P<0.05).
     6. Rejection activity index of group A significantly higher than group B、C、D in the postoperative day7th and10th(p<0.05), group B、D have down trend with time prolonged, rejection index of group C was high than group B and D (p>0.05).
     7. The mixed lymphocytes culture test:OD value of group B, C and D reduce compared with the positive control group (A) when the stimulate cell come from spleen cells of DA rat. OD value of group B, reduce compared with the positive control group when the stimulate cell come from spleen cells of SD rat. But the OD value of group C、D was still high as the positive control group (p<0.01). It showed that the immune tolerance of recipient was specificity.
     8. The ratio of CD4+/CD8+of Group A rise progressively after operation,which significantly higher than group B, C and D (P<0.05);the ratio of group B, C and D rise slowly from3th to10th and fall down from14th after operation,but there's no statistical difference.
     Conclusion:
     1. Rat liver transplantation high-lever rejection model was established successfully.
     2. Liver fibrosis and steatosis may appear when adipose-derived mesenchymal stem cells injected by portal vein to intro, which rent differentiation of it to liver cell, the therapy of adipose-derived mesenchymal stem cells only may not enough to protect the body from immune rejection.
     3. Specificite immune tolerance was successfully established of recipient deal with the hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells by portal vein.
     4. The hepatic-like cells differentiationed from adipose-derived mesenchymal stem cells play a certain role of tolerance establish, without using immunosuppressive agents.
引文
1. Lee S, Charters AC, Chandler JG, et al:A technique for orthotopic liver transplantation in the rat. Transplantation 16:664,1973.
    2. Kamada N, Calne RY: Orthotopic liver transplantation in the rat. Technique using cuff for portal vein anastomosis and biliary drainage. Transplantation 28:47, 1979.
    3. Miyata M, Fischer JH, Fuhs M, et al.A simple method for orthotopic liver transplantation in the rat. Cuff technique for three vascular anastomoses. Transplantation 30:335, 1980.
    4. Kobayashi E, Kamada N, Ennosaqa S et al.Comparison of potentiality to indue graft-versus-host reaction with smallbowel,panereas/spleen and liver transplantatlon in the rat.ClinExpIm-munol,1993;92(2):527.
    5. Kashfi A, Mehrabi A, Pahlavan PS, et al.A Review of Various Techniques of Orthotopic Liver Transplantation in the Rat. Transplant Proc, 2005,37(1):185-8.
    6. Limmer J, Calne RY. A simplified technique for orthotopicliver transplantation in the rat using a cuff technique for portal veinand infrahepatic vena cava anastomoses. Eur Surg Res 13:236, 1981.
    7. Spiegel HU, Palmes D. Surgical techniques of orthotopic rat liver transplantation. J Invest Surg 1:83,1998.
    8.郝光荣.实验动物学[M].上海:第二军医大学出版社,1999,153-157.
    9.陈华,乔伯英,乔伯英,等.SPF清洁及普通级大鼠部分生物学特性的比较[J].中国实验动物学杂志,1999,9:28-33.
    10.胡玉红,恽时锋,周森妹,等.氯胺酮用于大鼠麻醉的效果观察[J].中国比较医学杂志,2007,17:348-350.
    11. Kamada N, Calne RY. A surgical experience with five hundred thirty liver transplants in the rat. Surgery 93:64,1983.
    12. UrataK, Nauyen B, BraultA, et al. Decreased survival in rat liver transplantation with extended cold preservation:role of portal vein clamping time [J]. Hepatology, 1998,28(2):366-373.
    13. Tsukamoto S,Ohkohchi N,Fukumori T,et al.Elimination of Kuffer cells and nafamostat mesilate rinse preven reperfusion injury in liver grafts from agonal non-heart beating donors[J]. transplantation, 1999,67:1396-1403.
    14. Von Frankenberg M,Golling M,Mehrabi A,et al.Destruction of kuffer cells increase total liver blood flow an decreases ischemia reperfusion injury in pigs[J].Transplant Proc,1999,31:3253-3254.
    15. Chen Y,Liu Z,Liang S, et al. Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats. Liver Transpl.2008V 14N6:823-36.
    16. Tokunaga Y, Ozaki N, Wakashiro S, et al. Effects of perfusion pressure during flushing on the viability of the procured liver using noninvasive fluorometry. Transplantation, 1988,45:1031-1035.
    17. Mami A, Ferrero ME. A four-technique comparative study of orthotopic liver transplantation in the rat. Am J Surg 1988:156:209.
    18. Gores GJ, Nieminen AL, Wray BE, et al.Intracellular pH during "chemical hypoxia" in cultured rat hepatocytes. Protection by intracellular acidosis against the onset of cell death.J Clin Invest.1989 Feb; 83(2):386-96.
    19. Liu C, Tsai HL, Chin T, et al.Novel technique for suprahepatic vena cava reconstruction in rat orthotopic liver transplantation.J Surg Res.2006 Nov;136(1):116-9. Epub 2006 Aug 14.
    20. Jia C, WangW, Zhu Y,et al. Suprahepatic vena cava manipulative bleeding alleviates hepatic ischemia-reperfusion injury in rats [J].Dig Liver Dis,2008, 4:285~292.
