高胆固醇血症肾损害的机制及辛伐他汀的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平的不断提高,高脂血症的发生率不断升高,脂质异常对肾脏的损害作用日益为人们所重视,脂质异常是肾脏损害进展的独立危险因素,已经证实食源性高胆固醇血症大鼠有蛋白尿的发生及肌酐清除率的下降,肾脏病理显示除肾小球外,小管及小管间质损害亦较突出,表现为肾小管上皮细胞肥大,炎性细胞浸润,细胞因子产生,小管间质纤维化,我科既往的实验已证实OX-LDL可通过P13K通路诱导肾小管上皮细胞肥大,他汀类药物可抑制这种作用,高胆固醇血症大鼠肾小管损伤明显,有OPN和MCP-1表达,但脂质引起小管上皮细胞损伤的具体机制仍尚不十分清楚。
     诸多研究表明肾小管上皮细胞发生转分化是肾小管间质纤维化进展的主要机制,但脂质是否可通过诱导肾小管上皮细胞转分化导致肾小管间质纤维化还罕有报道。
     Sawamura首先在牛内皮细胞上发现LOX-1是一种ox-LDL受体,后来相继在巨噬细胞、血管平滑肌细胞、单核细胞、培养的大鼠和人软骨细胞、人INT-407肠细胞等多种细胞中都发现有LOX-1表达,在这些细胞中LOX-1可介导ox-LDL的摄取与降解,还可作为一种粘附分子,参与细胞-细胞间的相互作用和黏附,参与炎症发生。已经发现LOX-1与动脉粥样硬化、缺血再灌注、心肌梗塞、类风湿性关节炎和骨关节炎等多种疾病有关,而抗LOX-1治疗可逆转病理损害,认为LOX-1可能是多种疾病治疗的一个新的靶点。极少数的有关LOX-1和肾脏的研究也提示LOX-1可能在慢性肾脏疾病进展中起作用,但肾小管上皮细胞是否有LOX-1表达尚有争议,是否被OX-LDL上调并介导其进入细胞内并进一步导致肾小管损伤以及其可能的机制尚需进一步研究。他汀类药物是羟甲基戊二酰辅酶A还原酶抑制剂,一方面通过降低总胆固醇和低密度胆固醇保护肾脏,另一方面体内体外实验证实它还有降脂以外的肾保护作用,机制亦不是十分清楚。为探讨以上问题,本课题分为四个部分:第一部分主要探讨肾小管上皮细胞表达LOX-1的水平及氧化低密度脂蛋白的诱导作用;第二部分探讨LOX-1和ROS在ox-LDL诱导的肾小管上皮细胞转分化的作用;第三部分探讨辛伐他汀对ox-LDL诱导的肾小管上皮细胞转分化的作用;第四部分探讨辛伐他汀对高胆固醇血症大鼠肾保护作用的机制。
     第一部分ox-LDL诱导肾小管细胞表达LOX-1
     目的:探讨肾小管上皮细胞表达LOX-1的水平及氧化低密度脂蛋白的诱导作用。
     方法:体外培养NRK-52E细胞,加入不同浓度(Oug/ml,25ug/ml,50ug/ml, 100ug/ml)的氧化低密度脂蛋白(ox-LDL)刺激24h,以及用50ug/ml ox-LDL分别孵育NRK52E细胞0h,6h,12h,24h,或先用LOX-1阻滞剂多聚肌苷酸(polyinosonic acid, polyⅠ)和爱兰苔胶(carrageenan)及N-acetyl-L-cysteine (NAC)预处理后与50ug/ml ox-LDL共同孵育24h,以实时定量PCR (realtime PCR)测定LOX-1 mRNA的表达水平,激光共聚焦和Western blotting测定LOX-1蛋白表达,油红O法检测细胞内脂质,激光共聚焦检测细胞内ROS水平。
     结果:1.激光共聚焦显示LOX-1低水平表达于正常NRK-52E细胞膜上。2.Realtime-PCR和Western blotting显示25,50,100 ug/ml ox-LDL都可以增加LOX-1mRNA转录和蛋白的表达(P<0.05),并且随刺激浓度的增加而增高,(P<0.05);50ug/ml ox-LDL 6h即可刺激NRK-52E细胞膜LOX-1 mRNA转录和蛋白的表达,并且随刺激时间延长而转录和表达增加。3.随着细胞LOX-1表达的增加,细胞内脂质增多,ROS生成增多。4. polyⅠ、carrageenan和NAC预处理后再与50ug/ml ox-LDL一起孵育,50ug/ml ox-LDL刺激的LOX-1表达、ROS生成及细胞内脂质均减少。
     结论:正常NRK-52E细胞膜低水平表达LOX-1, ox-LDL能刺激LOX-1表达增加,而LOX-1可促进细胞脂质摄入和活性氧生成。
     第二部分LOX-1和ROS在ox-LDL诱导的肾小管上皮细胞转分化中的作用
     目的:研究LOX-1和ROS在ox-LDL诱导肾小管上皮细胞转分化中的作用。
     方法:体外培养NRK-52E细胞,加入不同浓度(0ug/ml,25ug/ml,50ug/ml, 100ug/ml)的氧化低密度脂蛋白(ox-LDL)刺激24h,以及先用LOX-1阻滞剂多聚肌苷酸(polyinosonic acid, polyⅠ)和爱兰苔胶(carrageenan)及N-acetyl-L-cysteine(NAC)预处理后与50ug/ml ox-LDL共同孵育24h,以Western blotting测定a-SMA和E-cadherin表达,荧光显微镜检测a-SMA表达。
     结果:随着ox-LDL刺激浓度的增加,细胞开始表达a-SMA并逐渐增多,而E-cadherin的表达逐渐减少,细胞发生转分化。用poly I和carrageenan阻滞LOX-1表达或用抗氧化剂NAC减少ROS生成后,a-SMA和E-cadherin的变化得到部分逆转。结合第一部分,E-cadherin蛋白与LOX-1和ROS呈密切负相关,相关系数分别为-0.94和-0.82,a-SMA蛋白与LOX-1和ROS呈密切正相关,相关系数分别为0.97和0.87。
     结论:LOX-1和ROS在ox-LDL诱导肾小管上皮细胞转分化中起重要作用。
     第三部分辛伐他汀对ox-LDL诱导肾小管上皮细胞转分化作用的影响
     目的:观察辛伐他汀对ox-LDL诱导肾小管上皮细胞转分化作用的影响。
     方法:体外培养NRK-52E细胞,分为正常组(Oug/ml ox-LDL)、ox-LDL组(50ug/ml ox-LDL)、辛伐他汀组(50ug/ml ox-LDL+10μmol/L辛伐他汀),孵育24小时后以Western blotting测定LOX-1蛋白、a-SMA和E-cadherin表达,激光共聚焦检测细胞内ROS水平,荧光显微镜检测a-SMA表达。
     结果:与正常组相比,ox-LDL组NRK-52E细胞LOX-1表达增高,ROS生成增多,a-SMA并逐渐增多,而E-cadherin的表达逐渐减少,细胞发生转分化。辛伐他汀可明显抑制LOX-1表达,减少ROS生成,a-SMA和E-cadherin的变化也得到部分逆转。
     结论:辛伐他汀可能通过下调LOX-1和ROS抑制ox-LDL诱导的肾小管上皮细胞转分化。
     第四部分辛伐他汀他汀对高胆固醇血症大鼠的肾保护作用
     目的:评价辛伐他汀对高胆固醇血症大鼠的肾保护作用
     方法:将SD大鼠分为正常组、高脂组、治疗组,12周后处死。高脂组饲以高脂饮食,治疗组除高脂饮食外给予10mg·kg-·d-1的辛伐他汀灌胃,12周后观察肾小球病理形态变化;检测肾皮质丙二醛(malondialdehyde,MDA)含量、超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase GSH-Px)的活性并用免疫组化方法观察LOX-1、α-SMA和E-cadherin表达的变化。
