电离层无线电掩星技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线电掩星技术作为一种既经济又强大的探测手段,从20世纪60年代就开始应用于行星电离层和大气探测,至今仍是行星探测的一种重要手段。无线电掩星技术作为全球卫星导航定位系统应用新的增长点,也将成为21世纪最先进的空间探测技术之一。该技术可测量电离层电子密度剖面和中性大气气象场,具有覆盖面广、全天候观测、长期稳定、高精度和高垂直分辨率等优点;该技术提供的观测资料,将对空间环境监测与研究、数值天气预报和气候研究具有极大的推动作用,在空间、天文、气象以及国防领域具有广泛的应用前景。
     本文介绍了无线电掩星技术的发展现状和基本原理,围绕电离层掩星理论和反演算法、验证及其应用等开展了诸多研究和探讨,主要内容如下:
     1、介绍无线电掩星观测模拟方法,包括轨道模拟和观测数据模拟。
     2、系统地研究了基于电子密度分布局部球对称近似的电离层掩星反演方法,着重研究如何处理LEO轨道高度以上电离层对无线电波的影响,发展了改正TEC反演方法、利用Chapman模式和IRI模式辅助反演共三种方法来处理此问题。统计比较结果表明,改正TEC反演方法是最佳的反演方法。当非掩星侧数据无法获得时,利用Chapman模式和IRI模式辅助反演的精度优于传统的弯曲角指数外推方法和忽略顶部电离层影响的方法。
     3、分析电离层掩星误差源,指出电子密度分布的局部非球对称性是电离层掩星的主要误差源。通过大量模拟掩星数据反演误差的统计分析,总结出以下特点:(1)反演误差随太阳活动水平的增强而增大;(2)反演误差在冬季最大,春秋季次之,夏季最小;(3)总的来说,中纬的反演误差比低纬和高纬小;(4)不考虑季节和纬度影响,白天的反演误差比夜间和晨昏小。
     4、利用非相干散射雷达和垂测仪数据,对COSMIC电离层掩星数据进行比较验证。结果表明,电离层掩星电子密度剖面与非相干散射雷达探测结果符合得较好;由掩星数据得到F层峰值电子密度NmF2与垂测仪探测结果具有很好的相关性,相关系数为0.937,相对偏差的标准差为20.7%。通过分类比较发现,COSMIC掩星探测得到的NmF2与垂测仪的相对偏差随季节、地磁纬度、地方时变化的特点,与模拟掩星数据反演误差统计结果符合得很一致。
     5、深入分析电子密度分布非球对称性影响电离层掩星反演的机制,为电离层掩星定义了非球对称因子,研究表明非球对称因子与NmF2的相对误差具有很好的线性关系,非球对称因子被用于反演结果的修正,大大降低反演误差。
     6、研究三维约束的电离层掩星反演方法。采用三维经验电离层模式作为约束,应用于模拟掩星数据反演,大大降低了反演误差,对实测数据反演结果与垂测仪的比较表明,反演结果合理可靠。首次尝试用球谐函数拟合,对全球分布的掩星电子密度进行建模,再将建模结果作为约束条件用于掩星反演,结果表明,这种方法可以大幅降低反演误差,可以应用于将来的掩星星座观测数据的反演。
     7、利用COSMIC掩星数据分析太阳活动低年的电离层气候特征。
     8、对火星电离层掩星探测进行仿真研究。研究表明,中俄联合火星探测中,星-星掩星双频探测得到的火星电离层电子密度,将会达到前所未有的测量精度;星-地掩星单频探测,可以有效获得白天火星电离层电子密度剖面。
The radio occultation technique had been applied successfully to explore the planetary atmosphere and ionosphere since 1960s. It is a new application of Global Navigation Satellite Systems, and one of the most advanced space exploring technique in the 21st century. This technique can observe the profiles of electron density in the ionosphere and the meteorological parameters of neutral atmosphere. It can operate all-weather with long-term stability and global coverage. The global distributed occultation data will greatly promote the space weather researches, numerical weather prediction and climate researches.
     This thesis focuses on the Ionospheric Radio Occultation (IRO) technique and its application. The main works can be summarized as following:
     1. The method for the simulation of the radio occultation is introduced, including the orbit simulation and the observation simulation.
