关节炎慢性吗啡耐受大鼠脊髓谷氨酸及其转运体的改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片类药物是用于治疗急慢性疼痛的重要药物,但长期应用可发生耐受现象,从而限制了阿片类药物的临床应用。关于阿片耐受机制的研究很多,各种阿片耐受模型的建立为阿片耐受机制的研究提供了基础。近年的研究证实,谷氨酸能系统参与阿片耐受的形成,并在其神经可塑性变化中发挥重要作用。该系统包括以谷氨酸为代表的兴奋性氨基酸、以NMDA受体为代表的各种兴奋性氨基酸受体和谷氨酸转运体等。脊髓是哺乳动物躯体和内脏感觉和运动的低级中枢。脊髓背角是机体接受伤害性信息传入,并对伤害性信息进行加工、整合处理的重要部位。研究发现脊髓的阿片敏感性传入神经元含有可释放的谷氨酸池,脊髓背角含有丰富的谷氨酸受体。本研究以新建立的关节炎吗啡耐受大鼠模型为基础,着重探讨谷氨酸及其转运体在吗啡耐受大鼠脊髓神经可塑性改变中的作用。期望这些研究结果能提供日后相关吗啡耐受治疗及研究的重要信息。
     第一部分:关节炎大鼠慢性吗啡耐受模型的建立及谷氨酸在大鼠脊髓神经可塑性改变中的作用
     目的:建立关节炎大鼠慢性吗啡耐受模型,探讨谷氨酸在关节炎慢性吗啡耐受大鼠脊髓神经可塑性改变中的作用。方法:雄性SD大鼠,300+20g,行鞘内置管,随机分为6组(n=5),其中4组制成佐剂性关节炎模型,分别经鞘内给予生理盐水、吗啡10μg、吗啡20μg、吗啡10μg+纳洛酮10μg,另外两组非致炎大鼠分别经鞘内给予生理盐水、吗啡20μg。各组给药均为1日2次,连续7天。动态检测大鼠机械缩爪阈值及热板缩爪潜伏期,以痛觉过敏作为形成吗啡耐受的标志。测定各组大鼠脊髓谷氨酸的含量。在鞘内给予吗啡同时给予MK-801及外源性谷氨酸,测定大鼠机械缩爪阈值及热板缩爪潜伏期的改变。结果:机械痛敏和热痛敏检测证实经鞘内连续7天给予吗啡诱导出了吗啡耐受。在炎性痛导致大鼠脊髓谷氨酸含量增加的基础上,关节炎慢性吗啡耐受大鼠脊髓谷氨酸含量进一步增高,并且谷氨酸含量的增加随给药时间的进展呈现时间依赖性。MK-801及外源性谷氨酸分别阻断和增强了慢性吗啡诱导的痛觉过敏。结论:通过给关节炎大鼠鞘内反复注射吗啡,在以吗啡治疗炎性痛的背景下形成了吗啡耐受,标志炎性痛慢性吗啡耐受模型建立成功。慢性吗啡耐受产生的痛觉过敏与脊髓谷氨酸含量的增高、谷氨酸受体的过度激活及神经系统的兴奋性增强有关。
     第二部分:脊髓谷氨酸转运体在慢性吗啡耐受中的作用
     目的:观察谷氨酸转运体在关节炎慢性吗啡耐受大鼠脊髓背角的表达变化及谷氨酸转运体活性改变对大鼠行为学及痛觉调制物质的影响,探讨谷氨酸转运体在慢性吗啡耐受机制中的作用。方法:采用免疫组化、western blot及RT-PCR等方法检测上述分组的各组大鼠脊髓谷氨酸转运体的表达;动态检测鞘内给予谷氨酸转运体激动剂Riluzole和抑制剂PDC后大鼠机械缩爪阈值及热板缩爪潜伏期;采用RT-PCR法检测关节炎慢性吗啡耐受大鼠脊髓OFQ和BDNF mRNA的表达。结果:关节炎慢性吗啡耐受大鼠脊髓背角谷氨酸转运体GLAST和EAAC1蛋白及mRNA表达均下调;谷氨酸转运体激动剂和抑制剂在关节炎基础上对吗啡耐受所致的痛觉过敏具有减弱和增强作用,并且对吗啡耐受中参与痛觉调制相关物质BDNF及OFQ mRNA的表达具有调节作用。结论:谷氨酸转运体下调使细胞外谷氨酸含量增加,在吗啡耐受的痛觉过敏机制中发挥作用。调节谷氨酸转运体活性及表达有望成为治疗吗啡耐受引起的痛觉过敏的新方法。
     第三部分:谷氨酸及其转运体在吗啡耐受诱导脊髓背角神经细胞凋亡中的作用
     目的:探讨谷氨酸诱导脊髓神经细胞凋亡在慢性阿片耐受形成机制中的意义。方法:采用TUNEL染色方法观察关节炎慢性吗啡耐受大鼠脊髓背角凋亡细胞的分布,以western blot方法检测脊髓Bax、caspase-3及Bcl-2的表达。结果:慢性吗啡耐受可诱导脊髓背角神经细胞凋亡,使促凋亡因子Bax和caspase-3表达上调,抗凋亡因子Bcl-2表达下调,Riluzole和MK-801可减弱吗啡诱导的神经细胞凋亡,而PDC和外源性谷氨酸则加重了吗啡诱导的神经细胞凋亡。结论:脊髓神经细胞凋亡可能是慢性阿片耐受的神经基础,谷氨酸的神经毒性在吗啡耐受的神经细胞凋亡中发挥作用,Riluzole和PDC分别通过抑制和加重阿片诱导的脊髓背角神经凋亡而减弱和加重阿片诱导的痛觉过敏。
     综上所述,关节炎慢性吗啡耐受大鼠是在以吗啡治疗炎性痛的背景下,形成的不同以往的吗啡耐受模型。本研究即在此模型基础上,发现谷氨酸及其转运体在慢性吗啡耐受的形成机制中发挥重要作用,提示我们可通过调节谷氨酸转运体的表达及活性来治疗吗啡耐受诱发的痛觉过敏,为日后相关吗啡耐受的治疗及研究提供了新的思路。
Opioids have been regarded as the most effective analgesics for management ofacute and chronic pain,however,opioid tolerance occurs following chronic drugexposure which limits their usefulness.Studies on mechanism of opioid tolerancehave been developing generally and various models of opioid tolerance areconstructed to provide the basis for such studies.Recent reports indicate thatglutamatergic system is involved in the development of opioid tolerance and plays animportant role in neural plasticity of opioid tolerance.The glutamatergic systemconsists of excitatory amino acids,excitatory amino acid receptors and glutamatetransporters.For mammalians,spinal cord is the lower centre of somatic and visceralsensation and motion,and spinal dorsal horn is an important location where afferentinformation of nociception is introduced,processed and integrated.It is reported thatreleasable pools of EAA are found in opioid-sensitive primary afferent neurons inspinal cord,and generous glutamate receptors in spinal dorsal horn.In the dissertation,a novel model of arthritis-chronic morphine tolerant rats is constructed.Based on thismodel,the effect of glutamate and transporters leading to neural plastic change in thespinal cord of morphine tolerant rats is explored.The results of this study areexpected to provide important information for future treatment and studies associatedwith morphine tolerance.
