人羊膜及脐带间充质干细胞与C6胶质瘤细胞分别共培养的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     脑胶质瘤是颅内最常见的肿瘤,虽然在脑胶质瘤的分子、基因方面的研究已经取得了许多进步,但患者的预后仍不满意,目前手术切除仍是脑肿瘤治疗的首选方法,但根治性切除后复发率高是影响其长期生存率的主要因素。而国内外均有文献报道显示MSCs具有抑瘤特性,本实验组在之前的研究中已经观察到hMSCs可以抑制肿瘤细胞的生长。另随着C6大鼠胶质瘤细胞系的成熟发展,研究人员认为C6胶质瘤细胞的相关性研究对于人脑胶质瘤的基础研究具有参考和指导价值。
     本实验在建立人羊膜间充质干细胞(human mesenchymal stem cells hMSCs)及人脐带间充质细胞(human umbilicalcord stem cells hUSCs)的体外培养和鉴定方法的基础上,探讨hMSCs及hUSCs对于C6胶质瘤细胞不同共培养方法培养后可能出现的结果。在本研究中,我们将通过在体外实验中分别进行hMSCs与hUSCs和C6共培养,观察hMSCs与hUSCs和C6的相互作用,进一步明确hMSCs与hUSCs对C6生长的影响的不同,以期为进一步的研究提供参考和方向的选择。
     材料与方法:无菌条件下取正常足月剖腹产胎儿的羊膜和脐带采用组织块培养法及胰酶消化法分离并于含10%胎牛血清(fetal bovine serum,FBS)的MEM/F12培养基进行培养。取P3代hMSCs及hUSCs采用免疫组织化学与流式细胞仪对其间充质干细胞表面标志CD29、CD44、HLA-ABC及CD29、CD44进行鉴定和其细胞周期判定。取P3代的hMSCs及hUSCs,配制成浓度为1.0×10~6个/ml的直接共培养工作液与1.0×10~6个稳定传代3代以上C6单细胞悬液分别采用直接共培养和间接共培养的方法进行共培养,共分5组,羊膜直接共培养组(A组),羊膜间接共培养组(B组),脐带直接共培养组(C组),脐带间接共培养组(D组),空白对照组(E组),后光镜下观察细胞生长情况,收集C6进行流式细胞测定和电镜超微结构观察。
     结果:用酶消化法分离羊膜中的MSCs,可在体外进行培养,进而通过贴壁分离法不断得到纯化。用酶消化法及组织块培养法分离脐带中的MSCs,可在体外进行培养,进而通过贴壁分离法不断得到纯化。hMSCs及hUSCs免疫细胞化学染色显示CD44和CD29均为阳性反应:hMSCs及hUSCs的细胞周期分析具有干细胞的典型周期特性,流式细胞仪检测传代hMSCs阴性对照9.39%,CD29阳性细胞比率为82.53%,CD44阳性细胞比率为90.86%,HLA-ABC阳性细胞比率为89.55%。流式细胞仪检测传代hUSCs阴性对照7.61%,CD29阳性细胞比率为70.44%,CD44阳性细胞比率为75.50%.
     透射电镜观察见C6细胞不同程度出现细胞间连接消失,观察像核分裂相减少,细胞体积缩小,细胞器空泡样变及髓样变改变,甚者出现细胞核固缩,出现典型细胞凋亡形态,对照组E组细胞仍呈旺盛生长状态。
     C6细胞中bcl-2随时间延长阳性表达率呈下降趋势,不同时间比较差异具有显著性(P<0.01);C、D两组较A、B两组阳性表达率降低趋势更为明显,且两两比较差异具有显著性(P<0.01);B、D两组较A、C两组阳性表达率降低趋势更为明显(P<0.01)。
     C6细胞随时间延长细胞平均凋亡率呈上升趋势,不同时间比较差异具有显著性(P<0.01);C、D两组较A、B两组阳性表达率上升趋势更为明显,且两两比较差异具有显著性(P<0.01);B、D两组较A、C两组阳性表达率上升趋势更为明显(P<0.01)。
     结论:
     1.Bcl-2在C6中呈高表达。
     2.hMSCs与hUSCs能够降低C6克隆团细胞之间的黏附作用。
     3.hMSCs及hUSCs与C6共培养后C6增殖能力减弱。
     4.hMSCs及hUSCs与C6共培养后C6中bcl-2的表达随时间延长呈降低趋势。
     5.hMSCs及hUSCs与C6共培养后C6细胞凋亡率随着时间延长呈上升趋势。
     6.采用间接共培养方法共培养后C6细胞bcl-2的表达降低趋势更为明显。
     7.hUSCs与C6共培养后C6细胞凋亡率表达上升趋势更为明显。
Background and Objective:
     Glioma is the most common intracranial tumor,although the elements in glioma, the study of a lot of progress has been made,but the prognosis of the patients are still not satisfied.At present surgical resection is still the preferred method of treatment, but the radical resection of the high relapse rate after the impact of its long-term survival rate is the main factor.Recently,we can fine some reports about the MSCs can depress the growing of the tumor.Our team have proved that MSCs can depress the growing of the tumor stem cells during the previous experiments.Because the C6 golima cells can be get easily and stably,so the basic research about C6 golima cells can enrich the knowledge of golima.