     结果:与正常组相比,模型组的大鼠肾皮质MDA水平升高,SOD、GSH-Px、活性下降,肾小管上皮细胞LOX-1和a-SMA表达增高,E-cadherin表达下降,辛伐他汀治疗后可以降低肾皮质MDA水平的升高,增强SOD、GSH-Px活性,减少LOX-1和a-SMA,增加了E-cadherin在小管的表达,改善了肾小管上皮细胞转分化。
     结论:辛伐他汀可能通过下调LOX-1表达,降低肾皮质氧化应激水平抑制肾小管上皮细胞转分化起到保护脂质肾损害。
Dyslipidemia is the independent risk factor for the progression of renal damage. It has been confirmed that proteinuria increased and creatinine clearance rate decreased in diet-induced hypercholesteremic rats. Renal pathology disclose obvious tubule-interstitial injuries, which display with tubular epithelial cell hypertrophy, inflammatory cell infiltration, cytokine generation and tubular interstitial fibrosis, but the mechanism is unclear.
     Many research indicate that tubular epithelial-myofibroblast transdifferentiation (TEMT) is the major mechanism in the development of tubular interstitial fibrosis, However, there are few reports regarding the TEMT induced by ox-LDL.
     LOX-1 is a recently discovered specific ox-LDL receptor that is found to be expressed in macrophage, vascular smooth muscle cell, monocyte endothelial cell, cartilage cell and many other cells. It has been demonstrated that LOX-1 not only mediated the digestion and degradation of ox-LDL, but also mediate multiple pathological injuries,such as ischemia-reperfusion,injured myocardium, atherosclerosis, rheumatoid arthritis.
     A few studies on LOX-1 expression in the kidney have suggested that LOX-1 might have an effect on the development of chronic renal disease. However,there is some controversy whether the LOX-1 is expressed in the tubular epithelial cells and mediate ox-LDL into tubular epithelial cells to lead to tubule injury. Statins is a HMG-CoA reductase inhibitors.It protects kidney through decreasing TG and LDL.On the other hand,it has many lipid-lowering-independent effects which mechanism is not clear.
     To approach the above question, present study was designed as following four parts:Part I was to evaluate the expression of LOX-1 on tubular epithelial cells and the effect of ox-LDL on LOX-1 in vitro; partⅡwas to investigate the effect of oxidized low density lipoprotein receptor-1 (LOX-1) and ROS on TEMT induced by oxidized low-density lipoprotein (ox-LDL);part III was to investigate the renal protective effect of simvastatin on TEMT induced by oxidized low-density lipoprotein; Part IV was to investigate the renal protective effect of simvastatin on tubular epithelial-myofibroblast transdifferentiation (TEMT) in diet-induced hypercholesteremic rats.
     PartⅠox-LDL induce tubular epithelial cells to express LOX-1
     Objective:To evaluate in vitro the expression of LOX-1 in tubular epithelial cells and the effect of ox-LDL on LOX-1 expression.
     Methods:NRK-52E cells were incubated with ox-LDL (0,25,50,and 100ug/ml) for 24 hours or incubated with ox-LDL of 50ug/ml for 0h,6h,12h,24h or pre-treated with the chemical inhibitor of the LOX-1 receptor polyinosinic acid (polyⅠ) and carrageenan or the antioxidant N-acetyl-L-cysteine (NAC), the cells were then exposed to 50ug/ml of ox-LDL.The expression of LOX-Ⅰ, and reactive oxygen species (ROS) were analyzed by real-time PCR, western blotting, immunofluorescence and confocal laser scanning microscopy. Lipid was examined by oil red O.