     2. The inversion methods for IRO are studied, which are based on the approximation that the electron distributes symmetrically in local ionosphere. It is important to deal with the upper boundary condition in the inversion of IRO. Here three methods are proposed to do it: calibrated TEC (Total Electron Content) method, inversion method assisted with Chapman model or IRI (International Reference Ionosphere) model. The research shows that the calibrated TEC method is best. If there is no data at the non-occultation side, the inversion method assisted with Chapman model or IRI model is better than the traditional methods– bending angle extrapolation method or ignoring the contribution of the ionosphere above the LEO.
     3. The error sources of IRO are analyzed. The spherical symmetry approximation of electron density is the main source of the inversion error. The statistical results reveal some characters of the inversion errors. (1) The relative error increases with enhanced solar activity; (2) It is lager in winter than equinox season, and smallest in summer; (3) Generally, it is smaller at middle latitude than low and high latitude; (4) Regardless of season and geomagnetic latitude, it is smaller at daytime than other time.
     4. The IRO data from COSMIC is compared with measurements of ISR (Incoherent Scanter Radar) and ionosondes. The comparison shows that the electron density profiles of IRO are consistent with the ISR. The peak electron density (NmF2) of IRO is consistent with the measurement of ionosonde, and the correlation coefficient is 0.937, and the standard deviation of their relative differences is 20.7%. The differences between the NmF2 of IRO and ionosondes are studied, and their dependences on season, geomagnetic latitude and local time are consistent with the characters of the inversion errors of the simulation data.
     5. The effect of the asymmetry of electron density on the inversion of IRO is studied. And an asymmetry factor is defined for IRO. The study shows that the asymmetry factor is consistent with the relative error of inversed NmF2. Then the asymmetry factor is applied to correct the inversion result of IRO, and the inversion error is reduced greatly.
     6. The three-dimensional (3D) constrained inversion method is studied. With the help of 3D empirical ionosphere model, the method is applied in the inversion of IRO simulation data, and the inversion error is greatly reduced. Then the method is applied in the inversion of real IRO data with IRI2001 as constraint, and the comparison between the inversion result and measurement of ionosonde shows that the inversion result is reasonable and credible. An ionosphere model based on global electron density of IRO is constructed with spherical harmonic function, then the model is used as constraint in the inversion of IRO simulation data, and the inversion error is greatly reduced.
     7. The IRO data from COSMIC is applied to analyze the climate character of the ionosphere in the low solar activity.
     8. The exploration of Mars ionosphere with IRO technique is studied with simulation method. The research shows that in the China-Russia joint exploration of Mars, the electron density acquired from satellite-satellite IRO by dual frequencies will reach the unprecedented precision. The satellite-Earth IRO by single frequency can detect the electron density profile of Mars ionosphere in daytime.
引文
Atreya S. K., T. M. Donahue, and Michael B. McElroy,Jupiter's Ionosphere: Prospects for Pioneer 10,Science,1974,184,154-156.
    Azpilicueta, F., C. Brunini and S. M. Radicella, Global ionospheric maps from GPS observations using modip latitude, Middle and Upper Atmospheres, Active Experiments, and Dusty Plasmas, 2006, 38(11), 2324-2331.
    Bailey, G. J. and R. Sellek, Field-aligned flows of H+ and He+ in the mid-latitude topside ionosphere at solar maximum, Planetary and Space Science, 1992, 40(6), 751-762.
    Beyerle, G., T. Schmidt, G. Michalak, et al., GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique, Geophysical Research Letters, 2005a, 32(13).
    Breus, T. K., A. M. Krymskii, et al. Effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations, Journal of Geophysical Research-Space Physics ,2004,109(A9),9310-9310.
    Broadfoot A. L., S. Kumar, M. J. S. Belton, and M. B. McElroy, Mercury's Atmosphere from Mariner 10: Preliminary Results, Science, 1974, 185, 166-169
    Cahoy KL, Hinson DP, Tyler GL,Radio science measurements of atmospheric refractivity with Mars Global Surveyor,Journal of Geophysical Research -Planets,2006,111 (E5): 5003-5003.
    Escudero, A., A. C. Schlesier, A. Rius, et al., Ionospheric tomography using orsted GPS measurements - Preliminary results, Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy, 2001, 26(3), 173-176.