     This experiment in the establishment of hMSCs and hUSCs in vitro culture and identification methods on the basis of hMSCs and hUSCs to observe the probably different result which can be get by different method of co-culture between the MSCs and C6 golima cells.In this study,we will carry out in vitro seperatly with the method of co-culture between the MSCs and C6,initially found that the deferent interaction between the MSCs and C6,further defined in the choice ang reference of the next research.
     Materials and Methods:Under sterile conditions for the normal full-term fetus amniotic caesarean section and umlilicalcord,refine hMSCs and hUSCs from them, culture in containing 10%fetal bovine serum(fetal bovine serum,FBS) DMEM/F12 the culture medium with the method of explant tissue and digestion.P3 hMSCs and hUSCs from the immunohistochemistry and flow cytometry analysis:CD29,CD44 positive expression;flow cytometry test cycle with stem cell characteristics;P3 generation hMSCs and hUSCs co-culture with C6 directly and indirectly,there will be 5 groups,Direct train between hMSCs and C6(Group A),Indirect train between hMSCs and C6(Group B),Direct train between hUSCs and C6(Group C),Indirect train between hUSCs and C6(Group D),Blank control of C6(Group E),collected a total of cultured C6 for flow cytometry determination and electron-microscopic analysis.
     Results:Digestive enzymes separation of amniotic MSCs,can be cultivated in vitro and then through the wall of separation has been continuously purification.Digestive enzymes and explant tissues separation of umbilicalcord MSCs,can be cultivated in vitro and then through the wall of separation has been continuously purification.
     Immunocytochemical staining showed that CD44 and CD29of hMSCs and hUSCs are positive;the cell cycle analysis of hMSCs and hUSCs with stem cell characteristics of a typical cycle,FCM passage hMSCs negative control 9.39%,CD29 positive cells ratio was 82.53%,CD44 positive cells ratio was 90.86%,HLA-ABC positive cells ratio was 89.55 percent,hUSCs negative control7.61%,CD29 positive cells ratio was 70.44%,CD44 positive cells ratio was 75.50%.
     Under the electron-microscopic,we can find that all the four groups show the jionts tail off,the volume tail off,cellural organ denaturation,even the apoptotic body can be find,Group E grow up vigorously.
     Group A、B、C、D show that the bcl-2 postive rate of C6 reduce with the time run out,and the Group C、D will be more remarkable tha Group A、B;Group A、Cwill be more remarkable tha Group A、B;
     Group A、B、C、D show that the bcl-2 postive rate of C6 reduce with the time run out,and the Group C、D will be more remarkable tha Group A、B;Group A、Cwill be more remarkable tha Group A、B.
     Conclusions:
     1.Bcl-2 in C6 was in high expression.
     2.hMSCs and hUSCs can reduce C6-cell cloning between the role of adhesion.
     3.C6 proliferation weakened in co-culture with hMSCs and hUSCs.
     4.Bcl-2 in C6 after the co-culture will be lower with timing flow.
     5.The apoptosis rate of C6 after the co-culture will be upper with timing flow.
     6.Indirect co-culture group of C6 depressed more extremly.
     7.hUSCs depress the growing of C6 more extremly.
引文
1.Stanford WL,Caruana G,Vallis KA,et al.Expression trapping:identification of novel genes expressed in hematopoietic and endothelial lineages by gene trapping in ES cells.Blood,1998,92(12):4622-4631.