    1. Orlando G, Baptista P, Birchall M, et al.Regenerative medicine as applied to solid organ transplantation: current status and future challenges.Transpl Int.2011 Mar;24(3):223-32.
    2. Bergmann A, Steller H.Apoptosis, stem cells, and tissue regeneration.Sci Signal. 2010 Oct 26;3(145):re8.
    3. Touboul T, Vallier L, Weber A.Robust differentiation of fetal hepatocytes from human embryonic stem cells and iPS Med Sci (Paris).2010 Dec;26(12):1061-6.
    4. Stutchfield BM, Forbes SJ, Wigmore SJ.Prospects for stem cell transplantation in the treatment of hepatic disease.Liver Transpl. 2010 Jul;16(7):827-36.
    5. Bajek A, Olkowska J, Drewa T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration. Postepy Hig Med Dosw (Online).2011 Feb 24;65:124-32.
    6. Dai LJ, Li HY, Guan LX, et al.The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res.2009 Jan;2(1):16-25. Epub 2008 Aug 6.
    7. Tanzi MC, Fare S. Adipose tissue engineering:state of the art, recent advances and innovative approaches. Expert Rev Med Devices.2009 Sep;6(5):533-51.
    8. Schffler A, Buchler C.Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells.2007 Apr;25(4):818-27.
    9. Danisovic L, Varga I, Polak S,et al.Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys.2009 Mar;28(1):56-62.
    10. Seo MJ, Suh SY, Bae YC, et al.Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun.2005 Mar 4;328(1):258-64.
    11. Talens-Visconti R, Bonora A, Jover R, et al.Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol. 2006 Sep 28;12(36):5834-45.
    12. Puglisi MA, Saulnier N, Piscaglia AC, et al.Adipose tissue-derived mesenchymal stem cells and hepatic differentiation: old concepts and future perspectives. Eur Rev Med Pharmacol Sci.2011 Apr;15(4):355-64.
    13. Snykers S, De Kock J, Rogiers V,et al.In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells.2009 Mar;27(3):577-605.
    14. Vidal MA, Kilroy GE, Lopez MJ,et al.Characterization of equine adipose tissue-derived stromal cells:adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg. 2007 Oct;36(7):613-22.
    15. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell,2002,12:4279-4295.
    16. Taha MF, Hedayati V. solation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell.2010 Aug;42(4):211-6. Epub 2010 May 21.
    17. Neupane M, Chang CC, Kiupel M, et al. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A. 2008 Jun; 14(6):1007-15.
    18. Crisan M, Huard J, Zheng B, et al. Purification and culture of human blood vessel-associated progenitor cells. Curr Protoc Stem Cell Biol.2008 Mar;Chapter 2:Unit 2B.2.1-2B.2.13.
    19. Fraser JK, Wulur I, Alfonso Z, et al. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy. 2007;9(5):459-67.
    20. Tsagias N,Kouzi-Koliakos K,Koliakos I,et al. Addition of adipose-derived stem cells in cord blood cultures stimulates their pluripotent differentiation Transplant Proc.2009V41N10:4340-4.
    21.Quarto N,Longaker MT.Differential expression of specific FGF ligarlds and receptOr isoforms during OSteOgenic differentiation of mouse Adipose—derived stem Cells (mASCs) recapitulates the in ViVO osteogenic pattern. Gene. 2008V424N1-2:130-40.
    22.Case J,Horvath TL,Ballas CB,et a1.In Vitro clonal analysis of murine pluripotent stem cells is01ated from skeletal muscle and adipose stromal cells.Exp Hematol. 2008V36N2:224-34.
    23.Gronmos S.Zal311ettino AC.Methods for the purification and characterization of human adipose-derived stem cells.Methods MOl Bi01.2011;702:109-20.
    24.林楚伟,周胜华,杜优优.全骨髓贴壁并差速传代分离纯化大鼠骨髓间充质干细胞:与密度梯度离心法的比较[J].中国组织工程研究与临床康复,2010,14(14):2508-2512
    25.Rada T,Reis RL,Gomes ME.Novel memod for the is01ation of adipose stem cells(ASCs).J Tissue Eng Regen Med.2009 Feb;3(2):158-9.
    26.徐勇,霍梅。免疫磁珠分离及流式细胞仪分选纯化外周血CD34+/CD90+干细胞。[J]临床检验杂志2004年第22卷第4期,246-248.
    27.P6ster O,Oikonomopoulos A,Sereti KI,et a1.Is01atiOn of resident cardiac progellitor cells by Hoechst 33342 stailling.Memods M01 Bi01.2010;660:53-63.
    28.Guilak F,Lott KE,Awad HA et a1.Clonal arlalysis of the differentiation potential ofhuman adipose derived adult stem cells[J].Cell Physiol,2006,206(1):229-237.
    29.Chen X.M Jiang P;Gao JH,et a1.Experimental study of human adipocyte dedifferentiation for adipose tissue engineering.Nan Fang Yi Ke Da Xue Xue Bao.2009 Apr;29(4):606-10.
    3O.Colter DC,C1ass R,Dgirolamo CM,et a1.Rapid expansion ol recycling stem cells in culture of plastic-adhenrent cells from human bone marrow[J].Proc Natl Acad SciUSA,2000,97(7):3213-3218.