    Eshleman Von R., Jupiter's Atmosphere: Problems and Potential of Radio Occultation, Science, 1975 189, 876-878
    Fjeldbo G F, Kliore A J, Eshleman V R.The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments.Astron.J.,1971,76,123-140
    Fjeldbo Gunnar, Wencke C. Fjeldbo, and Von R. Eshleman, Atmosphere of Mars: Mariner IV Models Compared, Science, 1966, 153,1518-1523
    F?rster, M. and N. Jakowski, Geomagnetic Storm Effects on the Topside Ionosphere and Plasmasphere: A Compact Tutorial and New Results, Surveys in Geophysics, 2000, 21(1), 47-87.
    Garcia-Fernandez, M., M. Hernandez-Pajares, J. M. Juan, et al., Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data, Gps Solutions, 2005, 9(2), 105-110.
    Garcia-Fernandez, M., M. Hernandez-Pajares, M. Juan, et al., Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information, Journal of Geophysical Research-Space Physics, 2003, 108(A9).
    Gobiet, A. and G. Kirchengast, Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility, Journal of Geophysical Research-Atmospheres, 2004, 109(D24).
    Gorbunov, M. E. and A. S. Gurvich, Microlab-1 experiment: Multipath effects in the lower troposphere, Journal of Geophysical Research-Atmospheres, 1998, 103(D12), 13819-13826.
    Gorbunov, M. E. and K. B. Lauritsen, Analysis of wave fields by Fourier integral operators and their application for radio occultations, Radio Science, 2004, 39(4).
    Gurnett, D. A., D. L. Kirchner, R. L. Huff, et al., Radar soundings of the ionosphere of Mars, Science, 2005, 310(5756), 1929-1933.
    Hajj, G. A., C. O. Ao, B. A. Iijima, et al., CHAMP and SAC-C atmosphericoccultation results and intercomparisons, Journal of Geophysical Research-Atmospheres, 2004, 109(D6).
    Hajj, G. A., R. Ibanezmeier, E. R. Kursinski, et al., IMAGING THE IONOSPHERE WITH THE GLOBAL POSITIONING SYSTEM, Int. J. Imaging Syst. Technol., 1994, 5(2), 174-&.
    Hajj, G. A., E. R. Kursinski, L. J. Romans, et al., A technical description of atmospheric sounding by GPS occultation, Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(4), 451-469.
    Hajj, G. A., L. C. Lee, X. Q. Pi, et al., COSMIC GPS ionospheric sensing and space weather, Terrestrial Atmospheric and Oceanic Sciences, 2000, 11(1), 235-272.
    Hajj, G. A. and L. J. Romans, Ionospheric electron density profiles obtained with the global positioning system: Results from the GPS/MET experiment, Radio Science, 1998, 33(1), 175-190.
    Hammond Allen L. Mars as an Active Planet: The View from Mariner 9, Science, 1972, 175, 286-287
    Han, S. C., C. K. Shum, C. Jekeli, et al., Improved estimation of terrestrial water storage changes from GRACE, Geophysical Research Letters, 2005, 32(7).
    Hinson, D. P., R. A. Simpson, J. D. Twicken, et al., Initial results from radio occultation measurements with Mars Global Surveyor, Journal of Geophysical Research-Planets, 1999, 104(E11), 26997-27012.
    Hocke, K., Inversion of GPS meteorology data, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 1997, 15(4), 443-450.
    Hocke, K., K. Igarashi, M. Nakamura, et al., Global sounding of sporadic E layers by the GPS/MET radio occultation experiment, Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(18), 1973-1980.
    Howard H. T., G. L. Tyler, P. B. Esposito, et al., Mercury: Results on Mass, Radius, Ionosphere, and Atmosphere from Mariner 10 Dual-Frequency Radio Signals, Science, 1974, 185, 179-180
    Hu, X., X. C. Wu, X. Y. Gong, et al., An introduction of mountain-based GPS radio occultation experiments in China, Advances in Space Research,2008, In Press.
    Igarashi, K., A. Pavelyev, K. Hocke, et al., Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data, Earth Planets and Space, 2000, 52(11), 893-899.