    2.Amit M,Carpenter MK,Inokuma MS,et al.Clonally derived human embryonic stem cell lines maintain pludpotency and proliferative potential for prolonged periods of culture.Dev Biol,2000,227(2):271-278.
    3.Schuldiner M,Yanuka O,Itskovitz-Eldor J,et al.Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.Proc Natl Acad Sci U S A,2000,97(21):11307-11312.
    4.Korbling M,Estrov Z.Adult stem cells for tissue repair-a new therapeutic concept? N Engl J Med,2003,349(6):570-582.
    5.Deans RJ,Moseley AB.Mesenchymal stem cells:biology and potential clinical uses[J].Exp Hematol,2000,28(8):875-884.
    6.Mackenzie TC,Flake AW.Multilineage differentiation of human MSC after in utero transplantation[J].Cytotherapy,2001,3(5):403-405
    7.Fernandez M,Simon V,Herrera G,et al.Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients.Bone Marrow Transplant,1997,20(4):265-271.
    8.Lee OK,Kuo TK,Chen WM,et al.Isolation of multipotent mesenchymal stem cells from umbilical cord blood.Blood,2004,103(5):1669-1675.
    9.Miura M,Gronthos S,Zhao M,et al.SHED:stem cells from human exfoliated deciduous teeth.Proc Natl Acad Sci,U S A,2003,100(10):5807-5812.
    10.Romanov YA,Svintsitskaya VA,Smirnov VN.Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord.Stem Cells,2003,21(1):105-110.
    11.Goodwin HS,Bicknese AR,Chien SN,et al.Multilineage differentiation activity by ceils isolated from umbilical cord blood:expression of bone,fat,and neural markers.Biol Blood Marrow Transplant,2001,7(11):581-588.
    12.Reinisch A,Bartmann C,Rohde E,et al,Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application.Regen Med.2007 Jul;2(4):371-82.
    13.Soncini M,Vertua E,Gibelli L,et al,Isolation and characterization of mesenchymal cells from human fetal membranes.J Tissue Eng Regen Med.2007Jul-Aug;1(4):296-305.
    14.Takács J,Metzger F.Morphological study of organotypic cerebellar cultures.Acta Biol Hung.2002;53(1-2):187-204.
    15.Mǘller A,Schaefer T,Linke W,et al,Actions of the antiarrhythmic peptide AAP10 on intercellular coupling.Naunyn Schmiedebergs Arch Pharmacol.1997Jul;356(1):76-82.
    16.李国喜,杨波,关方霞,等.人羊膜间质细胞的分离、培养及鉴定.郑州大学学报(医学版),2006,41(2):244-247.
    17.M.L.Weiss,C.Anderson,et al,McIntosh Immune Properties of Human Umbilical Cord Wharton's Jelly-Derived Cells Stem Cells,November 1,2008;26(11):2865-2874.
    18.S.Karahuseyinoglu,C.Kocaefe,et al,Can Functional Structure of Adipocytes Differentiated from Human Umbilical Cord Stroma-Derived Stem Cells Stem Cells,March 1,2008;26(3):682-691.
    19.D.J.Weiss,J.K.Kolls,et al,Stem Cells and Cell Therapies in Lung Biology and Lung Diseases Proceedings of the ATS,July 15,2008;5(5):637-667
    20.李远,杨波,关方霞,等.人羊膜间充质干细胞抑制大鼠C_6胶质瘤荷瘤鼠肿瘤生长的实验研究[J].中国组织工程研究及临床康复,2008,12(51):10099-10103.
    21.王珊青 徐剑炜 等 干细胞共培养的方法及其分化诱导[J].中国组织工程研究及临床康复,2007 11(11):10-12.
    22.Aquino JB,Hjerling-Leffler J,Koltzenburg M,et al,In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells.Exp Neurol.2006 Apr;198(2):438-49.
    23.Wang YF.Nan X,Li YH,et al.Induction of umbilical cord blood derived 2m c-met_cells into hepatocyte-iike cells by coculture with CFSC/HGF Cells.Liver Transpl 2005,11(6):635-643.
    24.刘新春,程玉峰,李德爱.实用抗肿瘤药物治疗学[M].北京:人民卫生出版社,2002.1.
