miR-150和Shh调节大鼠脑梗塞后血管新生及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究miRNA-150调节大鼠脑梗塞后的血管新生及机制研究。
     方法:制作SD大鼠大脑中动脉梗塞模型,应用实时荧光定量PCR检测脑梗塞后1,3,7天时大脑和血清中的miR-150的浓度;原代大鼠脑微血管内皮细胞4-5代后,应用糖氧剥夺模拟体外缺血模型,应用实时荧光定量PCR检测糖氧剥夺2,4,6小时后检测脑微血管内皮细胞miR-150的表达。通过转染(?)miR-150mimic和inhibitor上下调脑微血管内皮细胞的表达,用基质胶实验检测内皮管腔形成能力,用MTT法或ki-67免疫荧光染色法检测细胞增殖能力,用划痕试验检测细胞迁移能力,并建立大鼠永久性脑缺血模型,侧脑室注射miR-150inhibitor或negative inhibitor,观察神经行为学评分,HE切片观察梗塞周边脑血管密度,用FITC标记的葡聚糖检测皮层血流灌注;脑微血管内皮细胞转染miR-150inhibitor或negative inhibitor,应用实时荧光定量PCR的方法检测c-myb和VEGF的mRNA水平,用Western blotting检测上述分子的蛋白水平水平改变;用慢病毒载体的siRNA技术和加特异性VEGF抗体的方法,分别下调c-Myb的表达和抑制VEGF的功能,观察miR-150在脑微血管内皮细胞管腔形成、增殖和迁移的作用是否依赖于c-myb和VEGF的作用。
     结果:1)大鼠脑梗塞1,3,7天后脑组织和血清中miR-150的表达水平下降,于3天最低;脑微血管内皮细胞糖氧剥夺2,4,6小时后,其miR-150的表达水平下降,以4小时为最低。2)miR-150mimic后抑制脑微血管内皮细胞管腔形成,细胞增殖,细胞迁移;而miR-150inhibitor促进脑微血管内皮细胞管腔形成,细胞增殖,细胞迁移。SD大鼠永久性脑缺血模型后侧脑室注射miR-150inhibitor增加其梗塞周边区血管密度,和血流灌注。3)miR-150inhibitor显著增加脑微血管内皮细胞c-myb及VEGF的mRNA和蛋白水平。分别下调c-myb及VEGF的功能后,miR-150对脑微血管内皮细胞的管腔形成能力,增殖能力,迁移能力被逆转。
     结论:脑梗塞抑制miR-10的表达。miR-150可以调节脑梗塞后脑微血管内皮细胞内皮血管新生,这种调节可能依赖于miR-150对c-myb和VEGF的抑制作用。miR-150可能成为脑缺血的治疗靶点。
     目的:研究脑梗塞后星形胶质细胞对脑微血管内皮细胞血管新生的作用及可能的机制。
     方法:原代大鼠脑微血管内皮细胞4-5代后,应用糖氧剥夺模拟缺血。用基质胶实验检测血管新生情况,用ki-67免疫荧光方法检测细胞增殖,用划痕实验检测细胞迁移能力;并用Elisa的方法检测培养基中Shh的表达;特异性的阻滞剂Cyclopamine,检测星形胶质细胞促进脑微血管内皮细胞血管新生是否与Shh有关。应用RT-PCR的方法检测RhoA, ROCK的mRNA水平,用免疫印迹法(Western blotting)检测上述因子的蛋白水平。用慢病毒转染的方法下调RhoA的表达水平,用Y27632抑制ROCK后,星形胶质细胞对脑微血管内皮细胞管腔形成、细胞增殖和迁移的能力的促进作用能否被逆转。
     结果:1)OGD处理后,星形胶质细胞分泌Shh分泌增加,与原代培养的脑微血管内皮细胞共培养可促进其OGD处理后的管腔形成、增殖和迁移能力,且其作用可被Shh的阻滞剂Cyclopamine部分逆转;2)星形胶质细胞与脑微血管内皮细胞共培养增加脑微血管内皮细胞的RhoA, ROCK的mRNA和蛋白的表达,这种增加也可以被Shh的阻滞剂Cyclopamine部分逆转。3)慢病毒转染的方法下调RhoA的表达及Y27632抑制ROCK后,星形胶质细胞对脑微血管内皮细胞管腔形成、增殖和迁移能力的促进作用可被逆转。
     结论:星形胶质细胞可以通过分泌Shh蛋白促进糖氧剥夺后脑微血管内皮细胞的血管新生。
Objective:to explore the effect of miR-150on the angiogenesis and explored the underlying molecular basis after ischemic stroke in rat.