     Part one:Construction of arthritis-chronic morphine tolerant rat model andimplication of glutamate in spinal nerve plasticity change of rats
     Objective:To construct the rat model of arthritis-chronic morphine tolerance,discussthe implication of glutamate in spinal nerve plasticity change of rats witharthritis-chronic morphine tolerance.Methods:Healthy male SD rats,300±20g,wereimplanted intrathecal catheters and randomized into 6 groups.Amongst,the rats infour groups were made into model of adjuvant-induced arthritis and wereadministered intrathecally saline,morphine 10μg,morphine 20μg,morphine 10μg+naloxone 10μg,respectively.The rats in the other two groups without arthritis wereadministered intrathecally saline and morphine 20μg,respectively.The drugs wereadministered twice daily for 7 days.Mechanical withdrawal threshold (MWT) and thermal paw withdrawal latency (PWL) of rats was examined to evaluate theirbehavior.Hyperalgesia was concerned as the sign of genesis of morphine tolerance.The glutamate concentration in spinal cord tissue of rats was measured.MK-801 andexogenous glutamate was administered intrathecally concomitant with morphinerespectively,MWT and PWL was examined.Results:Mechanical and thermalhyperalgesia examination evinced that repeated intrathecal infusion of morphine forconsecutive 7 days induced tolerance.The spinal glutamate concentration furtherelevated in arthritis-chronic morphine tolerant rats on top of increasing in arthritis rats.The increasing of glutamate concentration was time-dependent as administration ofdrug.MK-801 and exogenous glutamate blokcked or enhanced hyperalgesia inducedby chronic morphine respectively.Conclusion:The rat model of arthritis-chronicmorphine tolerance is constructed successfully by repeatedly administering morphineintrathecally in the presence of painful arthritis,which develops morphine tolerancein the background of treating inflammatory pain.There is association between thehyperalgesia induced by chronic morphine tolerance and elevated spinal glutamateconcentration,excessive stimulation of glutamate receptor as well as the excitabilityof nervous system.
     Part two:The effect of spinal glutamate transporters on chronic morphinetolerance
     Objective:To observe the change of expression of glutamate transporters in spinaldorsal horn of arthritis-chronic morphine tolerant rats and effect of glutamatetransporter inhibitor and promoter on behavior and pain modulators,explore theeffect of glutamate transporters on morphine tolerance mechanism.Methods:Immunohistochemical stain,western blot and RT-PCR were used to measure theexpression of glutamate transporters in spinal cord of each group of rats divided asmentioned in Part one.MWT and PWL was examined for rats which wereintrathecally infused Riluzole and PDC.The expression of OFQ and BDNF mRNA ofspinal cord was measured by RT-PCR.Results:The expression of protein and mRNAof GLAST and EAAC1 in spinal dorsal horn of arthritis-chronic morphine tolerantrats was downregulated.Riluzole and PDC attenuated or enhanced hyperalgesia inopioid tolerance respectively,and regulated the expression of pain modulators such as BDNF and OFQ.Conclusion:The downregulation of glutamate transporters resultsin elevation of extracellular glutamate concentration,which plays an important role inmechanism of hyperalgesia induced by morphine tolerance.Regulation of activity orexpression of glutamate transporters promises to become a new strategy for treatingmorphine tolerance induced hyperalgesia.