     Results:1. LOX-1 was expressed on the cytomembrane of NRK-52E at low level. 2. Ox-LDL stimulated the expression of LOX-1 mRNA and protein in dose-and time-dependend manners.3. Following the increase in the LOX-1 protein level, the lipid intake and ROS generation were increased.4. Pre-treatment with polyⅠ, carrageenan or NAC could inhibit ox-LDL induced LOX-1 expression, lipid intake and ROS generation.
     Conclusion:Ox-LDL increased the expression of LOX-1 mRNA and protein in a dose-and time-dependent manners. LOX-1 can promote lipid intake and ROS generation.
     PartⅡ:Effect of LOX-1 and ROS on Oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation
     Objective:To explore the effect of LOX-1 and ROS on oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation.
     Methods:NRK-52E cells were incubated with ox-LDL (0,25,50, and 100ug/ml) for 24 hours or pre-treated with the chemical inhibitor of the LOX-1 receptor polyinosinic acid (polyⅠ) and carrageenan or the antioxidant N-acetyl-L-cysteine (NAC), the cells were then exposed to 50ug/ml of ox-LDL.The expression of a-SMA, and E-cadherin were analyzed by Western blotting and immunofluorescence.
     Results:1. Ox-LDL increased the a-SMA protein expression and decreased the E-cadherin protein expression in a dose-dependent manner from Oμg/L to 100μg/L (P<0.05).2. When LOX-1 was blocked by chemical inhibitor of the LOX-1 receptor poly I and carrageenan or ROS was inhibited by NAC,the increased a-SMA and decreased E-cadherin protein were reversed. Combined with part I, a-SMA protein has a positive relationship with LOX-1 and ROS(r=0.97,0.87), E-cadherin protein has a negative relationship with LOX-1 and ROS(r=-0.94,-0.82).
     Conclusion:LOX-1 and ROS play a vital role in oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation.
     PartⅢ:Effect of simvastatin on oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation
     Objective:To explore the effect of LOX-1 and ROS on oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation.
     Methods:NRK-52E cells were divided into three groups:control group(0ug/ml ox-LDL), ox-LDL group(50ug/ml ox-LDL), simvastatin group(50ug/ml ox-LDL+10 umol/L simvastatin). Following incubation for 24h, expression of LOX-I, a-SMA and E-cadherin and production of reactive oxygen species (ROS) were analyzed by Western blotting, immunofluorescence and confocal laser scanning microscopy.
     Results:1. Compared with control group, ox-LDL stimulated expression of LOX-1 and a-SMA and ROS generation, but inhibited expression of E-cadherin.2. Simvastatin inhibited LOX-1 expression and ROS generation. Simvastatin also reversed the increased a-SMA and the decreased E-cadherin expression (P<0.05)
     Conclusion:Simvastatin inhibited oxidized low-density lipoprotein induced tubular epithelial-myofibroblast transdifferentiation through down regulating LOX-1 and ROS.
     PartⅣ:Simvastatin inhibit tubular epithelial-myofibroblast transdifferentiation in hypercholesteremic rats through down regulation of LOX-1 and oxidative stress
     Objective:To investigate effect of Simvastatin on tubular epithelial-myofibroblast transdifferentiation in hypercholesteremic rats and the possible mechanism.
     Methods:The SD rats were divided into three groups as follows:normal group,high fat diet group and simvastatin group(rats were fed with high fat diet plus 10 mg·kg-1·d-1 simvastatin). Six rats in each group were sacrificed at 12th week. Levels of total cholesterol (TC) and triglyceride(TG) in serum were measured by enzymatic colormetric methods.The injury of renal tubulointerstitium was observed under microscope with PAS and masson staining and the expression of renal LOX-1,α-SMA and E-cadherin were determined by immunohistochemistry.In addition, the activity of antioxidant including SOD, GSH-PX and level of MDA in the cortex of kidney were measured.
     Results:1. Compared with normal group, MDA levels in the cortex of kidney was higher and SOD、GSH-Px activities in the cortex of kidney were lower in high fat diet group.2. Compared with normal group, LOX-1 and a-SMA expression were higher and E-cadherin expression were lower in renal tubular epithelial cell.3. Simvastatin could desease MDA generation and expression of LOX-1 and a-SMA, but increased SOD and GSH-Px activities and E-cadherin expression with improvement of tubular epithelial-myofibroblast transdifferentiation.
     Conclusion:Simvastatin can ameliorate tubular epithelial-myofibroblast transdifferentiation via the inhibition of LOX-1 and oxidative stress in hypercholesteremic rats.