    Igarashi, K., A. Pavelyev, J. Wickert, et al., Application of radio holographic method for observation of altitude variations of the electron density in the mesosphere/lower thermosphere using GPS/MET radio occultation data, Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(8-11), 959-969.
    Jakowski, N., A. Wehrenpfennig, S. Heise, et al., GPS radio occultation measurements of the ionosphere from CHAMP: Early results, Geophysical Research Letters, 2002, 29(10).
    Jakowski, N. and K. Tsybulya, Comparison of ionospheric radio occultation CHAMP data with IRI 2001, 2004, 2, 275-279.
    Jensen, A. S., M. S. Lohmann, H. H. Benzon, et al., Full spectrum inversion of radio occultation signals, Radio Science, 2003, 38(3).
    Jodogne, J. C. and S. M. Stankov, Ionosphere-plasmasphere response to geomagnetic storms studied with the RMI-Dourbes comprehensive database, Annals of Geophysics, 2002, 45(5), 629-647.
    Karayel, E. T. and D. P. Hinson, Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation, Radio Science, 1997, 32(2), 411-423.
    Kawamura, S., N. Balan, Y. Otsuka, et al., Annual and semiannualvariations of the midlatitude ionosphere under low solar activity, Journal of Geophysical Research-Space Physics, 2002, 107(A8).
    Kliore A., Dan L. Cain, Gerald S. Levy , et al., Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere, Science,1965, 149, 1243-1248.
    Kliore Arvydas, Gerald S. Levy, Dan L. Cain, et al., Atmosphere and Ionosphere of Venus from the Mariner V S-Band Radio Occultation Measurement, Science, 1967, 158, 1683-1688.
    Kliore A., G. Fjeldbo, B. L. Seidel, and S. I. Rasool Mariners 6 and 7: Radio Occultation Measurements of the Atmosphere of Mars, Science, 1969, 166, 1393-1397.
    Kliore Arvydas, Dan L. Cain, Gunnar Fjeldbo, et al., Preliminary Results on the Atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experimen, Science, 1974, 183, 323-324.
    Kliore Arvydas, Gunnar Fjeldbo, Boris L. Seidel, et al., Atmosphere of Jupiter from the Pioneer 11 S-Band Occultation Experiment: Preliminary Results, Science, 1975, 188, 474-476.
    Kuo, Y. H., X. Zou, S. J. Chen, et al., A GPS/MET sounding through an intense upper-level front, Bulletin of the American Meteorological Society, 1998, 79(4), 617-626.
    Kursinski, E. R., D. Feng, D. Flittner, et al., An active microwave limb sounder for profiling water vapor, ozone, temperature, geopotential, clouds, isotopes and stratospheric winds, Occultations for Probing Atmosphere and Climate, 2004, 173-187.
    Kursinski, E. R., G. A. Hajj, J. T. Schofield, et al., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research-Atmospheres, 1997, 102(D19), 23429-23465.
    Kursinski, E. R., S. Syndergaard, D. Flittner, et al., A microwaveoccultation observing system optimized to characterize atmospheric water, temperature, and geopotential via absorption, Journal of Atmospheric and Oceanic Technology, 2002, 19(12), 1897-1914.
    Kursinski E R, W Folkner, C Zuffada,et al., The Mars Atmospheric Constellation observatory (MACO) concept. In Occultation for Probing Atmosphere and Climate, G. Kirchengast, U. Foelsche and A K Steiner, Springer, 2004, 393-405.
    Larsen, G. B., S. Syndergaard, P. Hoeg, et al., Single frequency processing of Orsted GPS radio occultation measurements, Gps Solutions, 2005, 9(2), 144-155.
    Lin, C. H., C. C. Hsiao, J. Y. Liu, et al., Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure, Journal of Geophysical Research-Space Physics, 2007a, 112.
    Lin, C. H., J. Y. Li, T. W. Fang, et al., Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophysical Research Letters, 2007b, 34(19).
    Lin, C. H., W. Wang, M. E. Hagan, et al., Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophysical Research Letters, 2007c, 34(11).
    Lindal G F, Hotz H B, Sweetnam D N, et al., The atmosphere of Jupiter:An analysis of the Voyager radio occultation measurements.Journal of Geophysical Research,1981,86, 8721-8727.