     Methods:SD rats were subjected ischemic stroke by the middle cerebral artery occlusion (MCAO) for1,3and7days respectively, and then the expression of miR-150in the brain and in the serum were detected by RT-PCR. The primary rat brain microvascular endothelial cells (BMEVCs) were cultured and were subjected oxygen glucose deprivation (OGD) for2,4, and6hours, then the expression of miR-150in the brain and in the serum were also detected by RT-PCR. The up-or down-regulation of miR-150were obtained by miR-150mimic or miR-150inhibitor transfection; the tube formation, proliferation and migration of BMEVCs were respectively detected by matrigel assay, by MTT assay and quantified by anti-Ki-67positive immunofluorescence and by scratch test. SD rat subjected MCAO were tansfected with miR-150inhibitor by daily intracerebroventricular injection, and the density of microvascules and blood flow in the peri-infarction regions were calculated by FITC-labeled dextran. The mRNA and protein expression of c-myb and VEGF in BMEVCs of miR-150inhibitor or negative inhibitor transfected were detecte by RT-PCR and western blotting. The down-regulation of c-myb or VEGF was achieved by lentiviral transfection or special antibody, and the role of c-myb and VEGF on miR-150mediated angiogensis were detected.
     Results:We found that:1) the expression of miR-150in the brain and serum were down-regulated after1-,3-,7d-ischemia, and the expression of miR-150in BMEVCs was also down-regulated after2-,4-,6h-OGD.2) The tube formation, proliferation and migration of BMEVCs were decrease by miR-150mime trasfection, while the tube formation, proliferation and migration of BMEVCs were increase by miR-150inhibitor trasfection. The density of microvascules and blood flow in the peri-infarction regions were increased with miR-150inhibitor transfection by intracerebroventricular injection after MCAO.3) The mRNA and protein expression of c-myb and VEGF in BMEVCs were up-regulated by miR-150transfection. The increase of tube formation, proliferation, and migration of BMEVCs were reversed by the down-regulation of c-myb or VEGF.
     Conclusions:the expression of miR-150is down-regulated after ischemia. MiR-150could mediate angiogensis by modulating c-myb and VEGF after ischemia in rat. MiR-150could be a potential target of the treatment for cerebral ischemia.
     Objective:to investigate the role of astrocytes in the angiogenesis of brain microvascular endothelial cells after oxygen glucose deprivation and to explore the underlying molecular basis.
     Methods:SD rat brain microvascular endothelial cells (BMVECs) and astrocytes were primary cultured. Oxygen glucose deprivation (OGD) was used as the ischemia model in vitro. The proliferation, migration and tube formation in BMECs were detected by anti-ki-67immunofluorescence, scratch test and matrigel assay respectively. The concentration of Shh in the medium was detected by Elisa. Cyclopamine (a Shh antagonist) was added to exam the role of Shh in angiogenesis. The expression mRNA and protein of RhoA and ROCK were detected by RT-PCR and west blotting. Lentiviral transfection of RhoA and ROCK inhibitor, Y27632were used respectively to exam the effect of RhoA and ROCK on angiogenesis.
     Results:We found that1) the treatment of oxygen-glucose deprivation increase astrocytic secretion of Shh; co-cultured astrocytes with BMVECs increase the tube formation, proliferation and migration after OGD; the increase was reversed by Cyclopamine.2) Co-cultured astrocytes with BMVECs increase the mRNA and protein expression of RhoA and ROCK, and the increase was reversed by Cyclopamine.3) The increase of the tube formation, proliferation and migration after OGD were respectively reversed by Lentiviral transfection of RhoA and ROCK inhibitor, Y27632.