     Part three:The effect of glutamate and transporters on nerve cellular apoptosisof spinal dorsal horn induced by chronic morphine tolerance
     Objective:To elucidate the implication of glutamate introducing nerve cellularapoptosis of spinal dorsal horn in chronic morphine tolerance.Methods:TUNELstaining was used to observe the distribution of apoptotic cells in spinal dorsal hom ofarthritis-chronic morphine tolerant rats.The expression of Bax、caspase-3 and Bcl-2in spinal cord were determined by western blot.Results:Chronic administration ofmorphine induced nerve cellular apoptosis of spinal dorsal horn.The expression ofBax and caspase-3 in spinal cord was upregulated,and that of Bcl-2 wasdownregulated.Riluzole and MK-801 attenuated apoptosis in spinal dorsal horninduced by chronic opioids while PDC and exogenous glutamate enhanced apoptosis.
     Conclusion:Spinal neural apoptosis may be the basis of chronic opioid tolerancedeveloping.The neurotoxicity of glutamate contributes to nerve cellular apoptosis ofmorphine tolerance.Riluzole and PDC relieves or enhances hyperalgesia in opioidtolerance by inhibiting or enhancing neural apoptosis in spinal dorsal horn induced bychronic opioid.
     In conclusion,arthritis rat with chronic morphine tolerance is a novel chronicmorphine tolerant model which is formed in the backdrop of treatment ofinflammatory pain with morphine.The present study was on the basis of this modeland detected the important effect of glutamate and its transporters on mechanism ofchronic morphine tolerance.The results enlighten us to treat the hyperalgesia inducedby morphine tolerance through regulating the expression and activity of glutamatetransporters.Moreover,it promises to provide a new strategy for treatment andresearch associated with morphine tolerance.
引文
[1] Rosenblum A, Marsch LA, Joseph H, et al. Opioids and the treatment of chronic pain: controversies, current status, and future directions [J]. Exp Clin Psychopharmacol, 2008, 16(5):405-416.
    
    [2] Jhamandas KH, Marsala M, Ibuki T, et al. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine [J]. J Neurosci, 1996,16(8):2758-2766.
    [3] Collett BJ. Opioid tolerance: the clinical perspective [J]. Br J Anaesth, 1998,81(1):58-68.
    [4] de Leon-Casasola OA. Current developments in opioid therapy for management of cancer pain [J]. Clin J Pain, 2008, 24 Suppl 10:S3-7.
    [5] Hay JL, White JM, Bochner F, et al. Hyperalgesia in opioid-managed chronic pain and opioid-dependent patients [J]. J Pain, 2009, 10(3):316-322.
    [6] DuPen A, Shen D, Ersek M. Mechanisms of opioid-induced tolerance and hyperalgesia [J]. Pain Manag Nurs, 2007, 8(3): 113-121.
    [7] Shimoyama N, Shimoyama M, Davis AM, et al. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance [J]. J Pharmacol Exp Ther, 2005, 312(2):834-840.
    [8] Lan JY, Skeberdis VA, Jover T, et al. Protein kinase C modulates NMDA receptor trafficking and gating [J]. Nat Neurosci, 2001, 4(4):382-390.
    [9] Nakagawa T, Satoh M. Involvement of glial glutamate transporters in morphine dependence [J]. Ann N Y Acad Sci, 2004, 1025:383-388.
    [10] Chen W, Mahadomrongkul V, Berger UV, et al. The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons [J]. J Neurosci, 2004, 24(5):1136-1148.
    
    [11] Kugler P, Schmitt A. Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system [J]. Glia, 1999, 27: 129-142.
    
    [12] Kinoshita N, Kimura K, Matsumoto N, et al. Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes [J]. Genes Cells, 2004, 9(1): 1-14.
    [13] Minelli A, Barbaresi P, Reimer RJ, et al. The glial glutamate transporter GLT-1 is localized both in the vicinity of and at distance from axon terminals in the rat cerebral cortex [J]. Neuroscience, 2001, 108(l):51-59.
    [14] Crino PB, Jin H, Shumate MD, et al. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy [J]. Epilepsia, 2002, 43(3):211-218.
    [15] Fairman WA, Vandenberg RJ, Arriza JL, et al. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel [J]. Nature, 1995,375(6532):599-603.
    [16] Arriza JL, Eliasof S, Kavanaugh MP, et al. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance [J]. Proc Natl Acad Sci U S A, 1997, 94(8):4155-4160.