    Liou, Y. A. and A. G. Pavelyev, Simultaneous observations of radio wave phase and intensity variations for locating the plasma layers in the ionosphere, Geophysical Research Letters, 2006, 33(23).
    Liou, Y. A., A. G. Pavelyev, C. Y. Huang, et al., Simultaneous observation of the vertical gradients of refractivity in the atmosphere andelectron density in the lower ionosphere by radio occultation amplitude method, Geophysical Research Letters, 2002, 29(19).
    Liou, Y. A., A. G. Pavelyev, S. F. Liu, et al., FORMOS AT-3/COSMIC GPS radio occultation mission: Preliminary results, Ieee Transactions on Geoscience and Remote Sensing, 2007, 45(11), 3813-3826.
    Liou, Y. A., A. G. Pavelyev, J. Wickert, et al., Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: a methodological review, GPS Solutions, 2005, 9(2), 122-143.
    Mendillo, M., C. L. Huang, X. Q. Pi, et al., The global ionospheric asymmetry in total electron content, Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(15), 1377-1387.
    Millward, G. H., H. Rishbeth, T. J. FullerRowell, et al., Ionospheric F-2 layer seasonal and semiannual variations, Journal of Geophysical Research-Space Physics, 1996, 101(A3), 5149-5156.
    Pavelyev, A., T. Tsuda, K. Igarashi, et al., Wave structures in the electron density profile in the ionospheric D- and E-layers observed by radio holography analysis of the GPS/MET radio occultation data, Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(1), 59-70.
    Pavelyev, A. G., Y. A. Liou, J. Wickert, et al., Effects of the ionosphere and solar activity on radio occultation signals: Application to CHAllenging Minisatellite Payload satellite observations, Journal of Geophysical Research-Space Physics, 2007, 112(A6).
    Patzold, M., S. Tellman, B. Hausler, et al., A sporadic third layer in the ionosphere of Mars, Science, 2005, 310(5749), 837-839.
    Picardi, G., Sorge, S., Seu, R., et al., MARSIS: Models and System Analysis, INFO-COM, University of Rome, Technical Report, MRS-001/005/99, 1999.
    Ren, Z. P., W. X. Wan, L. B. Liu, et al., Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere, Geophysical Research Letters, 2008, 35(5).
    Rishbeth, H., How the thermospheric circulation affects the ionospheric F2-layer, Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60(14), 1385-1402.
    Rishbeth, H. and I. C. F. Muller-Wodarg, Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer, Annales Geophysicae, 2006, 24(12), 3293-3311.
    Rishbeth, H., I. C. F. Muller-Wodarg, L. Zou, et al., Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 2000a, 18(8), 945-956.
    Rishbeth, H., K. J. F. Sedgemore-Schulthess and T. Ulich, Semiannual and annual variations in the height of the ionospheric F2-peak, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 2000b, 18(3), 285-299.
    Rocken, C., R. Anthes, M. Exner, et al., Analysis and validation of GPS/MET data in the neutral atmosphere, Journal of Geophysical Research-Atmospheres, 1997, 102(D25), 29849-29866.
    Sagan Carl and Joseph Veverka, Martian Ionosphere: A Component Due to Solar Protons, Science, 1967, 158, 110-112.
    Schmidt, T., S. Heise, J. Wickert, et al., GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters, Atmospheric Chemistry and Physics, 2005, 5, 1473-1488.
    Schreiner, W., C. Rocken, S. Sokolovskiy, et al., Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission, Geophysical Research Letters, 2007, 34(4).
    Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, et al., Analysis andvalidation of GPS/MET radio occultation data in the ionosphere, Radio Science, 1999, 34(4), 949-966.
    Soffen G. A. and C. W. SNYDER, The First Viking Mission to Mars, Science, 1976, 193, 759-766.
    Sokolovskiy, S. V., C. Rocken, D. H. Lenschow, et al., Observing the moist troposphere with radio occultation signals from COSMIC, Geophysical Research Letters, 2007, 34(18).
    Stankov, S. M. and N. Jakowski, Topside ionospheric scale height analysis and modelling based on radio occultation measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(2), 134-162.
    Steiner, A. K., G. Kirchengast, M. Borsche, et al., A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records, Journal of Geophysical Research-Atmospheres, 2007, 112(D22).