     Conclusions:astrocytes may promote the angiogenesis in BMVECs after OGD by the secretion of Shh.
引文
1. Ergul, A., A. Alhusban, and S.C. Fagan, Angiogenesis:a harmonized target for recovery after stroke. Stroke,2012.43(8):p.2270-4.
    2. Shang, J., et al., Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res,2011.89(1):p.86-95.
    3. Ma, Y., et al., Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res, 2012.90(10):p.1873-82.
    4. Manoonkitiwongsa, P.S., et al., Angiogenesis after stroke is correlated with increased numbers of macrophages:the clean-up hypothesis. J Cereb Blood Flow Metab,2001.21(10):p.1223-31.
    5. Liman, T.G. and M. Endres, New vessels after stroke:postischemic neovascularization and regeneration. Cerebrovasc Dis,2012.33(5):p.492-9.
    6. Lahteenvuo, J. and A. Rosenzweig, Effects of aging on angiogenesis. Circ Res,2012.110(9):p. 1252-64.
    7. Anisimov, A., et al., Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation,2013.127(4):p.424-34.
    8. Potente, M., H. Gerhardt, and P. Carmeliet, Basic and therapeutic aspects of angiogenesis. Cell, 2011.146(6):p.873-87.
    9. Chung, A.S. and N. Ferrara, Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol,2011.27:p.563-84.
    10. Hans, F.P., et al., MicroRNA regulation of angiogenesis and arteriogenesis. Trends Cardiovasc Med,2010.20(8):p.253-62.
    11. Caporali, A. and C. Emanueli, MicroRNA regulation in angiogenesis. Vascul Pharmacol,2011. 55(4):p.79-86.
    12. Kroh, E.M., et al., Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods,2010.50(4):p.298-301.
    13. Wang, W.T., et al., Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab, 2013.98(1):p.281-9.
    14. Redis, R.S., et al., Cell-to-cell miRNA transfer:from body homeostasis to therapy. Pharmacol Ther,2012.136(2):p.169-74.
    15. Zhang, Y., et al., Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell,2010.39(1):p.133-44.
    16. Liu, D.Z., et al., Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab,2010.30(1):p. 92-101.
    17. Jeyaseelan, K., K.Y. Lim, and A. Armugam, MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke,2008. 39(3):p.959-66.
    18. Sun, Y., et al., Expression of miR-150 and miR-3940-5p is reduced in non-small cell lung carcinoma and correlates with clinicopathologicalfeatures. Oncol Rep,2013.29(2):p.704-12.
    19. Zhang, J., et al., microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol,2012.40(3):p.747-56.
    20. Watanabe, A., et al., The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia,2011.25(8):p.1324-34.
    21. Agirre, X., et al., Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res,2008.6(12):p.1830-40.
    22. Wu, Q., et al., MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptoticgene EGR2. Biochem Biophys Res Commun,2010.392(3):p.340-5.
    23. Srivastava, S.K., et al., MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis,2011.32(12):p.1832-9.
    24. Rolland-Turner, M., et al., Adenosine stimulates the migration of human endothelial progenitor cells. Role of CXCR4 and microRNA-150. PLoS One,2013.8(1):p. e54135.
    25. Tano, N., H.W. Kim, and M. Ashraf, microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One,2011.6(10):p. e23114.
    26. Diglio, C.A., et al., Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Invest,1982.46(6):p.554-63.
    27. Longa, E.Z., et al., Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989.20(1):p.84-91.
    28. Chiba, Y., et al., Anti-VEGF receptor antagonist (VGA1155) reduces infarction in rat permanent focal brain ischemia. Kobe J Med Sci,2008.54(2):p. E136-46.
    29. Li, W., et al., The impact ofparacrine signaling in brain microvascular endothelial cells on the survival of neurons. Brain research,2009.1287:p.28-38.
    30. Adams, B.D., et al., An in vivo functional screen uncovers miR-150-mediated regulation of hematopoietic injury response. Cell Rep,2012.2(4):p.1048-60.