    [17] Queen SA, Kesslak JP, Bridges RJ. Regional distribution of sodium-dependent excitatory amino acid transporters in rat spinal cord [J]. J Spinal Cord Med, 2007, 30(3):263-271.
    [18] Tao F, Liaw WJ, Zhang B, et al. Evidence of neuronal excitatory amino acid carrier 1 expression in rat dorsal root ganglion neurons and their central terminals [J]. Neuroscience, 2004, 123(4):1045-1051.
    [19] Gonzalez MI, Robinson MB. Protein kinase C-dependent remodeling of glutamate transporter function [J]. Mol Interv, 2004, 4(1):48-58.
    [20] Wen ZH, Chang YC, Cherng CH, et al. Increasing of intrathecal CSF excitatory amino acids concentration following morphine challenge in morphine-tolerant rats [J]. Brain Res, 2004, 995(2):253-259.
    [21] Lin Y, Tian G, Roman K, et al. Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice [J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(1):G129-134.
    [22] Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats [J]. J Neurosci, 2003, 23(7):2899-2910.
    [23] Mao J. Opioid tolerance and neuroplasticity [J]. Novartis Found Symp, 2004, 261:181-186; discussion 187-193.
    [24] Duric V, McCarson KE. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain [J]. Mol Pain,2007,3:32.
    [25] Fu X, Wang YQ, Wang J, et al. Changes in expression of nociceptin/orphanin FQ and its receptor in spinal dorsal horn during electroacupuncture treatment for peripheral inflammatory pain in rats [J]. Peptides, 2007, 28(6):1220-1228.
    [26] Joseph T, Lee TL, Li C, et al. Levels of neuropeptides nocistatin,nociceptin/orphanin FQ and their precursor protein in a rat neuropathic pain model [J]. Peptides, 2007, 28(7): 1433-1440.
    [27] Lu VB, Biggs JE, Stebbing MJ, et al. Brain-derived neurotrophic factor drives the changes in excitatory synaptic transmission in the rat superficial dorsal horn that follow sciatic nerve injury [J]. J Physiol, 2009, 587(Pt 5):1013-1032.
    [28] Matsushita Y, Ueda H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation [J]. Neuroreport,2009, 20(1):63-68.
    [29] Ge ZJ, Zhang LC, Zeng YM, et al. Involvement of local orphanin FQ in the tolerance induced by repeated microinjections of morphine into ventrolateral periaqueductal gray in rats [J]. Pharmacology, 2007, 80(4):261-268.
    [30] Figiel M, Maucher T, Rozyczka J, et al. Regulation of glial glutamate transporter expression by growth factors [J]. Exp Neurol, 2003,183(1):124-135.
    [31] Nicol B, Rowbotham DJ, Lambert DG. Nociceptin/orphanin FQ inhibits glutamate release from rat cerebellar and brain stem slices [J]. Neurosci lett,2002, 326(2):85-88.
    [32] Lu J, Goula D, Sousa N, et al. Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors [J].Neuroscience, 2003, 121(1):123-131.
    [33] Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain [J]. Br J Pharmacol, 2001,134(6):1263-1270.
    [34] Hu S, Sheng WS, Lokensgard JR, et al. Morphine potentiates HIV-1 gp120-induced neuronal apoptosis [J]. J Infect Dis, 2005,191(6):886-889.
    [35] Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space [J]. Physiol Behav, 1976, 17(6):1031-1036.
    [36] Butler SH, Godefroy F, Besson JM, et al. A limited arthritic model for chronic pain studies in the rat [J]. Pain, 1992, 48(1):73-81.
    [37] Zollner C, Mousa SA, Fischer O, et al. Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain [J]. J Clin Invest, 2008, 118(3):1065-1073.
    [38] Goodchild CS, Nadeson R, Cohen E. Supraspinal and spinal cord opioid receptors are responsible for antinociception following intrathecal morphine injections [J]. Eur J Anaesthesiol, 2004, 21(3): 179-185.
    [39] Lim G, Wang S, Zeng Q, et al. Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor [J]. JNeurosci, 2005, 25(48): 11145-11154.
    [40] Gutstein HB. The effects of pain on opioid tolerance: how do we resolve the controversy? [J]. Pharmacol Rev, 1996, 48(3):403-407; discussion 409-411.
    [41] Celerier E, Laulin JP, Corcuff JB, et al. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: a sensitization process [J]. J Neurosci, 2001, 21(11):4074-4080.
    [42] KuKanich B, Lascelles BD, Papich MG. Assessment of a von Frey device for evaluation of the antinociceptive effects of morphine and its application in pharmacodynamic modeling of morphine in dogs [J]. Am J Vet Res, 2005,66(9): 1616-1622.
    [43] Mao J, Price DD, Mayer DJ. Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C [J].J Neurosci, 1994, 14(4):2301-2312.
    [44] Fernandez-Duenas V, Pol 0, Garcia-Nogales P, et al. Tolerance to the antinociceptive and antiexudative effects of morphine in a murine model of peripheral inflammation [J]. J Pharmacol Exp Ther, 2007, 322(1):360-368.
    [45] Liang DY, Guo T, Liao G, et al. Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence [J].Pain, 2006, 121(3):232-240.