    31.Stolzing A,Coleman N,Scutl A,et al.Glucose-induced replicative senescence in mesenchymal stem cells[J].Rejuvenation Res,2006,9(11):31-35.
    32. Yokoyama M, Miwa H, Maeda S, et al. Influence of fetal calf serum on differentiation If mesenchymal stem cells to chondrocytes during expansion[J]. J Biosci Bioeng,2008,106(1):46-50.
    33. Shih DT, Chen JC, Chen WY, et al. Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion. 2010 Nov 2. doi: 10.1111/j.1537-2995.2010.02915.x.
    34. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review.J Nippon Med Sch. 2009 Apr;76(2):56-66.
    35. Erisken C, Kalyon D, Wang H,et al.Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerol phosphate concentrations.Tissue Eng Part A. 2010 Dec 28.
    36. Bai X, Alt E. Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem Biophys Res Commun. 2010V401N3:321-6.
    37. Bonora-CA, Castell JV, Gomez-Lechon MJ et al. Adipose tissue-derived stem cells:hepatic plasticity Gastroenterol Hepatol.2008V31N5:299-309.
    38. Ruiz JC, Ludlow JW, Sherwood S, et al.Differentiated human adipose-derived stem cells exhibit hepatogenic capability in vitro and in vivo. J Cell Physiol. 2010V225N2:429-36.
    39. Dong XJ, Zhang H, Pan RL et al. Identification of cytokines involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. World J Gastroenterol. 2010V16N26:3267-78.
    40. Peura M, Bizik J, Salmenpera P et al.Bone marrow mesenchymal stem cells undergo nemo sis and induce keratinocyte wound healing utilizing the HGF/c-Met/PI3K pathway.World J Gastroenterol. 2010 Feb 14;16(6):713-22.
    41. Pulavendran S,Raj am M,Rose G,Mandal AB; Hepatocyte growth factor incorporated chitosan nanoparticles differentiate murine bone marrow mesenchymal stem cell into hepatocytes in vitro.IET Nanobiotechnol. 2010V4N3:51-60.
    42. Peura M, Bizik J, Salmenpera P et al.Bone marrow mesenchymal stem cells undergo nemosis and induce keratinocyte wound healing utilizing the HGF/c-Met/PI3K pathway.World J Gastroenterol.2010 Feb 14;16(6):713-22.
    43. Zhou QJ,Huang YD,Xiang LX et al.In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4. Int J Biochem Cell Biol.2007V39N9:1714-21.
    44. Song HYJeon ES,Kim JI et al. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem.2007V101N5:1238-51.
    45. Lee SY,Lim J,Khang QSon et al. Enhanced ex vivo expansion of human adipose tissue-derived mesenchymal stromal cells by fibroblast growth factor-2 and dexamethasone. Tissue Eng Part A. 2009V15N9:2491-9.
    46. Chivu M, Dima SO, Stancu CI. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res.2009V154N3:122-32.
    47. Bonora-Centelles A, Jover R, Mirabet V. Sequential hepatogenic transdifferentiation of adipose tissue-derived stem cells:relevance of different extracellular signaling molecules, transcription factors involved, and expression of new key marker genes. Cell Transplant.2009V18N12:1319-40.
    48. Lopez MJ, Spencer ND. In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods Mol Biol. 2011; 702:37-46.
    49. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol,2002,30(1):p 42-48.
    50. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet, 2004, 363(9419):p 1439-1441.
    51. Aggarwal S, Pittenger, M. Human mesenchymal stem cells modulate allogeneic immune cell responses [J]. blood, 2005, 105 (4):p1815-1822.
    52. Kim JA, Hong S, Lee B, et al. The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK4A-cyclin Dl/cdk4 and p21wafl, p27kipl-cyclin E/cdk2 pathways [J].Cellular Immunology, 2007, 245(1): 16-23.
    53. Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-lin the immunosuppressive effect of adult rat and human mesenchymal stem cells[J]. blood, 2007, 110(10):p 3691-3694.
    54. Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells [J].blood, 2007, 109(1):p 228-234.
    55. Maccario R, Podesta M, Moretta, A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype [J]. Haematologica,2005,90(4):p 516-525.
    56. Kazuya S, Katsutoshi O, Iekuni O, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J]. Blood, 2007, 109(1):228-234.
    57. Jiang X, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. blood, 2005, 105(10):4120-4126.
    58. Nauta A, Kruisselbrink A, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells [J]. J Immunol, 2006, 177 (4):p2080-2087.
    59. Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells[J]. Stem Cells Dev, 2004, 13(3):p 263-271.
    60. Wang Q, Sun B, Wang D, et al. Murine bone marrow mesenchymal stem cells cause mature dendritic cells to promote T-cell tolerance[J].Scand J Immunol, 2008,68(6):p 607-615.
    61.宣旻,谢晓宝,邱国强.间充质干细胞对不同刺激条件下Th1/Th2细胞比值的影响[J].基础医学与临床,2006,26(11):1235-1238.
    62. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J]. Exp Hematol,200331(10):890-896.
    1. Waki K. UNOS Liver Registry: ten year survivals. Clin Transpl 2006;29-39
    2. Matzinger P. The danger model:a renewed sense of self. Science 2002 Apr 12:296:301-5.
    3. Kwekkeboom J,Thain T,Tra WM,et al.Hetpatitis B immunoglobulins inbibit dendritic cell and T cell and protect against acute rejection after liver transplantation.Am J Transplant 2005;(10):2393-402.