    31. Giacca, M. and S. Zacchigna, VEGFgene therapy:therapeutic angiogenesis in the clinic and beyond. Gene Ther,2012.19(6):p.622-9.
    32. Ying, G.S., et al., Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. Ophthalmology,2013.120(1): p.122-9.
    33. Staszel, T., et al., Role ofmicroRNAs in endothelial cellpathophysiology. Pol Arch Med Wewn, 2011.121(10):p.361-6.
    34. Chang, S.H. and T. Hla, Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med,2011.17(11):p.650-8.
    35. Howard, L., et al., MicroRNAs regulating cellpluripotency and vascular differentiation. Vascul Pharmacol,2011.55(4):p.69-78.
    36. Lee, S. and S. Vasudevan, Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol,2013.768:p.97-126.
    37. Collet, G., et al., Hypoxia control to normalize pathologic angiogenesis:potential role for endothelial precursor cells and miRNAs regulation. Vascul Pharmacol,2012.56(5-6):p. 252-61.
    38.Chen, S., et al., Re-expression of microRNA-150 induces EBV-positive Burkitt lymphoma differentiation by modulating c-Myb in vitro. Cancer Sci, 2013.
    39.Poliseno, L., et al., McroRNAs modulate the angiogenic properties of HUVECs. Blood, 2006. 108(9): p. 3068-71.
    40.Sasahira, T., et al., Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer, 2012. 107(4): p. 700-6.
    41.Chen, J.J. and S.H.Zhou, Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J, 2011.18(6): p. 675-81.
    42.Alaiti, M.A., et al., Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med, 2012. 16(10): p. 2413-21.
    43.Fiedler, J., et al., MicroRNA-24 regulates vascularity after myocardial infarction. Circulation, 2011.124(6): p. 720-30.
    44.Bonauer, A., et al., MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 2009. 324(5935): p. 1710-3.
    45.Ando, H., et al., Development of a miR-92a delivery system for anti-angiogenesis-based cancer therapy. J Gene Med, 2013.15(1): p. 20-7.
    46.Wang, X.H., et al., MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol, 2009.36(2): p. 181-8.
    47.Wang, R., et al., MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2 and CDC42. Hepatology, 2013.
    48.Stahlhut, C., et al., miR-1 andmiR-206regulate angiogenesis by modulating VegfA expression in zebrafish. Development, 2012. 139(23): p. 4356-64.
    49.Voellenkle, C, et al., Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA, 2012. 18(3): p. 472-84.
    50. Koto, T., et al., Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression ofclaudin-5 in endothelial cells. Am J Pathol,2007.170(4):p.1389-97.
    51. Ambros, V., microRNAs:tiny regulators with great potential. Cell,2001.107(7):p.823-6.
    52. Carrington, J.C. and V. Ambros, Role of microRNAs in plant and animal development. Science, 2003.301(5631):p.336-8.
    53. Thomson, D.W., C.P. Bracken, and G.J. Goodall, Experimental strategies for microRNA target identification Nucleic Acids Res,2011.39(16):p.6845-53.
    54. You, X.M., et al., Conditional expression of a dominant-negative c-Myb in vascular smooth muscle cells inhibits arterial remodeling after injury. Circ Res,2003.92(3):p.314-21.
    55. Lambert, D.L., et al., Localization of c-Myb and induction of apoptosis by antisense oligonucleotide c-Myb after angioplasty of porcine coronary arteries. Arterioscler Thromb Vasc Biol,2001.21(11):p.1727-32.
    56. Garcia, P. and J. Frampton, Hematopoietic lineage commitment:miRNAs add specificity to a widely expressed transcription factor. Dev Cell,2008.14(6):p.815-6.
    57. Xiao, C., et al., MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell,2007.131(1):p.146-59.
    58. Zheng, J., et al., Activation of hepatic stellate cells is suppressed by microRNA-150. Int J Mol Med,2013.
    59. Perrot-Applanat, M., VEGFisoforms. Cell Adh Migr,2012.6(6):p.526-7.
    60. Uchida, C. and T.L. Haas, Evolving strategies in manipulating VEGF/VEGFR signaling for the promotion ofangiogenesis in ischemic muscle. Curr Pharm Des,2009.15(4):p.411-21.