    25.马廉廷.脑胶质瘤治疗的现状与进展[J].中华实验外科杂志,1999,(16)388-389
    26.Immonen A,Vapalahti M,Tyynela K,et al.AdvHSV-tk gene therapy with intravenousg anciclovidm provessu rvivalin human mailgnantgl ioma:a r andomised,co ntroleds tudy[J].MolT her,2004,10(5):967-972
    27.HirschbergH,So rensenD R,Angel-PetersenE,et al.Repetitive photo dynamic therapy of mailgnant brain tumor[J].J Environ Pathol Toxicol Oncol,2006,25(1-2):261-279
    28.Rosenthal MA,Kavar B,Uren S,et al.Promising survivalin padents with high--grade gilomas folowing therapy with a novel boronated porphyrin[J].J Clin N eurosci,2003,10(4):425-427
    29.Westphal M,Hilt DC,Bortey E,et al.A phase 3 trial of local chemotherapy with biodegradable carmustine(BCNU)wafers(Giladel wafers)in patients with primarym ailgnant giloma[J]Neuro Oncol,20 03,5(2):79-88
    30.A.Can and S.Karahuseyinoglu Concise Review:Human Umbilical Cord Stroma with Regard to the Source of Fetus-Derived Stem CellsStem Cells,November 1,2007;25(11):2886-2895.
    31.Cassiede P,Dennis JE,Ma EOsteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro.J Bone Miner Res.1996 Sep;11(9):1264-73.
    32.Sakaguchi Y,Sekiya I,Yagishita K,et al,Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates.Blood.2004 Nov 1;104(9):2728-35.
    33.Kitoh H,Kitakoji T,Tsuchiya H,et al,Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis--a preliminary result of three cases.Bone.2004 Oct;35(4):892-8.
    34.Haruta M,Sasai Y,Kawasaki H,et al,In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004 Mar; 45(3):1020-5.
    35. Lu YR, Yuan Y, Wang XJ, et al, The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther. 2007 Nov 14; 7(2).
    36. Shi L, Wang JS, Liu XM, Hu XY, Fang Q.Upregulated functional expression of Toll like receptor 4 in mesenchymal stem cells induced by lipopolysaccharide. Chin Med J (Engl). 2007 Oct 5; 120(19):1685-8.
    37. Schumann D, Kujat R, Nerlich M, Angele P.Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng. 2006; 16(4 Suppl):S37-52.
    38. Pap G, Furész J, Fennt J, et al.Self-regulation of neutrophils during phagocytosis is modified after severe tissue injury. Int J Mol Med. 2006 Apr;17(4):649-54.
    39. Shujia J, Haider HK, Idris NM, et al. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res. 2008 Feb 1; 77(3):525-33
    40. Youn BS, Sen A, Behie LA, Girgis-Gabardo A, Hassell JA.Scale-up of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol Prog. 2006 May-Jun; 22(3):801-10.
    41. Lu CW, Hung Y, Hsiao JK, et al, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 2007 Jan;7(1):149-54.
    42. Markov V, Kusumi K, Tadesse MG, et al, Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev. 2007 Feb; 16(1):53-73.
    43. Pasquinelli G, Tazzari P, Ricci F, et al, Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastmct Pathol. 2007 Jan-Feb; 31(1):23-31.
    44. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004 Jul 9; 95(1):9-20.
    45. Fukuchi Y, Nakajima H, Sugiyama D, et al, Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004; 22(5):649-58.
    46. Yen ML, Chien CC, Chiu IM, Huang HI, Chen YC, Hu HI, Yen BL. Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: a possible in vitro model of human mesenchymal progenitors. Stem Cells. 2007 Jan; 25(1):125-31.
    47. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al, Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004; 22(7):1338-45
    48. Chen J, Horan RL, Bramono D, et al, Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng. 2006 Nov; 12(11):3085-95.
    49. Kao CL, Lin HT, Chen YW, et al, Fibronectin suppresses lipopolysaccharide-induced liver damage and promotes the cytoprotection abilities of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells. Transplant Proc. 2007 Dec; 39(10):3444-5.
    50. Nirmalanandhan VS, Levy MS, Huth AJ, et al.Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng. 2006 Jul; 12(7):1865-72.
    51. Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells. 2006 Aug; 24(8): 1914-22.
    52. Shyu KG, Hsu FL, Wang MJ, et al, Hypoxia-inducible factor lalpha regulates lung adenocarcinoma cell invasion. Exp Cell Res. 2007 Apr 1; 313(6):1181-91.