    Steiner, A. K., G. Kirchengast and H. P. Ladreiter, Inversion, error analysis, and validation of GPS/MET occultation data, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 1999, 17(1), 122-138.
    Straus, P. R., Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiment, Advances in Space Research, 2007, 39(5), 793-802.
    Syndergaard, S., On the ionosphere calibration in GPS radio occultation measurements, Radio Science, 2000, 35(3), 865-883.
    Syndergaard, S., Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique.Scientific Report 99-6, Danish Meteorological Institute, Copenhagen, Denmark.1999
    Tsai, L. C. and W. H. Tsai, Improvement of GPS/MET ionospheric profiling and validation using the Chung-Li ionosonde measurements and theIRI model, Terrestrial Atmospheric and Oceanic Sciences, 2004, 15(4), 589-607.
    Tyler, G. L., G. Balmino, D. P. Hinson, et al., Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit, Journal of Geophysical Research-Planets, 2001, 106(E10), 23327-23348.
    von Engeln, A., S. Buhler, G. Kirchengast, et al., Temperature profile retrieval from surface to mesopause by combining GNSS radio occultation and passive microwave limb sounder data, Geophysical Research Letters, 2001, 28(5), 775-778.
    Wang, J. S. and E. Nielsen, Behavior of the Martian dayside electron density peak during global dust storms, Planetary and Space Science, 2003, 51(4-5), 329-338.
    Wang, J. S. and E. Nielsen, Evidence for topographic effects on the Martian ionosphere, Planetary and Space Science, 2004a, 52(9), 881-886.
    Wang, J. S. and E. Nielsen, Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor, Annales Geophysicae, 2004b, 22(6), 2277-2281.
    Wang, K. Y. and S. C. Lin, First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/COSMIC constellation, Geophysical Research Letters, 2007, 34(12).
    Wang, X. and D. R. Lu, Comparative analysis of inversion methods of retrieving atmospheric profiles with GPS occultation measurements, Chinese Journal of Geophysics-Chinese Edition, 2007, 50(2), 346-353.
    Ware, R., M. Exner, D. Feng, et al., GPS sounding of the atmosphere from low earth orbit: Preliminary results, Bulletin of the American Meteorological Society, 1996, 77(1), 19-40.
    Wickert, J., G. Beyerle, R. Konig, et al., GPS radio occultation with CHAMPand GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding, Annales Geophysicae, 2005, 23(3), 653-658.
    Wickert, J., C. Reigber, G. Beyerle, et al., Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophysical Research Letters, 2001, 28(17), 3263-3266.
    Wood A. T., Jr., R. B. Wattson, et al, Venus: Estimates of the Surface Temperature and Pressure from Radio and Radar Measurements, Science, 1968, 162, 114-116.
    Wu, C. C., C. D. Fry, J. Y. Liu, et al., Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996-August 1997, Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(3-4), 199-207.
    Wu, D. L., C. O. Ao, G. A. Hajj, et al., Sporadic E morphology from GPS-CHAMP radio occultation, Journal of Geophysical Research-Space Physics, 2005, 110(A1).
    Yonezawa, T., The solar-activity and latitudinal characteristics of the seasonal, non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and at midnight in middle and low latitudes, Journal of Atmospheric and Terrestrial Physics, 1971, 33(6), 889-907.
    Yu, T., W. X. Wan, L. B. Liu, et al., Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years, Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(18), 1691-1701.
    Yunck, T. P., C. H. Liu and R. Ware, A history of GPS sounding, Terrestrial Atmospheric and Oceanic Sciences, 2000, 11(1), 1-20.
    Zeng, Z., X. Hu and X. J. Zhang, Applying artificial neural network to the short-term prediction of electron density structure using GPSoccultation data, Geophysical Research Letters, 2002, 29(9).
    Zou, L., H. Rishbeth, I. C. F. Muller-Wodarg, et al., Annual and semiannual variations in the ionospheric F2-layer. I. Modelling, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 2000, 18(8), 927-944.
    Zou, H., J. S. Wang and E. Nielsen, Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation - art. no. A07305, Journal of Geophysical Research-Space Physics, 2006, 111(A7), 7305-7305.
    杜起飞,孙越强,刘正廷,陶鹏,李长源,余方,. GPS掩星探测天线相位中心的校准[J].空间科学学报,2006,26(6),487-490.
