定向凝固γ-TiAl基合金片层取向控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以γ-TiAl金属间化合物为基的合金由于具有低密度、高弹性模量、优异的高温强度和抗氧化性,是一种极具潜力并且人们寄予厚望的高温结构材料。特别是由γ相和少量α_2相所形成的全片层组织材料,显示出良好的室温与高温综合性能。由于这种合金的各向异性,当片层取向合适时,使其更适合于航空发动机叶片等只承受一维载荷的场合。如何获得按一定方向排列的片层组织,是多年来许多专家学者所致力研究的课题。采用籽晶法定向凝固来控制片层组织的排列方向是一种比较成功的方法。
     本文首先根据片层组织力学性能的各向异性的特点建立了片层最大承载方向的数学模型,导出了不同组织状态下片层的最大承载方向。得出了当γ+α_2片层组织中α_2相的折算分数大于30%时,其最大承载方向为平行于片层组织方向的结论。这为指导本文进行γ-TiAl基合金的定向凝固实验研究,以获得平行于生长方向的片层组织提供了理论依据。
     本文提出了利用冷坩埚制备籽晶的新方法。由于冷坩埚的激冷能力强,可以制备出尺寸较大的籽晶。同时由于定向凝固实验与与籽晶制备使用同一个冷坩埚,这就为原位籽晶定向凝固新技术创造了必要的条件。
     采用刚玉管作铸型进行了籽晶法定向凝固实验,对定向凝固片层组织的取向进行了控制,制备出了片层组织取向与籽晶原始取向一致并平行于定向凝固方向的试样。经显微组织观察,片层组织能在整个定向凝固区间内保持与定向凝固方向平行生长长度达50mm的片层组织。成功地利用刚玉管籽晶定向凝固法实现了γ-TiAl基合金片层组织取向的控制。
     在用冷坩埚进行定向凝固中,发现其晶体生长机理与现有的籽晶法定向凝固完全不同。由于初始成分过渡区的存在,有可能使籽晶完全失去作用。为此,本文提出了消除定向凝固初始成分过渡区的方法——成分调整法。经过多次实验研究和成分组织分析,解决了消除初始成分过渡区的技术难点,从而消除了初始成分过渡区。实现了定向凝固从一开始就可以进入稳定生长状态,解决了开始部位的组织、成分与稳定生长组织、成分不一致的难题。
     结合成分调整技术,采用本文提出的冷坩埚原位籽晶定向凝固法,对Ti-46at%Al-1.5at%Mo-1.2at%Si合金片层组织的取向控制进行了实验研究。将制备的籽晶直接用于定向凝固实验,集籽晶制备与定向凝固片层组织控制于一体。使原来由籽晶制备、籽晶加工和定向凝固三步构成的工艺,合并成一步进行,从而显著简化了整个工艺过程,并省去了传统制备籽晶工艺中的籽晶切取过程,避免了由此带来的污染,这会给以后的实际生产应用带来很大的经济效益。实验结果表明,采用冷坩埚原位籽晶定向凝固法必须进行成分调整以消除初始成分过渡区;经成分调整后,籽晶中的片层组织能保持其取向顺利通过重熔界面进入定向凝固区。定向凝固区内平行于生长方向的片层组织能够保持其取向生长至少20mm长度以上。从而表明了采用冷坩埚原位籽晶定向凝固法来控制γ+α_2片层组织的取向是完全可行的。
γ-TiAl based intermetallics alloys are of many advantages such as low density, high young’s modulus, and excellent elevated temperature strength and oxidation resistance. Therefore, they are very promising materials for elevated temperature construction material. Especially those materials with full lamellar structure consisting ofγ-TiAl with a little amount ofα_2 phase indicate fine synthetical mechanical properties both at room temperature and at high temperature. Because of its aeolotropy, lamellar structure is much more appropriate in such applications as aeroengine blades that mainly bear one-dimensional loads. Therefore, many researchers have paid much attention to getting full lamellar structure with designed orientation. Among the significant results, the combination of seeding and directional solidification (DS) is a successful method to get full lamellar structure with a designed orientation.
     In this paper, a mathematical model was first established to calculate the maximum load bearing direction of lamellar structures with different lamellar orientations. The results suggested that the maximum load bearing direction of aγ+α_2 lamellar structure is parallel with the lamellar orientation when the equivalent volume fraction ofα_2 is more than 30% which is relatively easy to meet for mostγ+α_2-based alloys. This provides a basic theory for lamellar orientation control: the best lamellar orientation is parallel with the growth direction of DS.