引文
1. Moorhead JF,Chan MK,El-Nahas M,et al.Lipid nephrotoxicity in chronic progressive tubulointerstitial desease.Lancet,1982,2:1309-1311
    2. Eddy AA.Molecular basis of renal fibrosis. Pediatr Nephrol,2000,15(3-4):290-301
    3. Liu Y.Renal fibrosis:new insights into the pathogenesis and therapeutics.Kidney Int.2006,69(2):213-217
    4. Zeisberg M,Kalluri R.The role of epithelial-to-mesenchymal transition in renal fibrosis.J Mol Med.2004,82(3):175-181
    5. Strutz FM.EMT and proteinuria as progression factors.Kidney Int,2009, 75(5):475-481
    6. Rastaldi MP.Epithelial-mesenchymal transition and its implication for the development of renal tubulointerstitial fibrosis. J NephroL,2006,19(4):407-412
    7. Zheng FI.Mechanisms and therapeutic significance of epithelial-mesenchymal transition. J Med Res,2007,36(4):4-7
    8. Ruan XZ,Varghese Z,Moorhead JF.Inglammztion modifies lipid-mediated renal injury. Nephrol Dial Transplant,2003,18:27-32
    9. Saito K,Ishizaka N,Hara M,et al.Lipid accumulation and transforming growth factor-beta upregulation in the kidneys of rats administered angiotensin II.Hypertension,2005,46(5):1180-1185
    10. Proctor G,Jiang T,Iwahashi M,et al. Regulation of renal fatty acid and cholesterol metabolism,inflammation,and fibrosis in Akira and OVE26 mice with type 1 diabetes. Diabetes,2006,55(9):2502-2509
    11. Mayr M,Kiechl S,Willeit J,et al. Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Hellcobacter pylori,and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation,2002,102:833-839
    12. Li L,Sawamura T,Renier G.Glucose enhances human macrophage LOX-1 expression:role for LOX-1 in glucose-induced macrophage foam cell formation. Circ Res,2004,94(7):892-901
    13. Rhyu DY,Yang Y,Ha H,et al.Role of reactive oxygen species in TGF-β1-induced MAPK activation and epithelial-mesenchymal tran sition in renal tubular epithelial cells. J Am Soc Nephrol,2005,16:667-675
    14. Lee HB,Yu MR,Yang Y,et al.Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol,2003,14(8 Suppl 3):241-245
    15. Hunjoo HA,Hi BL/Reactive Oxygen Species and Matrix Remodeling in Diabetic Kidney. J Am Soc Nephrol,2003,14:S246-S249
    16. Aihua Z, Zhanjun J, Xiaohua G, et al. Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Renal Physiol,2007,293: F723-F731
    17. Dong Y R,Yanqiang Y,Hunjoo H,et al.Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells.J Am Soc Nephrol, 2005,16:667-675
    18. Kunjathoor VV,Febbraio M,Podrez EA,et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.J Biol Chem,2002,277(51): 49982-49988
    19. Jalkanen J,Leppanen P,Narvanen O,et al.Adenovirus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor(SR-AI) Iin LDLreceptor knock-out mice. Athersclerosis,2003,169(1):95-103
    20. Ohki I,Ishigaki T,Oyama T,et al.Crystal structure of human lectin-like oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OX-LDL.Structure,2005,13(6):905-917
    21. Okamura DM, Lopez-Guisa JM, Koelsch K, et al. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol,2007,293(2):F575-85
    22. Naohiko K,Kazuyoshi H,Akihiro T,et al.Eplerenone Shows Renoprotective Effect by Reducing LOX-1-Mediated Adhesion Molecule, PKCε-MAPKp90RSK,and Rho-Kinase Pathway. Hypertension,2005,45:538-544
    23. Kobayashi N,Hara K,Tojo A,et al.Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKC epsilon-MAPK-p90RSK,and Rho-kinase pathway. Hypertension,2005,45:538-544
    24.朱惠莲,唐志红,夏敏等.LOX-1介导OX-LDL诱导的血管内皮细胞MCP-1的表达。 中国病理生理杂志,21(7):1249-1254
    25. Chu G,Jia R,Yang D.Fluvastatin prevents oxidized low-density lipoprotein-induced injury of renal tubular epithelial cells by inhibiting the phosphatidylinositol 3-kinase/Akt-signaling pathway. J Nephrol,2006,19(3):286-95
    26.王瑞,贾汝汉,刘红燕等.辛伐他汀对脂质肾损害大鼠骨调素和单核细胞趋化蛋白表达的影响。中华老年医学杂志,2004,23(1):37-40
    27. Stefan P, Holger S, Mhnaz B. Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Patho 1,2004,164:2175-2187
    28. Sawamura T,Kume N,Aoyama T,et al.An endothelial receptor for oxidized low-density lipoprotein. Nature,1997,386:73-77
    29. Lu J,Yang J-H,Burns AR,et al.Mediation of electronegative low-density lipoprotein signaling by LOX-1. A possible mechanism of endothelial apoptosis.Circ Res,2009,104:619-627
    30. Sakamoto N,Ishibashi T,Sugimoto K,et al.Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol,2009,220:706-715
    31. Sangle GV,Zhao R,Shen GX:Transmembrane signaling pathway mediates oxidized low-density lipoprotein-induced expression of plasminogen activator inhibitor-1 in vascular endothelial cells.Am J Physiol Endocrinol Metab,2008,295:1243-1245
    32. Sugimoto K,Ishibashi T,Sawamura T,et al.LOX-1-MT1-MMP axis is crucial for RhoA and Racl activation induced by oxidized low-density lipoprotein in endothelial cells.Cardiovasc Res,2009,84(1):127-136
    33. Mehta JL, Chen J,Hermonat PL,et al:Lectin-like, oxidized low-density lipoprotein receptor-1(LOX-1):a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res,2006,69:36-45
    34. Mthta JL,Sanada N,Hu CP,et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res,2007,100:1634-1642
    35. Hu C,Dandapat A,Chen J,et al.LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion. Cardiovasc Res,2007,76: 292-302
    36. Ishino S,Mukai T,Kume N,et al. Lectin-like oxidized LDL receptor-1(LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull,2008,31:1475-1482