    [46] Ibuki T, Marsala M, Masuyama T, et al. Spinal amino acid release and repeated withdrawal in spinal morphine tolerant rats[J]. Br J Pharmacol, 2003,138(4): 689-97.
    [47] Srivastava RK, Gombar KK, Kaur AH, et al. Attenuation of morphine-induced antinociception by L-glutamic acid at the spinal site in rats [J]. Can J Anaesth, 1995, 42(6):541-546.
    [48] van Praag H, Frenk H. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes [J]. Brain Res, 1990,524(1): 101-105.
    [49] Skyba DA, Lisi TL, Sluka KA. Excitatory amino acid concentrations increase in the spinal cord dorsal horn after repeated intramuscular injection of acidic saline [J]. Pain, 2005, 119(1-3):142-149.
    [50] Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate [J]. Science, 1969, 164(880):719-721.
    [51] Curtis DR, Phillis JW, Watkins JC. The chemical excitation of spinal neurones by certain acidic amino acids [J]. J Physiol, 1960, 150:656-682.
    [52] Wu GJ, Wen ZH, Chen WF, et al. The effect of dexamethasone on spinal glutamine synthetase and glutamate dehydrogenase expression in morphine-tolerant rats [J]. Anesth Analg, 2007, 104(3):726-730.
    [53] Jang JH, Kim DW, Sang Nam T, et al. Peripheral glutamate receptors contribute to mechanical hyperalgesia in a neuropathic pain model of the rat [J].Neuroscience, 2004, 128(1):169-176.
    [54] Zeng J, Thomson LM, Aicher SA, et al. Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats [J].J Neurosci, 2006, 26(46):12033-12042.
    [55] Chen L, Huang LY. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation[J]. Nature, 1992,356(6369):521-523.
    [56] Wong CS, Chang YC, Yeh CC, et al. Loss of intrathecal morphine analgesia in terminal cancer patients is associated with high levels of excitatory amino acids in the CSF [J]. Can J Anaesth, 2002, 49(6):561-565.
    [57] Jin YH, Nishioka H, Wakabayashi K, et al. Effect of morphine on the release of excitatory amino acids in the rat hind instep: Pain is modulated by the interaction between the peripheral opioid and glutamate systems [J].Neuroscience, 2006,138(4):1329-1339.
    [58] Weng HR, Aravindan N, Cata JP, et al. Spinal glial glutamate transporters downregulate in rats with taxol-induced hyperalgesia [J]. Neurosci Lett, 2005,386(1):18-22.
    [59] Tawfik VL, Regan MR, Haenggeli C, et al. Propentofylline-induced astrocyte modulation leads to alterations in glial glutamate promoter activation following spinal nerve transection [J]. Neuroscience, 2008, 152(4):1086-1092.
    [60] Niederberger E, Schmidtko A, Coste O, et al. The glutamate transporter GLAST is involved in spinal nociceptive processing [J]. Biochem Biophys Res Commun, 2006, 346(2):393-399.
    [61] Niederberger E, Schmidtko A, Rothstein JD, et al. Modulation of spinal nociceptive processing through the glutamate transporter GLT-1 [J].Neuroscience, 2003,116(1):81-87.
    [62] Ozawa T, Nakagawa T, Shige K, et al. Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal [J]. Brain Res, 2001, 905(1-2):254-258.
    [63] Yang L, Wang S, Sung B, et al. Morphine induces ubiquitin-proteasome activity and glutamate transporter degradation [J]. J Biol Chem, 2008,283(31):21703-21713.
    [64] Mao J, Sung B, Ji RR, et al. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci, 2002, 22(18):8312-8323.
    [65] Tai YH, Wang YH, Wang JJ, et al. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats [J]. Pain, 2006, 124(1-2):77-86.
    [66] Danbolt NC. Glutamate uptake [J]. Prog Neurobiol, 2001, 65(1):1-105.
    [67] Rosas S, Vargas MA, Lopez-Bayghen E, et al. Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1 [J]. J Neurochem,2007, 101(4):1134-1144.
    [68] Schlag BD, Vondrasek JR, Munir M, et al. Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons [J].Mol Pharmacol, 1998, 53(3):355-369.
    [69] Newton PM, Kim JA, McGeehan AJ, et al. Increased response to morphine in mice lacking protein kinase C epsilon [J]. Genes Brain Behav, 2007,6(4):329-338.
    [70] Hamabe W, Yamane H, Harada S, et al. Involvement of kappa opioid receptors in the inhibition of receptor desensitization and PKC activation induced by repeated morphine treatment [J]. J Pharm Pharmacol, 2008,60(9):1183-1188.
    [71] Susarla BT, Robinson MB. Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester [J]. Neurochem Int, 2008,52(4-5):709-722.
    [72] Yun JY, Park KS, Kim JH, et al. Propofol reverses oxidative stress-attenuated glutamate transporter EAAT3 activity: evidence of protein kinase C involvement [J]. Eur J Pharmacol, 2007, 565(1-3):83-88.