     Experiments using DS technique with seeding in ceramic tube were carried out to control the lamellar orientation. The observation results showed that the lamellar orientation of the obtained DS structure is parallel with the growth direction and keeps that of the seed throughout the DS zone (about 50mm). The structure control using DS technique with seed in ceramic tube is successful.
     An initial concentration transient zone (CTZ) may appear in a cold crucible DS process with seeding. The existence of CTZ can invalidate the effect of the seed. A composition adjustment (CA) method was proposed in the present work to eliminate the CTZ. The problems in CA method were solved in this paper. The experimental results showed that CTZ can be eliminated using the CA method. With the CA method, a stable growth may be established immediately at the outset of the DS, so that the lamellar structure may grow from the seed to the directionally solidified zone smoothly. The problem that the structure and composition in the initial part of DS defer from those in the stable growth part was solved successfully.
     Based on the proposed CA method, experiments using cold crucible DS technique with seeding were carried out to investigate the feasibility to control the lamellar orientation. An in situ seeding DS, in which the seed made in the experiment was used directly in the cold crucible DS, was proposed and employed. This method combined cold crucible DS with seed making, which significantly simplified the traditional technique consisting of seed making, seed cutting, seed orientation positioning and DS process. This may be beneficial to the application in production. The results indicate that the CA method should be used to eliminate the CTZ in cold crucible DS with seed; with the CA method, the lamellar structure in the seed can grow into the DS zone and keep its original orientation. The lamellar structure parallel to the growth direction in the DS zone may grow continuously longer than 20mm. Therefore, the lamellar orientation control using cold crucible DS technique with seeding is shown to be feasible.
引文
1李臻熙,曹春晓. TiAl合金中的析出转变行为.中国有色金属学报, 2003(4) 827-834.
    2傅恒志,郭景杰,苏彦庆,刘林,徐达鸣,李金山.TiAl金属间化合物的定向凝固和晶向控制.中国有色金属学报, 2003,(4):797-810.
    3 E A Loria. Gamma titanium aluminides as prospective structural materials. Intermetallics, 2000, 8: 1339-1345.
    4李成功,傅恒志,于翘.航空航天材料.北京:国防工业出版社,2002,16.
    5 M Yamaguchi, H Inui K Ito. High-temperature structural intermetallics. Acta mater, 2000, 48: 307
    6 D R Johnson, Y Masuda, Y Shimasi, et al. in Nathal M V Eds. Structural Intermetallics, TMS, 1997,287.
    7 M. C. Kim, M. H. Oh, J. H. Lee, H. Inui, M. Yamaguchi, and D. M. Wee. Composition and growth rate effects in directionally solidified TiAl alloys. Materials Science and Engineering: A, 1997,239-240(1-2):570-576
    8 H Inui, M H Oh, A Nakamura and M Yamaguchi. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl. Acta Metallurgica. 1992, 40(11):3095-3104.
    9 K Kishida, D R Johnson, Y Shima et al. in Y W Kim Eds. Gamma Titanium Aluminide, TMS, 1995, 219.
    10 M M Keller, P E Jones, W J Porter et al. in Y W Kim Eds. Gamma Titanium Aluminide, TMS, 1995, 441.
    11 C MCCullough, J J Valencia, C G Levi, and R Mehrabian. Phase equilibria and solidification in Ti-Al alloys. Acta Metall,1989, 37: 1321.
    12 M Yamaguchi, D R Johnson, H N Lee, H Inui. Directional Solidification of TiAl Base Alloys. Intermetallics, 2000, 8: 511-517.
    13 H. N. Lee, D. R. Johnson, H. Inui, M. H. Oh, D. M. Wee and M. Yamaguchi. Microstructural control through seeding and directional solidification of TiAl alloys containing Mo and C. Acta Materialia, 2000, 48(12):3221-3233.
    14 D M Dimiduk. Gamma titanium aluminide alloys - an assessment within the competition of aerospace structural materials. Mater, Sci, Eng, A 1999, 263:281-288.