    53. Sharma H,Sen S,Mathur M,et al.Combined evaluation of expression of telomerase,surviving,and anti-apoptotic Bcl-2 family members in relation to loss of differentiation and apoptosis in human head and neck cancers[J].Head Neck,2004,26(8):733-740.
    54. McDonald, F.E. and Ironside, et al. The prognostic influence of bcl-2 in malignant glioma. (2002) British Journal of Cancer, 86 . pp. 1899-1904. . 2004 Oct;35(4):892-8.
    55.Tsujimoto Y,Shimizu S.Bcl-2 family:life-or-death switch[J].FEBS Lett,2000,466(1):6-10.115(2):219-24.
    1.刘新春,程玉峰,李德爱.实用抗肿瘤药物治疗学[M].北京:人民卫生出版社,2002.1.
    2.马廉廷.脑胶质瘤治疗的现状与进展[J].中华实验外科杂志,1999,(16)388-389
    3.Zhao ZG,Tang XQ,Li J,Isolation and identification of chronicmyelogenous leukemia bone marrow mesenchymal stem cells and theirfunctional characteristics Zhonghua YI Xue Za Zhi,2005 Aug3;85(29):2054-7.
    4.梁蓉,黄高羿,陈协群,等。人成纤维样基质细胞系对HL-60细胞增殖和VEGF 表达的影响。中国实验血液学杂志,2003;11:476-479
    5.Amit M,Carpenter MK,Inokuma MS,et al.Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.Dev Biol,2000,227(2):271-278.
    6.Schuldiner M,Yanuka O,Itskovitz-Eldor J,et al.Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells.Proc Natl Acad Sci U S A,2000,97(21):11307-11312.
    7.Miura M,Gronthos S,Zhao M,et al.SHED:stem cells from human exfoliated deciduous teeth.Proc Natl Acad Sci,U S A,2003,100(10):5807-5812.
    8.李国喜,杨波,关方霞,等.人羊膜间质细胞的分离、培养及鉴定.郑州大学学报(医学版),2006,41(2):244-247.
    9.Goodwin HS,Bicknese AR,Chien SN,et al.Multilineage differentiation activity by cells isolated from umbilical cord blood:expression of bone,fat,and neural markers.Biol Blood Marrow Transplant,2001,7(11):581-588.
    10.Munoz-Elias G,Woodbury D,Black IB.Marrow stromal cells,mitosis,and neuronal differentiation:stem cell and precursor functions.Stem Cells.2003;21(4):437-48.
    11.Hou LL,Zheng M,Wang DM,et al,Migration and differentiation of human bone marrow mesenchymal stem cells in the rat brain Sheng Li Xue Bao.2003 Apr 25;55(2):153-9.
    12.Guo Z,Tang P,Liu X,et al,Mesenchymal Stem Cells Derived from Human Bone Marrow Support Hematopoiesis in Vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2000 Jun; 8(2):93-96.
    13. Dulac C, Le Douarin NM.Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Natl Acad Sci U S A. 1991 Jul 15; 88(14):6358-62.
    14. Ferrari RJ, Rangayyan RM, Desautels JE, et al, Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans Med Imaging. 2001 Sep; 20(9):953-64.
    15. Zhao Y, Hu P, Lu YL, et al, Re-growth of induced-osseous tissue encapsulated in muscular fasciae for prefabrication of an osteo-musculo-cutaneous flapZhonghua Zheng Xing Wai Ke Za Zhi. 2004 Mar; 20(2): 132-5.
    16. Alexanian AR.Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions. Exp Cell Res. 2005 Nov 1; 310(2):383-91.
    17. Wislet-Gendebien S, Hans G, Leprince P, et al, Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005 Mar; 23(3):392-402.
    18. Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human Mesenchymal stem cells in vitro. J cell Biochem, 1997, 64(2):295-312.
    19. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implication for cell-based therapies. Tissue Eng, 2001,7(2): 211-228Makino S, F
    20. Liesveld JL,Harbol AW,Belanger T,et al.MIP-1 alpha and TGF-beta production in CD34+progenitor-stromal cell coculture systems:effects of progenitor isolation method and cell-cell contact.Blood Cells Mol Dis 2000;26(4):261-275
    21. Knutsen AP,Freeman JJ,Mueller KR,et al. Thymosin-alpha 1 stimulates maturation of CD34+stem cells into CD34+cells in an in vitro thymic epithelia organ coculture model.Int J Immunopharmacol 1999;21(1): 15-26
    22. ohei T,Chen G,Takashi U,et al.The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro.Biomed Mater Eng2004;24(3):391-396
    23. Izumi HH,Than S,Ogata H,et al.Monoclonal antibodies against a preadipose cell Line (MC3T3-G2/PA6) which can support hemopoiesis Hybridoma 1991; 10(1):103-112
    24. Tsukamoto H, Suzuki R, Kondo Y.Revisiting benzenesulfonyl linker for the deoxygenation and multifunctionalization of phenols. J Comb Chem. 2006 May-Jun; 8(3):289-92.