    61. Siekmann, A.F., L. Covassin, and N.D. Lawson, Modulation of VEGF signalling output by the Notchpathway. Bioessays,2008.30(4):p.303-13.
    62. Hayashi, M., et al., VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun,2013.4:p.1672.
    63. Blanco, R. and H. Gerhardt, VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med,2013.3(1):p. a006569.
    64. Shen, J., et al., MicroRNAs regulate ocular neovascularization. Mol Ther,2008.16(7):p. 1208-16.
    65. Sengul, A., et al., Systemic administration of an antagomir designed to inhibit miR-92, a regulator of angiogenesis, failed to modulate skeletal anabolic response to mechanical loading. Physiol Res,2013.62(2):p.221-6.
    66. Meng, S., et al., Downregulation ofmicroRNA-126in endothelialprogenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol,2012. 53(1):p.64-72.
    67. Fasanaro, P., et al., An integrated approach for experimental target identification of hypoxia-inducedmiR-210. J Biol Chem,2009.284(50):p.35134-43.
    68. Edelstein, L.C. and P.F. Bray, MicroRNAs in platelet production and activation. Blood,2011. 117(20):p.5289-96.
    69. Willeit, P., et al., Circulating microRNAs as novel biomarkers for platelet activation. Circ Res, 2013.112(4):p.595-600.
    70. Zidar, N., et al., MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction. Dis Markers,2011.31(5):p.259-65.
    71. Devaux, Y., et al., MicroRNA-150:A Novel Marker of Left Ventricular Remodeling After Acute Myocardial Infarction. Circ Cardiovasc Genet,2013.
    72. Bostjancic, E., N. Zidar, and D. Glavac, MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers,2009.27(6):p.255-68.
    73. Vasilescu, C., et al., MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One,2009.4(10):p. e7405.
    74. Ma, Y., et al., miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Gut,2012.61(10):p.1447-53.
    75. Roderburg, C., et al., Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One,2013.8(1):p. e54612.
    76. Yang, C., et al., Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomsa.Int J Cancer 2013.132(1):p.116-27.
    1. Liepert, J., et al., Treatment-induced cortical reorganization after stroke in humans. Stroke, 2000.31(6):p.1210-6.
    2. Rossini, P.M., et al., Post-stroke plastic reorganisation in the adult brain. Lancet Neurol,2003. 2(8):p.493-502.
    3. Jin, K., et al., Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci,2003.24(1):p.171-89.
    4. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002.8(9):p.963-70.
    5. Spadafora, R., et al., Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev Neurosci,2010.32(2):p.101-13.
    6. Krupinski, J., et al., Role of angiogenesis in patients with cerebral ischemic stroke. Stroke,1994. 25(9):p.1794-8.
    7. Brea, D., et al., [Reorganisation of the cerebral vasculature following ischaemia]. Rev Neurol, 2009.49(12):p.645-54.
    8. Sa-Pereira, I., D. Brites, and M.A. Brito, Neurovascular unit:a focus onpericytes. Mol Neurobiol,2012.45(2):p.327-47.
    9. Arai, K., et al., Brain angiogenesis in developmental and pathological processes:neurovascular injury and angiogenic recovery after stroke. FEBS J,2009.276(17):p.4644-52.
    10. Hirota, S., et al., The astrocyte-expressed integrin alphavbeta8 governs blood vessel sprouting in the developing retina. Development,2011.138(23):p.5157-66.
    11. Stenzel, D., et al., Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development,2011.138(20):p.4451-63.
    12. Scott, A., et al., Astrocyte-dertved vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One,2010.5(7):p. e11863.
    13. Weidemann, A., et al., Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia,2010.58(10):p.1177-85.
    14. Pepicelli, C. V., P.M. Lewis, and A.P. McMahon, Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol,1998.8(19):p.1083-6.