    15 H Buhl. Advanced Aerospace Materals. German Spring-Verlag, 1992.
    16陈国良,林均品.有序金属间化合物结构材料.北京:冶金工业出版社,1998,35.
    17黄伯云.钛铝基金属间化合物.长沙:中南工业大学出版社,1999,314,288.
    18张永刚,韩雅芳,陈国良等.金属间化合物结构材料.北京:国防工业出版社,2001,716.
    19朱峰,李宝成,张杰,朱波,朱涛. Ti-Al合金的开发动向.上海有色金属, 2001, 22:83~88.
    20 S. M. L Sastry, H Lipsitt. A Metal Trans A, 1977, 8 (27):299-308.
    21 W J Boettinger, S R Coriell, A L Greer. et al. Solidification microstructures: recent developments, future directions. Acta Mater, 2000, 48: 43-70.
    22 R. Bohn, T. Klassen, R. Bormann. Mechanical behavior of submicron-grainedγ-TiAl-based alloys at elevated temperatures. Intermetallics, 2001, 9(7):559-569
    23 Hee Y. Kim, Woong H. Sohn, Soon H. Hong. High temperature deformation of Ti–(46–48)Al–2W intermetallic compounds. Materials Science and Engineering A, 1998, 251(1-2):216-225
    24 S. Bystrzanowski, et al. Creep behaviour and related high temperature microstructural stability of Ti–46Al–9Nb sheet material. Intermetallics, 2005, 13(5):515-524
    25 H Umeda, K Kishida, H Inui, M Yamaguchi. Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl. Materials Science and Engineering A, 1997, 239-240:336-343
    26 M. H. Oh, H. Inui, M. Misaki, M. Yamaguchi. Environmental effects on the room temperature ductility of polysynthetically twinned (PST) crystals of TiAl. Acta Metallurgica et Materialia, 1993, 41(7):1939-1949
    27 Y. Yamamoto, M. Takeyama, T. Matsuo. Stability of lamellar microstructure consisting ofγ/γinterfaces in Ti–48Al–8Nb single crystal at elevated temperatures. Materials Science and Engineering A, 2002, 329-331: 631-636
    28 M. Yamaguchi, H. Inui, S. Yokoshima, K. Kishida, D.R. Johnson. Recent progress in our understanding of deformation and fracture of two-phase andsingle-phase TiAl alloys. Materials Science and Engineering: A, 1996, 213(1-2):25-31
    29 G Hénaff,A. L Gloanec. Fatigue properties of TiAl alloys. Intermetallics, 2005, 13(5): 543-558
    30 M. Takeyama, Y. Yamamoto, H. Morishima, K. Koike, S. Y. Chang, T. Matsuo. Lamellar orientation control of Ti-48Al PST crystal by unidirectional solidification. Materials Science and Engineering A, 2002, 329-331:7-12
    31 A.L. Gloanec, G. Henaff, M. Jouiad, D. Bertheau, P. Belaygue, M. Grange. Cyclic deformation mechanisms in a gamma titanium aluminide alloy at room temperature. Scripta Materialia, 2005, 52(2):107-111
    32 K. Kishida, D. R. Johnson, Y. Masuda, H. Umeda, H. Inui, M. Yamaguchi. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys. Intermetallics, 1998, 6(7-8):679-683
    33 S. E. Kim, Y. T. Lee, M. H. Oh, H. Inui, M. Yamaguchi. Directional solidification of TiAl–Si alloys using a polycrystalline seed. Intermetallics, 2000, 8(4):399-405
    34 D. R. Johnson, H. N. Lee, S. Muto, T. Yamanaka, H. Inui and M. Yamaguchi. Microstructure and creep behavior of directionally solidified TiAl-base alloys. Intermetallics, 2001, 9(10-11):923-927.
    35 C. J. Boehlert, D. M. Dimiduk, K. J. Hemker. The phase evolution, mechanical behavior, and microstructural in stability of a fully-lamellar Ti–46Al(at.%) alloy. Scripta Materialia, 2002, 46(4): 259-267.
    36 S. Yokoshima, M. Yamaguchi. Fracture behavior and toughness of PST crystals of TiAl. Acta Materialia, 1996, 44(3): 873-883.
    37 K. Maruyama, T. Nonaka, H. Y. Kim. Effects ofα2 spacing on creep deformation characteristics of hardoriented PST crystals of TiAl alloy. Intermetallics, 2005, 13(10): 1116-1121.