    37. Jesus HD,Jawahar LM,Dayuan L,et al.Anti-LOX-1 therapy in rats with diabetes and dyslipidemia:ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol,2008,294:F110-F119
    38. Iwanq M,Plieth D,Danoff TM.Evidence that fibroblasts derive from epithelium during tissue fibrosis.J Clin Invest,2002,110:341-350
    39. Kallui R,Neilson EG.Epithelial-mesenchymal transition and its implications forfibrosis. J Clin Ivest,2003,112:1776-1784
    40. Zhang A,Jia Z, Guo X, et al. Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Renal Physiol,2007,293:F723-731
    41.王国勤,邹和群, 黎敏等.低密度脂蛋白和氧化低密度脂蛋白诱导人肾小管上皮细胞转分化的通路研究。中华肾脏病杂志,2006,22:43-47
    42. Inumaru J, Nagano O, Takahashi E, et al. Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress.Genes Cells, 2009,14:703-716
    43. Epstein M,Campese VM.Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. Am J Kidney Dis,2005,45(1): 2-14
    44. Stephanie K,Susanne K,Yingrui, WR,et al. Rosuvastatin is additive to high-dose candesartan in slowing progression of experimental mesangioproliferative glomerulosclerosis. Am J Physiol Renal Physiol,2008,294:F801-F811
    45. Renal Protection (UK-HARP-I) Study:biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am J Kidney Dis,2005,45(3):473-484
    46. Li H,Li X,Duan L,et al. Inhibition of lovastatin on proliferation and expression of proinflammatory cytokined in cultured human glomerular mesangial cells. Chin Med J,2003,116:1366-1369
    47. Chi YS,Bong CK, Hyun SL.Lovastatin inhibits oxidized low-density lipoproteininduced plasminogen activator inhibitor and transforming growth factor-β1 expression via a decrease in Ras/extracellular signal-regulated kinase
    activity in mesangial cells. Translational Research,2008,151:27-35
    48. Ming-Sheng Z,Ivonne HS,Edgar A J,et al. Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-β, and fibronectin with concomitant increase in nitricoxide bioavailability.Am J Physiol Renal Physiol,2008,295: F53-F59
    49. Romagnani P,Lasagni L,Mazzinghi B,et al. Pharmacological modulation of stem cell function. Curr Med Chem,2007,14(10):1129-1139
    50. Walter DH,Dimmeler S,Zeiher AM.Effects of statins on endothelium and endothelial progenitor cell recruitment. Semin Vasc Med,2004,4(4):385-393
    51. Marwali MR,Hu CP,Mohandas B,et al.Modulation of ADP-Induced Platelet Activation by Aspirin and Pravastatin:Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1, Nitric Oxide, Oxidative Stress, and Inside-Out Integrin Signaling.JPET,2007,322:1324-1332
    52. Blanco-Colio LM,Tunon J,Martin-Ventura JL.Anti-inflammatory and immunomodulatory effects of statins. Kidney Int,2003,63(1):12-23
    53. Bussolati B,Deregibus MC,Fonsato V,et al. Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT signaling pathway. J Am Soc Nephrol,2005,16(7):1936-1947
    54. Ruprrez M,Rodrigues-Diez R,Blanco-Colio LM,et al.HMG-CoA reductase inhibitors decrease angiotensin Ⅱ-induced vascular fibrosis:role of RhoA/ROCK and MAPK pathways. Hypertension,2007,50(2):377-383
    55. Whaley-Connell A,Habibi J,Nistala R,et al.Attenuation of NADPH oxidase activation and glomerularfiltration barrier remodeling with statin treatment. Hypertension,2008,51:474-480
    56. Patel S,Mason RM,Suzuki J,et al.Inhibitory effect of statins on renal epithelial-to-mesenchymal transition. Am J Nephrol,2006,26(4):381-387
    57.杜晓刚,甘华,吕智美.辛伐他汀对高脂血症大鼠肾小管间质病变及其ILK表达的影响。中国病理生理杂志,2009,25(9):1791-1795
    58.刘茂东,李英,张艳玲等.氟伐他汀对糖尿病大鼠肾脏组织megsin表达的影响。中国全科医学,2009,12:1045-1048
    59. Chi YS,Bong CK,Hyun SL.Lovastatin inhibits oxidized low-density lipoproteininduced plasminogen activator inhibitor and transforming growth factor-β1 expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells. Translational Research,2008,151:27-35
    1. Sawamura T, Kume N, Aoyama T, et al.An endothelial receptor for oxidized low-density lipoprotein. Nature,1997,386:73-77
    2. Yamanaka S, Zhang XY, Miura K,Kim S, et al. The human gene encoding the lectin-type oxidized LDL receptor (OLR1) is a novel member of the natural killer gene complex with a unique expression profile. Genomics,1998,54:191-199
    3. Chen J, Liu Y, Liu H, et al. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcriptional regulation by Oct-1 in human endothelial cells: implications for atherosclerosis. Biochem J,2006,393(Pt 1):255-265
    4. Chen J, Liu Y, Liu H, et al.Molecular dissection of angiotensin Ⅱ-activated human LOX-1 promoter. Arterioscler Thromb,Vasc Biol,2006,26(5):1163-1168
    5. Nagase M, Abe J, Takahashi K, et al. Genomicorganization and regulation of expression of the lectin-like oxidized low-density lipoproteinreceptor (LOX-1) gene. J Biol Chem,1998; 273 (50):33702-33707
    6. Aoyama T, Sawamura T, Furutani Y,et al. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J,1999,339:177-184
    7. Miki N, Shigehisa H, Toshiro F. Unique repetitive sequence and unexpected regulation of expression of rat endothelial receptor for oxidized low-density lipoprotein (LOX-1) [J]. B iochem J,1998,330:1417-1422
    8. Miki N, Shigehisa H, Tatsuya S, et al. Enhanced expression of endothelial oxidized low-density lipoprotein receptor (LOX-1) [J]. Biochem Biophys Res Commun, 1997,237:496-498
    9. Chen M, Narumiya S, Masaki T, et al. Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding. Biochem J,2001,355:289-296