    [73] Beckman ML, Bernstein EM, Quick MW. Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A [J]. J Neurosci, 1998,18(16):6103-6112.
    [74] Fournier KM, Robinson MB. A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery [J]. Neurochem Int, 2006,48(6-7):596-603.
    [75] Ikeda H, Heinke B, Ruscheweyh R, et al. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia [J]. Science, 2003, 299(5610):1237-1240.
    [76] Liu YP, Yang CS, Tzeng SF. Inhibitory regulation of glutamate aspartate transporter (GLAST) expression in astrocytes by cadmium-induced calcium influx [J]. J Neurochem, 2008, 105(1):137-150.
    [77] Lievens JC, Salin P, Had-Aissouni L, et al. Differential effects of corticostriatal and thalamostriatal deafferentation on expression of the glutamate transporter GLT1 in the rat striatum [J]. J Neurochem, 2000,74(3):909-919.
    [78] Grewer C, Gameiro A, Zhang Z, et al. Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia [J]. IUBMB Life, 2008, 60(9):609-619.
    [79] Muscoli C, Cuzzocrea S, Ndengele MM, et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice [J]. J Clin Invest, 2007,117(11):3530-3539.
    [80] Muscoli C, Mollace V, Wheatley J, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate-mediated hyperalgesia [J]. Pain, 2004,111(1-2):96-103.
    [81] Trotti D, Rossi D, Gjesdal O, et al. Peroxynitrite inhibits glutamate transporter subtypes [J]. J Biol Chem, 1996,271(11):5976-5979.
    [82] Xu NJ, Bao L, Fan HP, et al. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses [J]. J Neurosci, 2003, 23(11):4775-4784.
    [83] Waxman EA, Baconguis I, Lynch DR, et al. N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1 [J]. J Biol Chem, 2007, 282(24): 17594-17607.
    [84] Chiang CY, Li Z, Dostrovsky JO, et al. Glutamine uptake contributes to central sensitization in the medullary dorsal horn [J]. Neuroreport, 2008,19(11):1151-1154.
    
    [85] Nie H, Weng HR. Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn[J]. J Neurophysiol, 2009, 101(4):2041-2051.
    [86] Weng HR, Chen JH, Cata JP. Inhibition of glutamate uptake in the spinal cord induces hyperalgesia and increased responses of spinal dorsal horn neurons to peripheral afferent stimulation [J]. Neuroscience, 2006,138(4):1351-1360.
    [87] Liaw WJ, Stephens RL, Jr., Binns BC, et al. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord [J]. Pain,2005, 115(1-2):60-70.
    [88] de Yebra L, Malpesa Y, Ursu G, et al. Dissociation between hippocampal neuronal loss, astroglial and microglial reactivity after pharmacologically induced reverse glutamate transport [J]. Neurochem Int, 2006, 49(7):691-697.
    [89] Azbill RD, Mu X, Springer JE. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes [J]. Brain Res, 2000, 871(2):175-180.
    [90] Nakagawa T, Ozawa T, Shige K, et al. Inhibition of morphine tolerance and dependence by MS-153, a glutamate transporter activator [J]. Eur J Pharmacol,2001,419(1):39-45.
    [91] Coderre TJ, Kumar N, Lefebvre CD, et al. A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain [J]. J Neurochem, 2007,100(5):1289-1299.
    [92] Ray SB, Gupta YK, Wadhwa S. Expression of opioid receptor-like 1 (ORL1) & mu opioid receptors in the spinal cord of morphine tolerant mice [J]. Indian J Med Res, 2005, 121(3): 194-202.
    [93] Ueda H, Yamaguchi T, Tokuyama S, et al. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene [J]. Neurosci Lett, 1997, 237(2-3):136-138.
    [94] Yuan L, Han Z, Chang JK, et al. Accelerated release and production of orphanin FQ in brain of chronic morphine tolerant rats [J]. Brain Res, 1999,826(2):330-334.
    [95] Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMD A receptors [J].Mol Neurobiol, 2007, 35(3):224-235.
    [96] Ernfors P, Bengzon J, Kokaia Z, et al. Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis [J]. Neuron,1991,7(1):165-176.
    [97] Zafra F, Castren E, Thoenen H, et al. Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons [J]. Proc Natl Acad Sci U S A, 1991,88(22):10037-10041.
    [98] Ernfors P, Bramham CR. The coupling of a trkB tyrosine residue to LTP [J].Trends Neurosci, 2003, 26(4): 171-173.
    [99] Akbarian S, Rios M, Liu RJ, et al. Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons [J]. J Neurosci,2002,22(10):4153-4162.
    [100] Taylor S, Srinivasan B, Wordinger RJ, et al. Glutamate stimulates neurotrophin expression in cultured Muller cells [J]. Brain Res Mol Brain Res,2003, 111(1-2):189-197.
    [101] Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression [J]. Nature,2005,433(7021):73-77.
    [102] Tai YH, Wang YH, Tsai RY, et al. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats [J]. Pain, 2007, 129(3):343-354.