    38 T. A. Parthasarathy, P. R. Subramanian, M. G. Mendiratta, D. M. Dimiduk. Phenomenological observations of lamellar orientation effects on the creep behavior of Ti–48at.%Al PST crystals. Acta Materialia, 2000, 48(2): 541-551.
    39 K. Kishida, H. Inui, M. Yamaguchi. Deformation of PST crystals of a TiAl/Ti3Al two-phase alloy at 1000℃. Intermetallics, 1999, 7(10): 1131-1139.
    40 J. Yang, G. K. Hu, Y. G. Zhang. Prediction of yield stress for polysynthetically twinned TiAl crystals. Scripta Materialia, 2001, 45(3): 293-299.
    41 B. Chalmers. Physical Metallurgy. New York: Wiley. 1959: 129~359
    42 D. R. Uhlmann, G. A. Chadwick. Unidirectional solidification of melts producing the peritectic reaction. Acta Metall. 1961, 9(9): 835~840
    43 M C Flemings. Solidification Processing, McGraw-Hill Book Co., New York, 1974.
    44 J. D. Livingston. Growth of Deplex Crystals. Mater. Sci. Eng. 1971, 7(2): 61~70
    45 H. Lee, J. D. Verhoeven. Peritectic Formation in the Ni-Al System. J. Cryst. Growth. 1994, 144(3-4): 353~366
    46 S. Dobler, T.S. Lo, M. Plapp, A. Karma, W. Kurz. Peritectic coupled growth. Acta Materialia, 2004, 52:2795–2808
    47傅恒志,骆良顺,苏彦庆,郭景杰,李双明,刘林.包晶合金定向凝固中的共生生长.中国有色金属学报, 2007, 17(3):349-359.
    48骆良顺,苏彦庆,郭景杰,李新中,傅恒志.考虑包晶反应的包晶层片共生生长模型.中国科学G辑:物理学力学天文学, 2007, 3(3): 313~321
    49苏彦庆,骆良顺,毕维生,郭景杰,傅恒志.共晶和包晶合金定向凝固过程中共生生长的形态稳定性.中国有色金属学报, 2006, 16(7): 1125-1135
    50 Y. Q. Su, L.S. Luo, X. Z. Li, J. J. Guo, H. M. Yang, H. Z. Fu. Well-aligned in situ composites in directionally solidified Fe–Ni peritectic system. Applied Physics Letters. 2006, 89: 231918.
    51 L. S. Luo, Y. Q. Su, J. J. Guo, X. Z. Li, H. M. Yang, H. Z. Fu. Producing Well Aligned in situ Composites in Peritectic Systems by Directional Solidification. Applied Physics Letters. 2008, 92: 061903
    52 L.S. Luo, Y.Q. Su, J.J. Guo, X.Z. Li, S.M. Li, H. Zhong, L. Liu, H.Z. Fu. Peritectic reaction and its influences on the microstructures evolution during directional solidification of Fe–Ni alloys. Acta Materialia, 2003, 51(3):599-611.
    53 S. W. Kim, P. Wang, M. H. Oh, D. M. Wee and K. S. Kumar. Mechanical properties of Si- and C-doped directionally solidified TiAl–Nb alloys.Intermetallics, 2004, 12(5):499-509
    54 J.A. Jiménez, , M. Carsí, G. Frommeyer, S. Knippscher, J. Wittig and O.A. Ruano. The effect of microstructure on the creep behavior of the Ti–46Al–1Mo–0.2Si alloy. Intermetallics, 2005, 13(10):1021-1029.
    55 D. R. Johnson, H. Inui, M. Yamaguchi. Crystal growth of TiAl alloys. Intermetallics, 1998, 6(7-8): 647-652
    56 D. R. Johnson, K. Chihara, H. Inui, M. Yamaguchi. Microstructural control of TiAl–Mo–B alloys by directional solidification. Acta Materialia, 1998, 46(18): 6529-6540
    57苏彦庆,郭景哲,刘畅,郭景杰,贾均,傅恒志.定向凝固技术与理论研究的进展.特种铸造及的色合金,2006, 26(1):25-30
    58陈瑞润,丁宏升,毕维生,郭景杰,贾均,傅恒志.电磁冷坩埚技术及其应用。稀有金属材料工程. 2005, 34(4):510-514
    59陈瑞润,丁宏升,毕维生,郭景杰,贾均,傅恒志.钛合金冷坩埚电磁约束铸造工艺研究。特种铸造及有色合金. 2005, 25(6):323-325
    60 I. S. Jung, H. S. Jang, M. H. Oh, J. H. Lee and D. M. Wee. Microstructure control of TiAl alloys containingβstabilizers by directional solidification. Materials Science and Engineering A, 2002, 329-331:13-18.