    4. Sayegh MH, Carpenter CB.Transplantation 50 years later-progress, challenges, and promises. N Engl J Med.2004;(351):2761-2766.
    5. Pons JA, Revilla-Nuin B, Ramirez P,et al.Development of immune tolerance in liver transplantation as troenterol Hepatol. 2011 Mar; 34(3):155-69.
    6. Fandrich F.Tolerance in clinical transplantation: progress, challenge or just a dream? Langenbecks Arch Surg.2011 Apr; 396(4):475-87. Epub 2011 Mar 17.
    7. Knechtle SJ.Immunoregulation and tolerance.Transplant Proc.2010V42N9 Suppl: S13-5.
    8. Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic hearttransplant through the generation of regulatory T cells.J Immunol 2008; 181:3933-3946.
    9. Popp FC, Eggenhofer E, Renner P, et al. Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy withlow-dose mycophenolate. Transpl Immunol 2008; 20:55-60.
    10. X. Cai, J. Hamaha, P.N. Rao, et al.JLow-Dose of FK 506 and Associated Blood Levels in Allotransplantation of Rat Liver, Heart, and Skin.Transplant Proc. 1992 August; 24(4):1403-1405.
    11. Lodi D, Iannitti T, Palmieri B.Stem cells in clinical practice: applications and warnings.J Exp Clin Cancer Res.2011 Jan 17; 30:9.
    12. Hara Y, Stolk M, Ringe J, et al.In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia.ranspl Int. 2011 Aug 31. doi:10.1111/j.l432-2277.2011.01328.x. [Epub ahead of print]
    13. Punwar S, Khan WS.Mesenchymal stem cells and articular cartilage repair: clinical studies and future direction.Open Orthop J. 2011;5 Suppl 2:296-301. Epub 2011 Jul 28.
    14. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003;5:485-489.
    15. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99:3838-3843.
    16. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cell inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101:3722-3729.
    17. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood;2005;105:1815-1822.
    18. Baek SJ, Kang SK, Ra JC.In vitro migration capacity of human adipose-derived mesenchymal stem cells and their expression of a distinct set of chemokine and growth factor receptors.Exp Mol Med.2011 Aug 17. [Epub ahead of print]
    19. Kang JW, Kang KS, Koo HC,et al. Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells.Stem Cells Dev. 2008 Aug; 17(4):681-93.
    20. Svobodova E, Krulova M, Zajicova A, et al.The Role of Mouse Mesenchymal Stem Cells in Differentiation of Naive T-Cells into Anti-Inflammatory Regulatory T-Cell or Proinflammatory Helper T-Cell 17 Population. Stem Cells Dev. 2011 Jul 26.
    21. Ghannam S, Pene J, Torcy-Moquet G, et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype.Immunol.2010 Jul 1; 185(1):302-12. Epub 2010 May 28.
    22. Sa YL, Shen XM, Shi KQ, et al. Effects of human bone marrow mesenchymal stem cells on cytokines secretion from allogeneic dendritic cell activated cytokine-induced killer cells.Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2010 Oct; 26(10):988-91.
    23. Aldinucci A, Rizzetto L, Pieri L, et al.Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation.J Immunol. 2010 Nov 1; 185(9):5102-10. Epub 2010 Oct 1.
    24. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell,2002,12:4279-4295.
    25. Seo MJ, Suh SY, Bae YC,et al.Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun.2005 Mar 4; 328(1):258-64.
    26. Talens-Visconti R, Bonora A, Jover R,et al.Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol. 2006 Sep 28; 12(36):5834-45.
    27. Lee S, Chater AC. Chandler JB,et al. A technique for orthotopic liver transplantation in the rat[J].TransPlantation.1973,16:664-9.
    28. Kamada N, Calne RY.Orthotopic liver transplantation in the rat-technique using cuff for portal vein anastomosis and biliary drainge.[J].Tmasplnatation.1979, 28:47-50.
    29. Matevossian E, Doll D, Huser N,et al. Liver transplantation in the rat: single-center experience with technique, long-term survival, and functional and histologic findings. Transplant Proc. 2009 Jul-Aug;41(6):2631-6.
    30. Jing H, Lin SZ, Yang X. Synergistic effect of emodin and cyclosporine A on rejective reaction against liver graft in rats.Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008 Jul; 28(7):614-6.
    31. Goto S, Lin YC, Lai CY,et al.Telomerase activity in rat liver allografts.Transplantation.2000 Mar 15; 69(5):1013-5.
    32. Gruttadauria S, di Francesco F, Pagano D,et al.Complications in immunosuppressive therapy of liver transplant recipients. J Surg Res.2011 Jim 1; 168(1):137-42.
    33. Benitez CE, Puig-Pey I, Lopez M, et al.ATG-Fresenius treatment and low-dose tacrolimus:results of a randomized controlled trial in liver transplantation.Am J Transplant.2010 Oct; 10(10):2296-304.
    34. Chu Z, Zhang J, Zhao Y,et al.Influence of immunosuppressive drugs on the development of CD4(+)CD25(high) Foxp3(+) T cells in liver transplant recipients.Transplant Proc.2010 Sep;42(7):2599-601.