    10. Kume N,Murase T,Moriwaki H, et al. Inducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells [J]. Circ Res,1998,83 (3):322-327
    11. Hoshikawa H, Swamura T, Kakutani M, et al. High affinity binding of oxidized LDL to mouse lectin-like oxidized LDL receptor (LOX-1). Biophys Res Commun, 1998,245(3):841-846
    12. Kuban RJ, Wiesner R, Rathman J, et al. The iron ligand sphere geometry of mammalian 15-lipoxygenases. Biochem J,1998,332 (1):237-242
    13. Xie Q, Matsunaga S, Shi X,et al.Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor.Protein Expr Purif,2003, 32(1):68-74
    14. Shi X, Niimi S, Ohtani T, Machida S. Characterization of residues and sequences of the carbohydrate recognition domain required for cell surface localization and ligand binding of human lectin-like oxidized LDL receptor. J Cell Sci,2001,114: 1273-1282
    15. Chen M, Inoue K, Narumiya S, et al. Requirements of basic amino acid residues within the lectin-like domain of LOX-1 for the binding of oxidized low-density lipoprotein. FEBS Lett,2001,499:215-219
    16. Park H, Adsit FG, Boyington JC. The crystal structure of the human oxidized low density lipoprotein receptor Lox-1. J Biol Chem,2005; 280:13593-13599
    17. Kataoka H, Kume N, Miyamoto S, et al. Biosynthesis and post-translational processing of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). N-linked glycosylation affects cell-surface expression and ligand binding. J Biol Chem,2000,275:6573-6579
    18. Murase T, Kume N, Kataoka H et al. Identification of soluble forms of lectin-like oxidized LDL receptor-1.Arterioscler Thromb Vasc Biol,2000,20(3):715-720
    19. Kume N, Kita T. Roles of lectin-like oxidized LDL receptor-1 and its soluble forms in atherogenesis. Curr Opin Lipidol,2001,12:419-423
    20. Hayashida K, Kume N, Murase T, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation,2005,112:812-818
    21. Xie Q, Matsunaga S, Niimi S, et al. Human lectin-like oxidized low-density lipoprotein receptor-1 functions as a dimer in living cells. DNA Cell Biol,2004, 23:111-117
    22. Moriwaki H, Kume N, Sawamura T, et al. Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low density lipoprotein. Arterioscler Thromb Vasc Biol,1998,18:1541-1547
    23. Kakutani M, Ueda M, Naruko T, et al. Accumulation of LOX-1 ligand in plasma and atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits: identification by a novel enzyme immunoassay. Biochem Biophys Res Commun, 2001,282:180-185
    24. Jono T, Miyazaki A, Nagai R, et al. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE). FEBS Lett,2002,511:170-174
    25. Mingyi C, Tomoh M, Tatsuya S. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther,2002,95:89-100
    26. Nagase M, Ando K, Nagase T, et al. Redox-sensitive regulation of LOX-1 gene expression in vascular endothelium.Biochem Biophys Res Commun,2001,281: 720-725
    27. Moriwaki H, Kume N, Kataoka H, et al. Expression of lectin-like oxidized low density lipoprotein receptor-1 in human and murine macrophages:upregulated expression by TNF-a. FEBS Lett,1998,440:29-32
    28. Aoyama T, Fujiwara H, Masaki T, et al. Induction of lectin-like oxidized LDL receptor by oxidized LDL and lysophosphatidylcholine in cultured endothelial cells. J Mol Cell Cardiol,1999,31:2101-2114
    29. Li DY, Zhang YC, Philips MI et al. Upregulation of endothelial receptor for oxidized low-density lipoprotein receptor(LOX-1) in cultured human coronary artery endothelial cells by angiotensin Ⅱtype1 receptor activation. Circ Res,1999, 84(9):1043-1049
    30. Morawietz H, Rueckschloss U, Niemann B, et al.Angiotensin Ⅱ Induces LOX-1,the Human Endothelial Receptor for Oxidized Low-Density Lipoprotein. Circulation, 1999,100:899-902
    31. Strehlow K, Wassmann S, Bohm M, et al. Angiotensin AT1 receptor over-expression in hypercholesterolaemia. Ann Med 2000;32:386-389
    32. Hu C, Dandapat A, Sun L, et al. Modulation of angiotensin Ⅱ-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension,2008,52(3):556-562
    33. Chen J, Li D, Schaefer R, et al. LCross-talk between dyslipidemia and renin- angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies with the combined use of rosuvastatin and candesartan. Atherosclerosis,2006,184(2): 295-301
    34. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells:evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol.2000,Apr;20(4):1116-1122
    35.王瑞,丁国华,刘红燕.替米沙坦对老年维持性血液透析患者胰岛素抵抗的影响.中华全科医师杂志.2009,2:129-134
    36. Hofnagel O, Luechtenborg B, Stolle K, et al.Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.2004 Oct;24(10):1789-1795
    37. Kume N, Murase T, Moriwaki H, et al. Inducible expression of lectin-like ox-LDL receptor-1 in vascular endothelial cells. Circ Res,1998,83:322-327
    38. Yang BC, Phillips MI, Mohuczy D, et al. Increased angiotensin Ⅱ type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 1998;18:1433-1439
    39. Murase T, Kune N, Korenaga R, et al.Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells.Circ Res,1998,83: 328-833
    40. Chiba Y, Ogita T, Ando K, et al. PPAR-γ ligands inhibit TNF-α-induced LOX-1 expression in cultured endothelial cells. Biochem Biophys Res Commun,2001, 286(3):541-546
    41. Michael S, Cornelia R, Christiane K, et al. Role of Endothelin-1 in Upregulation of LOX-1 Expression in Hypertensive Rats. Circulation,2008,118:S1036-S 1037.