    61 D. R. Johnson, H. Inui, S. Muto, Y. Omiya, T. Yamanak. Microstructural development during directional solidification of a-seeded TiAl alloys. Acta Materialia, 2006, 54:1077–1085
    62罗文忠,沈军,李庆林,满伟伟,郑循强,刘林,傅恒志.抽拉速率对Ti-43Al-3Si合金籽晶法定向凝固组织的影响.金属学报, 2006, 42(12):1238-1242
    63罗文忠,沈军,李庆林,满伟伟,傅恒志. Ti-47Al合金籽晶法定向凝固过程中的组织演化.金属学报,2007, 43(9):897-902.
    64罗文忠,沈军,李庆林,傅恒志. TiAl合金定向全片层组织的籽晶法制备.金属学报,2007, 43(12): 1287-1292.
    65 D. R. Johnson, H. Inui, M. Yamaguchi. Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl---Si alloys. Acta Materialia, 1996, 44(6): 2523-2535.
    66 S E Kim, Y T Lee, M H Oh, H Inui, and M Yamaguchi. Directional solidification of TiAl base alloys using a polycrystalline seed. Intermetallics,Materials Science and Engineering A 2002, 329–331:25–30
    67郑循强,沈军,丁宏升,陈瑞润,许雄.单一取向的Ti-43Al-3Si全片层组织制备.材料导报, 2005, (03):118-119
    68 Kurz W, and Gilgien P. Selection of Microstructures in rapid solidification processing. Materials Science and Engineering A. 1994, 178:171-178
    69 Pierre Masri, Léonard Dobrzynski. Interface response theory of N-layered metallic superlattices Surface Science, 1988, 198(1-2):285-299
    70傅恒志,李新中,刘畅,苏彦庆,李双明,郭景杰.Ti_Al包晶合金定向凝固及组织选择.中国有色金属学报,2005, 15(4):495-505.
    71李双明,吕海燕,李晓历,刘林,傅恒志.包晶合金的定向凝固与生长.稀有金属材料与工程.2005, 34(2):234-239
    72 D R Johnson, Y Masuda, H Inui, M Yamaguchi. Alignment of the TiAl/Ti 3Al lamellar microstructure in TiAl alloys by directional solidification. Materials Science and Engineering: A, 1997, 239-240:577-583.
    73 D R Johnson, Y Masuda, H Inui, M Yamaguchi. Alignment of the TiAl/Ti 3Al lamellar microstructure in TiAl alloys by Growth from a seed material. Acta Mater. 1997, 45(6):2523-2533
    74 T. Umeda, T. Okane, and W. Kurz. Phase selection during solidification of peritectic alloys. Acta Mater, 1996, 44(10):4209-4216.
    75刘畅,苏彦庆,李新中,郭景杰,贾均,傅恒志. Ti_44_50_Al合金定向包晶凝固过程中的组织演化.金属学报. 2005, 41(3): 260-266
    76傅恒志,骆良顺,苏彦庆,郭景杰,李双明,刘林.包晶合金定向凝固中的共生生长. 2007, 17(3):349-359
    77李新中,郭景杰,苏彦庆,吴士平,傅恒志.定向凝固包晶合金带状组织的形成机制及相选择.金属学报. 2005, 41(6):593-598
    78李新中,郭景杰,苏彦庆,吴士平,傅恒志.定向凝固包晶合金带状组织的形成机制及相选择.金属学报. 2005, 41(6):599-604
    79黄卫东,林鑫,王猛,沈淑娟,苏云鹏,刘振侠.包晶凝固的形态与相选择.中国科学E辑. 2002, 32(5): 3-9
    80 S. M. Schl?gl, F. D. Fischer. Numerical simulation of yield loci for PST crystals of TiAl. Materials Science and Engineering A, 1997, 239-240: 790-803.