    35. Levesque JP, Hendy J, Takamatsu Y et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilizationinduced by GCSF or cyclophosphamide. J Clin Invest 2003; 111:187-196.
    36. Mendelson A, Frank E, Allred C,et al. Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J. 2011 Oct; 25(10):3496-504.
    37. Qin S, Rottman JB, Myers P et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101:746-754.
    38. Bobis-Wozowicz S, Miekus K, Wybieralska E,et al.Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice.Exp Hematol.2011 Jun; 39(6):686-696.
    39. Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells imp roves cardiac function in rats with acutemyocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 2004; 287:2670-2676.
    40. Francois S, Bensidhoum M, Mouiseddine M, et al. Local irradiation not only Induces homing of humanmesenchymal stem cells at exposed sites but p romotes theirwidesp read engraftment to multip le organs:a study of their quantitative distribution after irradiation damage. Stem Cells, 2006; 24:1020-1029.
    41. Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42-48.
    42. Wu GD, Nolta JA, Jin YS, et al. Migration of mesenchymal stemcells to Heart allografts during chronic rejection. Transp lantation,2003; 75:679-685.
    43.向国安,张刚庆,方驰华等.同种异体骨髓间质干细胞移植在大鼠肝内定居能力初步研究.第一军医大学学报,2005;25:994-997.
    44. Altman AM, Prantl L, Muehlberg FL, et al.Wound microenvironment sequesters adipose-derived stem cells in a murine model of reconstructive surgery in the setting of concurrent distant malignancy. Plast Reconstr Surg. 2011 Apr;127(4):1467-77.
    45. Mendelson A, Frank E, Allred C,et al.Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro.FASEB J.2011 Jul 11. FASEB J.2011 Oct;25(10):3496-504.
    46. Ahmadian KN, Bahrami AR, Ebrahimi M, et al. Comparative Analysis of Chemokine Receptor's Expression in Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue.J Mol Neurosci.2011 Jul; 44(3):178-85.
    47. Saito K, Ishikawa Y, Nakakura-Ohshima K,et al.Differentiation capacity of BrdU label-retaining dental pulp cells during pulpal healing following allogenic transplantation in mice.Biomed Res.2011;32(4):247-57.
    48. Sanchez-Fueyo A, Strom TB. Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology.2011 Jan; 140(1):51-64.
    49. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone:I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol, 1986; 136:2348.
    50. Saggi BH, Fisher RA, Bu D, et al. Intragraft cytokine expression and tolerance induction in rat renal allografts. Transplantation,1999; 67:206.
    51. Golling M, Sadeghi M, Zipperle S, et al.In vitro cytokine responses in liver transplant recipients treated with cyclosporine A and tacrolimus. Clin Transplant. 2009 Dec; 23 Suppl 21:83-91.
    52. Chen Y, Chen J, Liu Z, Liang S,et al. Relationship between TH1/TH2 cytokines and immune tolerance in liver transplantation in rats. Transplant Proc. 2008 Oct; 40(8):2691-5.
    53. Li X.The common gammac-cytokines and transplantation tolerance. Cell Mol Immunol. 2004 Jun; 1(3):167-72.
    54. Bluestone JA, Liu W, Yabu JM, et al.The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am J Transplant. 2008 Oct; 8(10):2086-96.
    55. Brandacher G, Margreiter R, Fuchs D. Implications of IFN-gamma-mediated tryptophan catabolism on solid organ transplantation. Curr Drug Metab.2007 Apr; 8(3):273-82.
    56. Hill M, Thebault P, Segovia M, et al.Cell Therapy With Autologous Tolerogenic Dendritic Cells Induces Allograft Tolerance Through IFN-y and EBI3. Am J Transplant. 2011 Jul 27.
    57. Shi LB, Zhang HW, Cui YY. Implication of different expression of IL-2 mRNA and IL-10 mRNA in CD4 (+) CD25 (+) T cell induced immune tolerance of liver transplantation in rat. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.2008 May; 20(5):257-60.
    58. Besche V, Wiechmann N, Castor T, et al.Dendritic cells lentivirally engineered to overexpress interleukin-10 inhibit contact hypersensitivity responses, despite their partial activation induced by transduction-associated physical stress. J Gene Med.2010 Mar;12(3):231-43.
    59. Furukawa H, Oshima K, Tung T,et al.Overexpressed exogenous IL-4 and IL-10 paradoxically regulate allogenic T-cell and cardiac myocytes apoptosis through FAS/FASL pathway.
    60. Mittal SK, Sharma RK, Gupta A, et al.Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. Transplantation. 2009 Aug 15; 88(3):435-41.
    61. Wang C, Tay SS, Tran GT, et al.Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transpl Immunol.2010 Feb; 22(3-4):172-8. Epub 2009 Nov 26.
    62. Kaminski ER, Kaminski A, Bending MR,et al.In vitro cytokine profiles and their relevance to rejection following renal transplantation. Transplantation.1995 Oct 15;60(7):703-6.
    63. Nickerson P, Zheng X, Steiger J, et al . Prolonged islet allograft acceptance in the absence of interleukin 4 expression. Transplant Immunol,1996;4:81.