    杜晓勇,王景青,薛震刚,张训械, GNSS掩星电离层观测的模拟试验,解放军理工大学学报(自然科学版),2002,3(1),71-74.
    郭鹏,严豪健,黄珹,洪振杰,上海天文台CHAMP掩星资料处理结果的统计分析, 天文学报,2006,47(2),192-201.
    郭鹏,无线电掩星技术与CHAMP掩星资料反演[博士论文],中国科学院研究生院(上海天文台),2006.
    胡雄,曾桢,张训械,张冬娅,肖存英,大气GPS掩星观测反演方法,地球物理学报,2005,48(4),768-774.
    胡雄,张训械,吴小成,肖存英,曾桢,宫晓艳,山基GPS掩星观测实验及其反演原理,地球物理学报,2006,49(1),22-27.
    宫晓艳,胡雄,吴小成,张训械.大气掩星反演误差特性初步分析,地球物理学报,2007,50(4),1017~1029.
    宫晓艳,胡雄,吴小成等,雾灵山GPS掩星观测事件统计分析,应用气象学报,2008,19(3).
    李洪涛,许国昌,薛鸿印等,GPS应用程序设计,北京:科学出版社,2000.
    刘大杰,施一民,过静珺,全球定位系统(GPS)的原理与数据处理,上海:同济大学出版社,1996.
    刘敏,郭鹏,对称模式下的CHAMP弯曲角掩星数据同化,中国科学院上海天文台年刊,2005,1,39-47.
    刘振兴等,太空物理学,哈尔滨:哈尔滨工业大学出版社,2005.
    王鑫,吕达仁,薛震刚, GNSS掩星中大气水汽的非线性反演,地球物理学报,2005,48(1),32-38.
    王鑫,吕达仁, GPS无线电掩星技术反演大气参数方法对比,地球物理学报,2007,50(2),346-353.
    王鑫,GNSS大气与海洋遥感技术及其初步应用研究,中国科学院研究生院(大气物理研究所),2007.
    吴小成,胡雄,张训械,Jens Wickert,电离层GPS掩星观测改正TEC反演方法. 地球物理学报,2006,49(2),328-334.
    吴小成,胡雄,宫晓艳,张训械,三维模式约束的电离层掩星反演方法,地球物理学报,2008,51(3).
    肖宏波,电离层层析成像及掩星反演方法[硕士论文],西安电子科技大学,2007.
    熊年禄,唐存琛,李行健,武汉:武汉大学出版社,1999.
    徐继生,邹玉华,马淑英. GPS地面台网和掩星观测结合的时变三维电离层层析. 地球物理学报,2005,48(4),759-767.
    徐晓华,利用GNSS无线电掩星技术探测地球大气的研究[博士论文],武汉大学,2003.
    蒋虎, GPS无线电掩星技术反演地球大气参数中若干问题的研究[博士论文],中国科学院研究生院(上海天文台),2002.
    曾桢,胡雄,张训械,Makoto Abo,无线电掩星和激光雷达观测结果比较,空间科学学报,2001,21(2),165-171.
    曾桢,地球大气无线电掩星观测技术研究[博士论文],中国科学院研究生院(武汉物理与数学研究所),2003.
    曾桢,胡雄,张训械,万卫星,电离层GPS掩星观测反演技术,地球物理学报,2004,47(4),578-583.
    张贵霞, GPS掩星振幅反演的若干问题研究[博士论文],中国科学院研究生院(上海天文台),2004.
    张训械, P.Hoeg, G.B.Larsen, Stig Syndergaard, Martin B.S, Jakob G.R,S.Fukao, Kiyoshi lgarashi, Seiji Kawamura,奥斯特/GPS掩星与地面雷达联合观测电离层电子密度的初步结果,全球定位系统,2000,25(3),1-5.
    张训械,曾桢,胡雄,张东娅,山基无线电掩星模拟,电波科学学报,2004,19(5),530-536.
    邹玉华, GPS地面台网和掩星观测结合的时变三维电离层层析[博士论文],武汉大学,2004.
    周义炎,吴云,乔学军,张训械, GPS掩星技术和电离层反演,大地测量与地球动力学,2005,25(2),29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700