    15. Matise, M.P. and H. Wang, Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol,2011.97:p.75-117.
    16. Palladino, M., et al., Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model ofperipherallimb ischemia. Mol Ther,2011.19(4):p.658-66.
    17. Kusano, K.F., et al., Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol,2004.24(11):p. 2102-7.
    18. Asai, J., et al., Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation,2006. 113(20):p.2413-24.
    19. Pola, R., et al., The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med,2001.7(6):p.706-11.
    20. Renault, M.A., et al., Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol,2010.49(3):p.490-8.
    21. Chinchilla, P., et al., Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle,2010.9(3):p.570-79.
    22. Polizio, A.H., et al., Heterotrimeric Gi proteins link Hedgehog signaling to activation ofRho small GTPases to promote fibroblast migration. J Biol Chem,2011.286(22):p.19589-96.
    23. Kasai, K., et al., The Gl2family of heterotrimeric Gproteins andRho GTPase mediate Sonic hedgehog signalling. Genes Cells,2004.9(1):p.49-58.
    24. Dai, R.L., et al., Sonic hedgehog protects cortical neurons against oxidative stress. Neurochem Res,2011.36(1):p.67-75.
    25. Xia, Y.P., et al., The protective effect of sonic hedgehog is mediated by the propidium iodide 3-kinase/AKT/Bcl-2 pathway in cultured rat astrocytes under oxidative stress. Neuroscience, 2012.209:p.1-11.
    26. Diglio, C.A., et al., Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Invest,1982.46(6):p.554-63.
    27. McCarthy, K.D. and J. de Vellis, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol,1980.85(3):p.890-902.
    28. Allen, C., K. Srivastava, and U. Bayraktutan, Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction. Stroke,2010. 41(9):p.2056-63.
    29. Kim, J.A., et al., Astrocyte regulation of human brain capillary endothelialfibrinolysis. Thromb Res,2003.112(3):p.159-65.
    30. Sims, J.R., et al., Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke,2009.40(11):p.3618-26.
    31. Amankulor, N.M., et al., Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci,2009.29(33):p.10299-308.
    32. Bijlsma, M.F., et al., Hypoxia induces a hedgehog response mediated by HIF-1 alpha. J Cell Mol Med,2009.13(8B):p.2053-60.
    33. Kang, W. and J.M. Hebert, Signaling pathways in reactive astrocytes, a genetic perspective. Mol Neurobiol,2011.43(3):p.147-54.
    34. Al-Ayadhi, L.Y., Relationship between Sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochem Res,2012.37(2):p. 394-400.
    35. Zhang, C. and D.R. Harder, Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid Stroke,2002.33(12):p.2957-64.
    36. van der Meel, R., et al., The VEGF/Rho GTPase signalling pathway:a promising target for anti-angiogenic/anti-invasion therapy. Drug Discov Today,2011.16(5-6):p.219-28.
    37. Bryan, B.A., et al., RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J,2010.24(9):p.3186-95.
    38. Washida, N., et al., Rho-kinase inhibition ameliorates peritonealfibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant, 2011.26(9): p. 2770-9.
    39. Croft, D.R., et al., Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res, 2004. 64(24): p. 8994-9001.
    40.Nakabayashi, H. and K. Shimizu, HA 1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci, 2011. 102(2): p. 393-9.
    41.Kanda, S., et al., Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem, 2003. 278(10): p. 8244-9.
    42.Krishnan, V., et al., Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science, 1997.278(5345): p. 1947-50.
    43.Chang, H., et al., Activation of Erk by sonic hedgehog independent of canonical hedgehog signalling. Int J Biochem Cell Biol, 2010. 42(9): p. 1462-71.
    44.Ahmed, R.P., et al., Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-J/PKC pathway. PLoS One, 2010. 5(1): p. e8576.
    45.Polizio, A.H., et al., Sonic Hedgehog activates the GTPases Racl and RhoA in a Gli-independent manner through coupling of smoothened to Giproteins. Sci Signal, 2011. 4(200): p. pt7.
    46.Lee, H.S., et al., Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J, 2009. 276(17): p. 4622-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700