    64. Steiger J, Nickerson PW, Steurer W, et al. IL22 knockout recipient mice reject islet cell allografts. J Immunol,1995; 155:489.
    65.朱立平,陈学清主编.《免疫学常用实验方法》.北京:人民军医出版社.2000:193-194.
    66.谈永松徐银学韦习会等.MT T比色法与3H-T dR掺入法测定猪MLC效果的比较研究.[J]农业生物技术学报,1997年9月第5卷第3期:274-279.
    67. M osmann T J. Immunol. Methods,1983,65:55-63.
    68. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol2002; 30 (1):42.
    69. Li H, Guo ZK, Mao N. Recent advance in research on immunomodulatory function of mesenchymal stem cells.Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2007 Oct; 15(5):1117-20.
    70. Duffy MM, Ritter T, Ceredig R, et al.Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther. 2011 Aug 11; 2(4):34.
    71. Garcia-Castro J, Trigueros C, Madrenas J, et al.Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med.2008 Dec; 12(6B):2552-65.
    72. Rossini AA,Greiner DL,Mordes JP. Induction of immunologic tolerance for transplantation. Physio Rev,1999,79(1):99-141.
    73. Wang YL, ZhangYY, Zhou YL, et al. T-helper and T-cytotoxic cell subsets monitoring durin
    74. Active cytomegalovirus infeetion in liver transplantation[J].Transplant Proc, 2004,36(5):1498-9
    75. Russo FP,Alison MR,Bigger BW, et al. The bone marrow functionally contributesto liver fibrosis. Gastroenterology 2006; 130 (6):1807.
    76. DiBonzo LV,Ferrero I,Cravanzola C,et al.Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine:engraftment and hepatocyte differentiation versus profibrogenic potential.Gut 2008;57(2):2.
    77. Kisseleva T,Uchinami H,Feirt N,et al.Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006;45(3):429.
    78. Oyagi S,Hirose M,Kojima M,et al.Therapeutic effect of transplanting HGF treated bone marrow mesenchymal cells into CC14-injured rats. J Hepatol 2006; 44 (4):742.
    79. Aurich I,Mueller LP,Aurich H,et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 2007; 56 (3):405.
    80. Okumoto K,Saito T,Haga H,et al. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in theinjured liver. J Gastroenterol 2006; 41 (1):62.
    81. Hamada E,Nishida T,Uchiyama Y,et al. Activation of Kupffer cells and caspase-3 involved in rat hepatocyte apoptosis induced by endotoxin. J Hepatol,1999,30(5): 807-818.
    82. Cai YF,Chen JS,Su SY,et al. Passage of bone-marrow-derived liver stem cells in a proliferating culture system. World J Gastroenterol,2009,15(13):1630-1635.
    1.夏穗生我国肝移植现状和展望。现代实用医学2002年2月第14卷第2期P55-56.
    2.郑树森临床肝移植的热点问题。器官移植2010年1月第1卷第1期2010Vol. 1 No.1.7-8
    3. Moore FD, Smith LL.Burnap TK, et al. One-stage homotransplantation of the liver following total hepatectomy in dogs. Transplant Bull,1959,6(1):103-110.
    4. Starzl TE, Marchioro TL, VonKaulla KN。 et al . Homotransplantation of the liver in humans. Surg Gynecol Obstet,1963,117:659-676.
    5. Starzl TE,Todo S,Tzakis AQGordon RD,et al.liver transplantation: an unfinished product.Transplant Proc 1989;21:2197-2200.
    6. Sayegh MH,Carpenter CB.Transplantation 50 years later-progress, challenges, and promises. N Engl J Med.2004;(351):2761-2766.
    7. Charlton M.Recurrence of hepatitis C infection:Where are we now?.Liver Transpl2005;11(11Supp12):S7-62.
    8. Takatsuki M,Uemoto S,Inomata Y,et al.Weaning of immunosuppression in living donor live transplant recipients[J].Transplantation,2001,72(3):449-54.
    9. Tanigawa K, Sakaida I, Masuhara M, et al. Augmenter of liver regeneration(ALR) may Promote liver regeneration by redueing natural killer(NK) cell activity in human liver diseases [J].JGastroenterol.2000,35:112-9.
    10. Zhang Y, Yin JY, Song LW, et al.Significane of inhibitory efect of augmenter of liver regeneration on expression of TGF-β in nonparenehymal cells of Iiver[J].Med J ChinPLA.2006,31(9):896-8.
    11. Boleslawski E,Conti F,Sanquer S,et al. Defective inhibition of peripheral CD8+Tcell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. Transplantation, 2004,77(12):1815-1820.
    12. Gibelli NE, Pinho-Apezzato ML,et al. Basiliximab-chimeric anti-IL2-R monoclonal antibody in pediatric liver transplantation:comparative study. Transplant Proc,2004,36(4):956-957
    13. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol.1994;12:991-1045.
    14. Matzinger P. The danger model:a renewed sense of self. Science 2002 Apr 12:296:301-5.
    15. Suciu-Foca N,Cortesini R. Reviewing the mechanism of peripheral tolerance in clinical transplantation.Contrib Nephrol,2005,146(1):132-142.
    16. Neujahr D,Turka LA. Lymphocyte depletion as a barrier to immunological tolerance[J].Contrib Nephrol,2005,146(1):65-72.