    [103] Chen YL, Law PY, Loh HH. The other side of the opioid story: modulation of cell growth and survival signaling [J]. Curr Med Chem, 2008,15(8):772-778.
    [104] Tramullas M, Martinez-Cue C, Hurle MA. Chronic administration of heroin to mice produces up-regulation of brain apoptosis-related proteins and impairs spatial learning and memory [J]. Neuropharmacology, 2008, 54(4):640-652.
    [105] Hatsukari I, Hitosugi N, Ohno R, et al. Induction of apoptosis by morphine in human tumor cell lines in vitro [J]. Anticancer Res, 2007, 27(2):857-864.
    [106] Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival—unraveling mechanisms and revealing new indications [J]. Pharmacol Rev, 2004, 56(3):351-369.
    [107] Hsiao PN, Chang MC, Cheng WF, et al. Morphine induces apoptosis of human endothelial cells through nitric oxide and reactive oxygen species pathways [J]. Toxicology, 2009, 256(1-2):83-91.
    [108] Domingues A, Cunha Oliveira T, Laco ML, et al. Expression of NR1/NR2B N-methyl-D-aspartate receptors enhances heroin toxicity in HEK293 cells [J].Ann N YAcad Sci, 2006, 1074:458-465.
    [109] Husson I, Mesples B, Medja F, et al. Methylphenidate and MK-801, an N-methyl-d-aspartate receptor antagonist: shared biological properties [J].Neuroscience, 2004, 125(1):163-170.
    [110] Ghelardini C, Galeotti N, Vivoli E, et al. Molecular interaction in the mouse PAG between NMDA and opioid receptors in morphine-induced acute thermal nociception[J]. J Neurochem, 2008, 105(1):91-100.
    [111] Whiteside GT, Munglani R. Cell death in the superficial dorsal horn in a model of neuropathic pain [J]. JNeurosci Res, 2001, 64(2): 168-173.
    [112] Evstratova AA, Mironova EV, Dvoretskova EA, et al. Apoptosis and the Receptor Specificity of Its Mechanisms During the Neurotoxic Action of Glutamate [J]. Neurosci Behav Physiol, 2009, 39(4):353-362.
    [113] Sensi SL, Yin HZ, Weiss JH. Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production [J].Neuroreport, 1999, 10(8):1723-1727.
    [114] Pereira CF, Oliveira CR. Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis [J]. Neurosci Res, 2000, 37(3):227-236.
    [115] Himi T, Ikeda M, Yasuhara T, et al. Oxidative neuronal death caused by glutamate uptake inhibition in cultured hippocampal neurons [J]. J Neurosci Res, 2003, 71(5):679-688.
    [116] Gouix E, Leveille F, Nicole O, et al. Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation [J]. Mol Cell Neurosci, 2009, 40(4):463-473.
    [117] Matsuura S, Ikegaya Y, Yamada MK, et al. Endothelin downregulates the glutamate transporter GLAST in cAMP-differentiated astrocytes in vitro [J].Glia,2002,37(2):178-182.
    [118] Fukamachi S, Furuta A, Ikeda T, et al. Altered expressions of glutamate transporter subtypes in rat model of neonatal cerebral hypoxia-ischemia [J].Brain Res, 2001, 132(2):131-139.
    [119] Koeberle PD, Bahr M. The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS [J]. Cell Death Differ, 2008,15(3):471-483.
    [120] Kiyama H, Kiryu-Seo S. [Multiple functions of glutamate transporter EAAC1 in motor neurons][J]. Brain Nerve, 2007, 59(12):1325-1332.
    [121] Joseph EK, Levine JD. Caspase signalling in neuropathic and inflammatory pain in the rat [J]. Eur J Neurosci, 2004,20(11):2896-2902.
    [122] Siniscalco D, Fuccio C, Giordano C, et al. Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain[J].Pharmacol Res, 2007, 55(2):158-166.
    [123] Maione S, Siniscalco D, Galderisi U, et al. Apoptotic genes expression in the lumbar dorsal horn in a model neuropathic pain in rat [J]. Neuroreport, 2002,13(1):101-106.
    
    [124] Kamiya H, Zhangm W, Sima AA. Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats[J]. Diabetes, 2005,54(11):3288-3295.
    
    [125] Moore KA, Kohno T, Karchewski LA, et al. Partial peripheral nerve injury promotes a selective loss of GAB Aergic inhibition in the superficial dorsal horn of the spinal cord [J]. J Neurosci, 2002, 22(15):6724-6731.
    
    [126] Eaton MJ, Plunkett JA, Karmally S, et al. Changes in GAD- and GABA-immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors [J]. J Chem Neuroanat, 1998, 16(1):57-72.
    
    [127] Zimmermann M. Pathobiology of neuropathic pain [J]. Eur J Pharmacol, 2001,429(1-3):23-37.
    [128]Woolf CJ, Shortland P, Coggeshall RE.Peripheral nerve injury triggers central sprouting of myelinated afferents [J].Nature, 1992, 355(6355):75-78.