    42. Sakurai K, Cominacini L, Garbin U,et al.Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1). J Cardiovasc Pharmacol,2004,44 S1:173-180
    43. Li DY, Yang BC, Mehta JL. Ox-LDL enhances anoxiareoxygenation-mediated apoptosis in human coronary endothelial cells:role of PKC,PTK,Bcl-2 and Fas. Am J Physiol,1998,275:H568-576
    44. Minami M, Kume N, Kataoka H, et al.Transforming growth factor-β1 increase the
    expression of lectin-like oxidized low-density lipoprotein receptor-1.Biochem Biophys ResCommun,2000,272(2):357-361
    45. Imanishi T, Hano T, Sawamura T, et al. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol,2004,31(7):407-413
    46. Nakano A, Inoue N, Sato Y,et al.LOX-1 mediates vascular lipid retention under hypertensive state.,2010,Mar 3. [Epub ahead of print]
    47. Yu J, Li Y, Li M, Qu Z, et al. Oxidized low density lipoprotein-induced transdifferentiation of bone marrow-derived smooth muscle-like cells into foam-like cells in vitro. Int J Exp Pathol,2010,91(1):24-33
    48. Catar RA, Miiller G, Heidler J, et al. Low-density lipoproteins induce the renin-angiotensin system and their receptors in human endothelial cells. Horm Metab Res. 2007 Nov;39(11):801-805
    49. Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL(LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cell:evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol,2000,20:1116-1122
    50. Parlato S, Romagnoli G, Spadaro F,LOX-1 as a natural IFN-alpha-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood,2010, 115(8):1554-1563
    51. Cominacini L, Pasini AF, Garbin U, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J Biol Chem,2000,275(17):12633-12638
    52. Cominacini L, Rigoni A, Fratta PA, Garbin U, Davoli A, Campagnola M, et al. The binding of oxidized low-density lipoprotein (ox-LDL) to ox-LDL receptor-1 in endothelial cells reduces the intracellular concentration of nitric oxide through an increased production of superoxide. J Biol Chem,2001,276:13750-13755
    53. Nishimura S, Akagi M, Yoshida K, et al. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappaB. Osteoarthritis Cartilage,2004,12: 568-576
    54. Thomas T, Jurgen B. Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury:therapy through LOX-1 receptor antagonism? Circ Res,2004,94:1-13
    55. Hofnagel O, Luechtenborg B, Stolle K, Lorkowski S, Eschert H, Robenek H. Proinflammatory cytokines regulate LOX-1 expression invascular smooth muscle cells. Arterioscler Thromb Vasc Biol,2004,24:1789-1795
    56. Honjo M, Nakamura K, Yamashiro K,et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proc Natl Acad Sci,2003,100(3):1274-1279
    57. Kielian T, Haney A, Mayes PM, et al. Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess. Infect Immun,2005,73(11):7428-7435
    58. Cominacini L, Fratta Pasini A, Garbin U, et al. The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol, 2003,41(3):499-507
    59. Kakutani M, Masaki T, Sawamura T. Aplatelet-endotheliam interaction mediated by lectin-like oxidized low-density lipoproteinreceptor-1. PNAS,2000,97(1): 360-364
    60. Li D, Liu L, Chen H, et al. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol,2003,23:816-821
    61. Li L, Sawamura T, Renier G. Glucose enhances endothelial LOX-1 expression:role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes, 2003,52:1843-1850
    62. Chen J, Mehta JL, Zhang X, et al. Role of LOX-1 in expression of apoptotic proteins and activation of caspase pathways in human coronary artery endothelial cells. Circ Res,2004,94:370-376
    63. Lu J, Yang J-H, Burns AR, et al. Mediation of electronegative low-density lipoprotein signaling by LOX-1. A possible mechanism of endothelial apoptosis. Circ Res,2009,104:619-627
    64. Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest,2001,108:1341-1348
    65. Kataoka H, Kume N, Miyamoto S, et al. Expression of lectin like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation, 1999,99:3110-3117
    66. Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci,2001,947:199-205
    67. Kakutani M, Masaki T, Sawamura T. A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci,2000, 97:360-364
    68. Kataoka H, Kume N, Miyamoto S, et al. Oxidized LDL modulates Bax/Bcl-2 through the lectin-like Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001,21:955-960
    69. Mehta JL, Li DY, Chen HJ. Inhibition of LOX-1 by statins may relate to upregulation of eNOS. Biochem Biophys Res Commun,2001,289:857-861
    70. Ishino S, Mukai T, Kume N, et al. Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability-analysis in hypercholesterolemic rabbits. Atherosclerosis,2007,195(1):48-56
    71. Nakagawa T, Akagi M, Hoshikawa H, et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis Rheum,2002,46:2486-2494
    72. Takefumi N, Tadashi Y, Hajime H, et al. LOX-1 expressed in cultured rat chondrocytes mediated oxidized LDL-induced cell death-prossible role of dephosphorylation of Akt. Biochem Biophys Res Commun,2002,299:91-97
    73. Akagi M, Kanata S, Mori S,et al. Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low-density lipoprotein receptor-1 system in pathogenesis and progression of human osteoarthritis. Osteoarthritis Cartilage,2007, 15(3):281-90
    74. Kanata S, Akagi M, Nishimura S, et al. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-gamma. Biochem Biophys Res Commun,2006,348:1003-1010
    75. Kakinuma T, Yasuda T, Nakagawa T, et al. Letin-like oxidized low-density lipoprotein receptor 1 mediates matrix metalloproteinase 3 synthesis enhanced by oxidized low-density lipoprotein in rheumatoid arthritis cartilage. Arth Rheum, 2004,50:3495-3503
    76. Li D, Williams V, Liu L, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol,2003,41:1048-1055