    25. Gilboa L, Forbes A, Tazuke SI, et al. Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state. Development 2003;130(26):6625-6634
    26. Van KM,Van GA,De GI,et al.Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation.Cell Physiol Biochem 2003;13(5):263-270
    27. Maxeiner S, Kruger O, Schilling K, et al. Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice.Neuroscience 2003; 119(3):689-700
    28. Guillotin B,Bourget C,Remy ZM,et al.Human primary endothelial cells stimulate human osteoprogenitor cell differentiation.Cell Physio Biochem 2004; 14(4-6): 325-332
    29. Boucher S,Bennett SA.Differential Connexin expression,gap junction intercellular coupling,and hemichannel formation in NT2/D1 human neural progenitors and terminally differentiated hNT neurons.J Neurosci Res 2003;72(3):393-404
    30. Nakamizo A,Marini F,Amano T,et al.Human bone marrow-derived meaenchymal stem cells in the treatment of gliomas.Cancer Res,2005,65(8):3307-3318.
    31. Studeny M,Marini FC,Dem binski JL,et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.J Natl Cancer 1nst 2004,96(21):1593-1603.
    32. Nakamura K,I to Y ,Kawano Y ,et al.Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. gene Ther, 2004,11(14):1155-1164.
    33.Hung SC,Deng WP,Yang WK,et al.Mesenchymal stemcell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging.Clin Cancer Res,2005,11(21):7749-7756
    34.Schichor C,Birnbaum T,Etminan N,et al.Vascular endothelial growth factor A contributes to glioma induced migration of human marrow stromal cells (hMSCs).Exp Neurol,2006,199(2):301-310.
    35.Birubaum T,Roider J,Schankin CJ,et al.Malinant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines.J Neurooncol,2007,83(3):241-247.
    36.Miletic H,Fisher Y,Litwak S,et al.Bystander killing og malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene.Mol Ther,2007,15(7):1373-1381.
    37.Van Damme A,Thorrez L,Ma L,et al.Efficient lentiviral transduction and Improved engraftment of human bone marrow mesenchymal cells.Stem cells,2006,24(4):896-907.
    38.McMahon JM,Conroy S,Lyons M,et al.Gene transfer into rat mesenchymal stem cells:a comparative study of viral and nonviral vectors.Stem Cells Dev,2006,15(1):87-
    39.onethG,StaflinK,KalliomakiS,eta.l Chemokine-directedmigration of tumorinhibitory neuralprogenitor cells towards an intracranially growing glioma.Exp CellRes,2006,312(8):1265.
    40.林社裕,高树梓,刘梅,等.C6胶质瘤细胞体外诱导神经干细胞的迁移.解剖学杂志,2006,29(1):44.
    41.张力,徐汉军,胡均涛,等.大鼠胚胎神经干细胞移植治疗C6胶质母细胞瘤.中国神经精神疾病杂志,2007,33(5):309-11
    42.GlassR,SynowitzM,KronenbergG,eta.1 Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved surviva.1 JNeurosc.i 2005,25(10):2637.
    43.Tso CLShintaku P,Chen J,et al.Primary glioblastomas express mesenchymal stem-like properties.Mol Cancer Res,2006,4(9):607-619
    44.Beausejour C.Bone marrow-derived cells:the influence of aging and cellular senescence.Handb Exp Pharmacol,2007,(180):67-88.
    45.Rubio D,Garcia-Casttinro J,Martin MC,et al.Spontaneous human adult stem cell transformation.Cancer Res,2005,65(8):3035-3039.
    46.Shiras A,Chettiar ST,Shepal V,et al.Spontaneous transformation of human adult non-tumorigenci stemcells to cancer stem cells is driven by genomic instability in a human model of glioblastoma.Stem Cells,2007,25(6):1478-1489

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700