    [1] Nishikawa K, Tanobe K, Hinohara H, et al. Molecular mechanism of morphine tolerance and biological approaches to resolve tolerance [J]. Masui, 2004,53(5):502-507.
    [2] Jhamandas KH, Marsala M, Ibuki T, et al. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine [J]. J Neurosci, 1996,16(8):2758-2766.
    [3] Li R, Huang FS, Abbas AK, et al. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity [J]. BMC Neurosci, 2007,8:55-66.
    [4] Sandkuhler J.Understanding of LTP in pain pathways [J]. Mol Pain, 2007,3:9-17.
    [5] Ikeda H, Heinke B, Ruscheweyh R, et al. Synaptic plasticity in spinal lamina Iprojection neurons that mediate hyperalgesia [J].Science, 2003, 299:1237-1240.
    [6] Zeng J, Thomson LM, Aicher SA, et al. Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats [J]. J Neurosci, 2006, 26(46): 12033-12042.
    [7] Wen ZH, Chang YC, Cherng CH, et al. Increasing of intrathecal CSF excitatory amino acids concentration following morphine challenge in morphine-tolerantrats [J]. Brain Res, 2004, 995(2):253-259.
    [8] Mao J, Sung B, Ji RR, et al. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity [J]. J Neurosci, 2002, 22(18):8312-8323.
    [9] Fundytus ME. Glutamate receptors and nociception: implications for the drug treatment of pain [J]. CNS Drugs, 2001, 15(1):29-58.
    [10]Inone M, Mishina M, Ueda H. Locus-specific rescue of GluRepsilonl NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence[J]. J Neurosci, 2003, 23(16):6529-6536.
    [11]Bryant CD, Roberts KW, Byun JS, et al. Morphine analgesic tolerance in 129P3/J and 129S6/SvEv mice [J]. Pharmacol Biochem Behav, 2006, 85(4):769-779.
    [12]Inturrisi CE. The role of N-methyl-D-aspartate (NMDA) receptors in pain and morphine tolerance [J]. Minerva Anestesiol, 2005, 71(7-8):401-403.
    [13]Mao J, Sung B, Ji RR, et al. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism [J]. J Neurosci,2002,22(17):7650-7661.
    [14]Ueda H. Anti-opioid systems in morphine tolerance and addiction-locus-specific involvement of nociceptin and the NMDA receptor [J]. Novartis Found Symp,2004,261:155-162.
    [15] Craft RM, Lee DA. NMDA antagonist modulation of morphine antinociception in female vs. male rats [J]. Pharmacol Biochem Behav, 2005, 80(4):639-649.
    [16]Kotlinska J. Are glycineB sites involved in the development of morphine tolerance [J]. Pol J Pharmacol, 2004, 56(1):51-57.
    [17]Zhao M, Joo DT. Subpopulation of dorsal horn neurons displays enhanced N-methyl-D-aspartate receptor function after chronic morphine exposure [J].Anesthesiology, 2006, 104(4):815-825.
    [18]Zhu H, Barr GA. The role of AMPA and metabotropic glutamate receptors on morphine withdrawal in infant rats [J]. Int J Dev Neurosci, 2004,22(5-6):379-395.
    [19]More JC, Nistico R, Dolman NP. Characterisation of UBP296: a novel, potent and selective kainate receptor antagonist [J]. Neuropharmacology, 2004,47(1):46-64.
    [20]Dolan S, Nolan AM. Behavioral evidence supporting a diferential role for spinal group I and II metabotropic glutamate receptors in inflammatory hyperalgesia in sheep [J]. Neuropharmacology, 2002, 43(3):319-326.
    [21] Sharif RN, Osborne M, Coderre TJ, et al. Attenuation of morphine tolerance after antisense oligonucleotide knock-down of spinal mGluRl [J]. Br J Pharmacol,2002, 136(6):865-872.
    [22]Narita M, Suzuki M, Narita M, et al.Involvement of spinal metabotropic glutamate receptor 5 in the development of tolerance to morphine-induced antinociception[J].J Neurochem, 2005, 94(5):1297-1305.
    [23]Thomson LM, Zeng J, Terman GW.Differential effect of glutamate transporter inhibition on EPSCs in the morphine naive and morphine tolerant neonatal spinal cord slice[J].Neurosci Lett, 2006, 407(1):64-69.
    [24]Wu GJ, Wen ZH, Chen WF,et al.The effect of dexamethasone on spinal glutamine synthetase and glutamate dehydrogenase expression in morphine-tolerant rats[J].Anesth Analg, 2007, 104(3):726-730.
    [25]Shimoyama N, Shimoyama M, Davis AM, et al.An antisense oligonucleotide to the N-methy1-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance[J].J Pharmacol Exp Ther, 2005, 312(2):834-840.
    [26]Tai YH, Wang YH, Tsai RY,et al.Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats [J].Pain, 2007, 129(3):343-354.
    [27]Tanabe M, Murakami H, Honda M,et al.Gabapentin depresses C-fiber-evoked field potentials in rat spinal dorsal horn only after induction of long-term potentiation[J].Exp Neurol, 2006, 202(2):280-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700