    77. Tatsuguchi M, Furutani M, Hinagata J, et al. Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction. Biochem Biophys Res Commun, 2003,303:247-250
    78. Puccetti L, Pasqui AL, Bruni F, et al. Lectin-like oxidized-LDL receptor-1 (LOX-1) polymorphisms influence cardiovascular events rate during statin treatment. Int J Cardiol,2007,119(1):41-47
    79. Moorhead JF, Chan MK, Nahas El, et al. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet,1982,2:1309-1311
    80. Lee HS, Song CY. Oxidized low-density lipoprotein and oxidative stress in the development of glomeruloscleros. Am J Nephrol,2009,29(1):62-70
    81. Song CY, Kim BC, Lee HS. Lovastatin inhibits oxidized low-density lipoprotein-induced plasminogen activator inhibitor and transforming growth factor-betal expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells. Transl Res,2008,151(1):27-35
    82. Liu J, Rosner MH.Lipid abnormalities associated with end-stage renal disease. Semin Dial,2006,19(1):32-40
    83. Peric-Golia L, Peric-Golia M. Aortic and renal lesions in hypercholesterolemic adult, male, virgin Sprague Dawley rats [J]. Atherosclerosis,1983,46:57-65
    84. M alden TL, Chait A, Raines EW, et al. The influence of oxidatively modified low density lipoproteins on expression of platelet2derived growth factor by human monocyte2derived macrophages[J]. J Biol Chem,1991,266:13901-13907
    85. Ozawa H. A study on experimental focal glomerular sclero sis in rats:Significance of interglomerular lipid deposition [J]. Jpn Nephrol,1991,33:97-104
    86. Diamond JR. Focal and segmental glomerulosclerosis:Analogies to atherosclerosis [J]. Kidney Int,1988,33:917-924
    87. Keane WF. Lipids and the kidney[J]. Kidney Int,1994,46:910-920
    88. Magil AB, Frohlich JJ, Innis SM, et al. Oxidized low 2density lipoprotein in experimental focal glomerulo sclerosis [J]. Kidney Int,1993,43:1243-1250
    89. Lee HS, Jeong JY, Kim BC, et al. Dietary antioxidant inhibits lipoprotein oxidation and renal injury in experimental focal segmental glomerulosclerosis [J] Kidney Int, 1997,51:1151-1159
    90. Hyun SL, Young SK. Identification of oxidized low density lipoprotein in human renal biopsies [J]. Kidney Int,1998,54:848-856
    91.杜月光,柴科夫,万海同.LOX-1诱导大鼠系膜细胞表达TGF及分泌细胞外基质.第二军医大学学报,2007,28(8):846-849
    92. Naoyuki Y, Masao T, Makiko A, et al. Lectin-Like Oxidized LDL Receptor-1 (LOX-1) Expression in the Tubulointerstitial Area Likely Plays an Important Role in Human Diabetic Nephropathy. Inter Med,2009,48:189-194
    93.李萍,张海燕,盛志业等.LOX-1在OX-LDL诱导人肾小球系膜细胞TGF-β1表达的作用.中国医科大学学报,2007,36(1):23-26
    94. Okamura DM, Lopez-Guisa JM, Koelsch K, et al. Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol,2007,293(2):F575-578
    95. Nagase M, Kaname S, Nagase T, et al. Expression of LOX-1, an Oxidized Low-Density Lipoprotein Receptor, in Experimental Hypertensive Glomerulosclerosis. J Am Soc Nephrol,2000,11:1826-1836
    96. Naohiko K, Kazuyoshi H, Akihiro T, et al. Eplerenone Shows Renoprotective Effect by Reducing LOX-1-Mediated Adhesion Molecule, PKCs-MAPK-p90RSK, and Rho-Kinase Pathway. Hypertension,2005,45:538-544
    97. Dominguez JH, Mehta JL, Li D, et al.Anti-LOX-1 therapy in rats with diabetes and dyslipidemia:ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol,2008,294:F110-F119
    98. Yamamoto N, Toyoda M, Abe M, et al. Lectin-like oxidized LDL receptor-1 (LOX-1) expression in the tubulointerstitial area likely plays an important role in human diabetic nephropathy. Intern Med,2009,48:189-194
    99. Wang L, Zhang L, Yu Y, et al. The protective effects of taurine against early renal injury ining STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren Fail,2008,30(8):763-771
    100.Tomoko U, Shinya K, Kenmei T, et al. LOX-1,an Oxidized Low-Density Lipoprotein Receptor, Was Upregulated in the Kidneys of Chronic Renal Failure Rats. Hypertens Res,2003,26(1):117-122
    101.Brasen JH, Nieminen-Kelha M, Markmann D, Malle E, Schneider W, Neumayer HH, Budde K, Luft FC, Dragun D. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1)-mediated pathway and vascular oxidative injury in older-age rat renal transplants. Kidney Int,2005,67:1583-1594
    102.Smirnova IV, Sawamura T,Goligorsky MS. Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells by nitricoxide deficiency. Am J Physiol Renal Physiol,2004,287:F25-F32
    103.Bai YP, Zhang GG, Shi RZ, et al. Inhibitory effect of reinioside C on LOX-1 expression induced by ox-LDL.Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2006,31:659-662
    104.Shibata Y, Kume N, Arai H, et al. Mulberry leaf aqueous fractions inhibit TNF-alpha-induced nuclear factor kappaB activation and lectin-like oxidized LDL receptor (LOX-1) expression in vascular endothelial cells. Atherosclerosis, 2007,193:20-27
    105.Ouslimani N, Mahrouf M, Peynet J, et al. Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidezed receptor 1. Metabolism,2007,56:308-313
    106.Wang LJ, Yu YH, Zhang LG, et al. Taurine rescues vascular endothelial dysfunction in streptozocin-induced diabetic rats:correlated with downregulation of LOX-1 and ICAM-1 expression on aortas. Eur J Pharmacol,2008,597:75-80
    107.Li DY, Chen HJ, Mehta.Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res, 2001,52:130-135
    108.Takayama M, Matsubara M, Arakawa E, et al. Comparison of the antiatherosclerotic effects of dihydropyridine calcium channel blocker and HMG-CoA reductase inhibitor on hypercholesterolemic rebbits.Vascul Pharmacol, 2007,46:302-308
    109.Mehta JL, Chen J, Yu F, et al. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells.Cardiovasc Res,2004,64:243-249
    110.Marwali MR, Hu CP, Mohandas B, et al. Modulation of ADP-induced platelet activation by aspirin and pravastatin:role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther,2007,332:1324-1332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700