    81苏彦庆,骆良顺,毕维生,郭景杰,傅恒志.共晶和包晶合金定向凝固过程中共生生长的形态稳定性.中国有色金属学报. 2006, 16(7):1125-1135
    82李新中.定向凝固包晶合金相选择理论及其微观组织模拟.哈尔滨工业大学博士学位论文. 2006
    83 S. E. Kim, Y.T. Lee, M.H. Oh, H. Inui and M. Yamaguchi. Directional solidification of TiAl base alloys using a polycrystalline seed. Materials Science and Engineering A, 2002, 329-331:25-30.
    84 T. Yamanaka, D. R. Johnson, H. Inui, M. Yamaguchi. Directional solidification of TiAl–Re–Si alloys with alignedγ/α2 lamellar microstructures. Intermetallics, 1999, 7(7):779-784.
    85 H N Lee, D R Johnson, H Inui, M H Oh, D M Wee, and M Yamaguchi. A composition window in the TiAl–Mo–Si system suitable for lamellar structure control through seeding and directional solidification. Materials Science and Engineering: A, 2002, 329-331: 19-24.
    86舒群,郭永良,陈子勇,孔繁涛,陈玉勇.铸造钛合金及其熔炼技术的发展现状.材料科学与工艺, 2004, 12, (3):332-336
    87程荆卫.钛合金熔炼技术及理论研究现状,特种铸造及有色合金, 1998, (2):70-72
    88李金山.钢的电磁约束成形定向凝固研究.[博士学位论文],西北工业大学,1996
    89陈瑞润,郭景杰,丁宏升,苏彦庆,毕维生,刘林,贾均,傅恒志.冷坩埚熔铸技术的研究及开发现状.铸造,2007, 56(5):443-450
    90丁宏升,陈瑞润,毕维生,郭景杰,刘林,傅恒志.工艺参数对冷坩埚定向凝固钛合金宏观组织的影响.稀有金属材料与工程,2007, 36(7):1241-1244
    91 Hongsheng Ding, Ruirun Chen, , Jingjie Guo, Weisheng Bi, Daming Xu and Hengzhi Fu. Directional solidification of titanium alloys by electromagnetic confinement in cold crucible. Materials Letters, 2005, 59(7):741-745.
    92 H S Ding, R R Chen, Y L Wang, H Z Fu, J J Guo, W S Bi, J Jia. Continuous Casting and Directional Solidification of Titanium Alloys with Cold Crucible. Materials Science Forum Vols. 2005,475-479:2575-2578.
    93安阁英.铸件形成理论.北京:机械工业出版社. 1989:106-115.
    94刘伟东,刘志林,屈华. Ti-4.5Al-5Mo-1.5Cr合金增韧性的价电子理论研究.金属学报, 2002, 38(12):1246-1250.
    95刘伟东,刘志林,屈华.合金-TiAl价电子结构的计算及其力学性能.稀有金属材料与工程,2003, 32(11):902-906.
    96胡文军,李建国,刘占芳,唐录成.介观尺度计算材料学研究进展.材料导报, 2004, 18(07): 12-18.
    97高力明.计算材料学与材料结构的层次.陶瓷学报, 2004, 5(02):69-74.
    98赵文娟,丁桦.计算材料学及其在钛合金研究中的应用.航空制造技术, 2007(08): 68-71.
    99 H Inui, M H Oh, A Nakamura, M Yamaguchi. Room temperature tensile deformation of polysynthetically twinned(PST) crystals of TiAl. Acta Mater, 1992, 40:3095-3104.
    100 K Kishida, H Inui, M Yamaguchi. Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys. Philos Mag A, 1998, 78(1): 1-28.
    101 T Fujiwara, A Nakamura, M Hosomi et al. Deformation of polysynthetically twinned crystals of TiAl with a nearly stoichiometric composition, Philos Mag A, 1990:591-606
    102 ThermoCalc Software AB: TCCTM ThermoCalc software user’guide, version R, Stockholm Technology Park, Stockholm. 2006.
    103傅恒志,苏彦庆,郭景杰,徐达鸣.高温金属间化合物的定向凝固特性.金属学报, 2002;38:1127-1132
    104 H. Saari, J. Beddoes, D.Y. Seo, and L. Zhao. Development of directionally solidifiedγ-TiAl structures. Intermetallics, 2005, 13(9): 937

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700