    17. Walsh PT,Taylor DK,Turka LA. Tregs and transplantation tolerance.J Clin Invest, 2004,114 (10):1398-1403.
    18. Steinman RM,Cohn ZA. Identification of a novel cell type in peripheral lym phoidorgans of mice. I.Morphology, quantitation, tissue distribution. J Exp Med,1973,137(5):1142-1162.
    19. Eren E, Yates J, Cwynarski K, et al. Location of major histocompatibility complex class Ⅱ molecules in rafts on dendritic cells enhances the effieiency of T-cell activation and proliferation. Scand J Immunol 2006;63:7-16.
    20. Terrazzano G, Pisanti S, Grimaldi S, et al. Interaction between natural killer and dendritie cells:therole of CD40, CD80 and major histoeompatibility complexe class I molceules in cytotoxicity induction and inter feron-gamma production.Scand J Immunol 2004,59:356-362.
    21. Thomson AW, Drakes ML, Zahorehak AF et al. Hepatic dendritic cells:immunobiology and role in liver transplantation.J Leukoc Biol 1999;66:322-330.
    22. Beinhauer BQMcBride JM,Graf P,et al.Interleukin-10 regulates cell surface and soluble LIR-2(CD85d)expression on dendritic cells resulting in T cell hyporesponsiveness in vitro.Eur J Immunol,2004,34(1):74-80.
    23. Knechtle SJ.Immunoregulation and tolerance.Transplant Proc. 2010 Nov;42(9 Suppl):S13-5.
    24. He F, Chen Z, Xu S, Cai M, Wu M, Li H, Chen X.Increased CD4+CD25+Foxp3+ regulatory T cells in tolerance induced by portal venous injection.Surgery. 2009 Jun;145(6):663-74. Epub 2009 Apr 19.
    25. Nafady-Hego H, Li Y, Ohe H, Zhao X,et al.The generation of donor-specific CD4+CD25++CD45RA+ naive regulatory T cells in operationally tolerant patients after pediatric living-donor liver transplantation.Transplantation.2010 Dec 27;90(12):1547-55.
    26. Webster KE, Walters S, Kohler RE, et al.In vivo expansion of T reg cells with IL-2-mAb complexes:induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression.J Exp Med. 2009 Apr 13;206(4):751-60. Epub 2009 Mar 30.
    27. He Q, Fan H, Li JQ, Qi HZ.Decreased circulating CD4+CD25highFoxp3+T cells during acute rejection in liver transplant patients.Transplant Proc.2011 Jun;43(5):1696-700.
    28. Marin LA, Muro M, Moya-Quiles MR, et al.Study of Fas (CD95) and FasL (CD178) polymorphisms in liver transplant recipients.Tissue Antigens.2006 Feb;67(2):117-26.
    29. Chen Y, Liu Z, Liang S, Luan X, et al. Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats.Liver Transpl. 2008 Jun;14(6):823-36.
    30. Guillonneau C,Seveno C,Dugast AS,et al.Anti-CD28 antibodies modify regulatormechanisms and reinforce tolerance in CD40Ig-treated heart allograft recipients. Immunol. 2007; 179(12):8164-8171.
    31. Haspot F,Seveno C,Dugast AS,et al.Anti-CD28 antibody-induced kidney allogra tolerance related to tryptophan degradation and TCR class II B7 regulatory cells. AmJ Transplant.2005; 5(10):2339-2348.
    32. Fan K,Wang H,Wei H,et al.Blockade of LIGHT/HVEM and B7/CD28 signalinfacilitates long-term islet graft survival with development of allospecific toleranc Transplantation. 2007;84(6):746-754.
    33. Cao H, Liu H, Wu ZY.Effects of combined immune therapy on survival and Thl/Th2 cytokine balance in rat orthotopic liver transplantation. Chin Med J (Engl).2007 Oct 20;120(20):1809-12.
    34. Chen Y, Chen J, Liu Z, et al.Relationship between TH1/TH2 cytokines and immune tolerance in liver transplantation in rats.Transplant Proc. 2008 Oct;40(8):2691-5.
    35. Gasser M, Otto C, Timmermann W, Gassel HJ, Ulrichs K, Thiede A.Selective immunosuppression with monoclonal antibodies against ICAM-1 and LFA-1 with FK 506 after experimental small intestine transplantation in the rat.Langenbecks Arch Chir Suppl Kongressbd. 1998;115(Suppl I):595-9.
    36. Qian S, Demetris AJ, Murase N, et al.Murine liver allograft transplantation:tolerance and donor cell chimerism.HePatologyl994:19:916-924.
    37. Adams D.Immunological aspcets of clinical liver transplantation.ImmunolLett1991;29:69-72.
    38. Alexander SI, Smith N, Hu M, et al. Chimerism and tolerance in a recipient of a deceased-donor liver transplant. N Engl J Med 2008;358:369-74.
    39. Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M.Cell migration, chimerism, and graft acceptance.Lancet. 1992 Jun 27;339(8809):1579-82.
    40. Starzl, TE.Immunosuppressive Therapy and Tolerance of Organ Allografts.N Engl J Med. 2008 January 24; 358(4):407-411
    41. Inoue S, Tahara K, Kaneko T, Ajiki T,et al. Long-lasting donor passenger leukocytes after hepatic and intestinal transplantation in rats.Transpl Immunol. 2004 Jan; 12(2):123-31.
    42. Tanaka M, Swijnenburg RJ, Gunawan F,et al.In vivo visualization of cardiac allograft rejection and trafficking passenger leukocytes using bioluminescence imaging.Circulation. 2005 Aug 30; 112(9 Suppl):I105-10.
    43. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M,Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells.J Immunol 2008;181:3933-3946.
    44. Popp FC, Eggenhofer E, Renner P, Slowik P, Lang SA,Kaspar H, et al. Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transpl Immunol 2008; 20:55-60.
    45. Chabannes D, Hill M, Merieau E, Rossignol J, Brion R,Soulillou JP, et al. A role for heme oxygenase-1 in theimmunosuppressive effect of adult rat and human mesen-chymal stem cells. Blood 2007; 110:3691-3694.
    46. Le Blanc K, Ringden O. Mesenchymal stem cells:proper-ties and role in clinical bonemarrow transplantation. CurrOpin Immunol 2006; 18:586-591.
    47. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, DouglasR, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284: 143-147.
    48. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, LongoniPD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838-3843.
    49. Meisel R, Zibert A, Gobel U, DaubenerW, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell re-sponses by indoleamine 2,3-dioxygenase-mediated tryp-tophan degradation. Blood 2004; 103:4619-4621.
    50. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al.A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 2008;18:846-857.
    51. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 2005; 305:33-41.
    52. Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosup-pressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 2007;149:353-363.
    53. Tse WT, Pendleton JD, BeyerWM, Egalka MC, Guinan EC.Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation.Transplantation 2003;75:389-397.
    54. English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 2008;115:50-58.
    55. Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, et al.Mesenchymal stem cells induce mature dendritic celinto a novel Jagged-2-dependent regulatory dendritic cepopulation. Blood 2009;113:46-57.
    56. Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni Mekhloufi F, et al. Humanmesenchymal stemcells licen adult CD34 hemopoietic progenitor cells to differentia into regulatory dendritic cells through activation of thNotch pathway. J Immunol 2008; 180: 1598-1608.
    57. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell,2002,12:4279-4295.
    58. Choi YS, Cha SM, Lee YY,et al.Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse [J].Biochem Biophys Res Commun,2006,345(2):631-637.
    59. Ogawa R, Mizuno H, Hyakusoku H, et al. Chondrogenic and osteogenic differentiation of adipose-derived stem cells isolated from GFP-transgenic mice[J]. J NipponMed Sch, 2004, 71 (4):240-241.
    60. Bai X, Pinkernell K, Song YH, et al. Genetically selected stem cells from human adipose tissue exp ress cardiac markers[J]. Biochem Biophys Res Commun, 2007,353 (3):665-671.
    61. Fujimura J, Ogawa R, Mizuno H, et al. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice [J]. Biochem Biophys Res Commun, 2005,333(1):116-121.
    62. Kubis N, Tomita Y, Tran-Dinh A, et al. Vascular fate of adipose tissue-derived adult stromal cells in the ischemic murine brain: A combined imaging2histological study [J]. Neuroimage, 2007, 34 (1):1-11.
    63. Seo MJ, Suh SY, Bae YC, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo[J]. Biochem Biophys Res Commun, 2005, 328 (1):2582264.
    64. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell,2002,12:4279-4295.'
    65. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates [J]. Cytotherapy,2004,6(1):7-14
    66. Katz A J, Tholpady A, Tholpady SS, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells [J].Stem Cells,2005,23 (3):412-423.
    67. De Ugarte DA, Morizono K, Elbarbary A, et al . Comparison of muf tilineage cells from human adipose tissue and bone marrow [J]. Cells Tissues Organs, 2003, 174(3):101-109.
    68. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC):A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011 May 14; 9:12.
    69. Ranera B, Lyahyai J, Romero A, et al.Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol.2011 Jul 2.
    70. Chen Y, Wang G, Zeng L. Adipose tissue or bone marrow, store for purchasing mesenchymal stem cells? Circ J. 2011 Aug 25; 75(9):2060-1. Epub 2011 Aug 3.
    71. Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells[J]. Keio J Med,2005,54 (3):132-141.
    72. Huang JI, Beanes SR, Zhu M, et al . Rat extramedullary adipose issue as a source of osteochondro genic progenitor cells [J]. PlastRe onstr Surg, 2002, 109(3):1033-1041.
    73.崔磊,尹烁,杨平,脂肪干细胞HLA分子表达与体外抑制淋巴细胞增殖的实验研究中华医学杂志2005年第27期1890-1894
    74. McIntosh K, Zvonic S, Garrett S, et al.The immunogenicity of human adipose-derived cells:temporal changes in vitro. Stem Cells. 2006;24(5):1246-1253
    75. Cui L, Yin S, Liu W, et al. Expanded adipose-derived stem cellssuppress mixed lymphocyte reaction by secretion of prostaglandinE2. Tissue Eng. 2007; 13(6):1185-1195.
    76. Niemeyer P, Kornacker M, Mehlhorn A, et al.Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng.2007 Jan;13(1):111-21.
    77. DelaRosa O, Lombardo E, Beraza A,et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expressionin the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A.2009; 15(10):2795-2806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700