三视场恒星识别天文导航方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究三视场天文定位定向光电测量的关键技术。它归类于天文导航技术,通过观测天体实现载体平台的定位定向。它根据天体精确坐标位置及其运动规律,测量天体在载体参考基准面的坐标参数,计算出载体位置信息与方向信息。
     通过分析恒星数量的分布特征、大气特性、CCD特性发现:在白天使用近红外波段探测恒星实现导航定位比可见光波段效率高;在夜晚使用可见光波段探测恒星实现导航定位成本更加低廉,易于验证基本原理。仿真实验确定用H波段红外探测实现白昼导航定位可行性强。仿真分析了单视场、三视场的导航星分布概率,分析结果可指导红外波段和可见光波段的光学系统参数设计,并建立满足定位定向需求的星表和星识别数据库。
     研究高效健壮的三视场星图识别方法。此方法自动进行星图识别以实现导航定位定向。将提取的恒星从图像平面转换到载体坐标系中来实现三视场间的识别,这可获得更高的识别效率。系统据不同的初始状态执行不同的识别模式,据初始条件的不同分为全天球识别、局部识别、跟踪识别这三种模式。若地理位置信息和方向信息均未知,则执行全天球识别;若地理信息已知,而方向信息未知,则执行局部识别模式;如果已有准确的初始方位和地理位置,则执行跟踪识别。多模式的识别方法,将三个视场中星点作为整体来处理,这提高了识别效率和定位定向的正确率。分析表明三视场识别比单视场识别的先决条件概率高;局部识别的正确率是全天球识别正确率的3.7倍。
     研究由三颗已识别恒星构造的定位定向信息元求解载体当前位置和方向的数学模型,并通过仿真实验验证其正确性。在空间直角坐标系内建立球面天文圆模型,用二个以上球面天文圆求解交点的方法进行位置定位;建立定位的优化求解模型,给出求取优化解的方法。分析了定位和定向之间的联系,定位之后据模型求出载体的方位信息。它撇弃了传统舰船天文定位定向中使用多星定位时采用球面三角形的建模方法,避免了概念繁多、计算复杂的问题。与传统的优化求解建模相比,概念清晰,目标函数简单,容易求解。
     通过建立星图计算和定位定向导航软件进行仿真分析,结果表明:采用三视场天文定位定向时,定位的误差均值为257.9m,定向的误差均值为12.4″。使用三视场光电测量的方法进行定位和定向是可靠而有效的。
This paper studies celestial fix by the three fields of view of the opticalmeasurement. It is classified as celestial navigation techniques. According to theoptical measurement method, it obtains the stars' position vector in the carrierreference system to calculate the carrier's position and direction information.
     By analyzing the distribution of stars, atmospheric properties, CCDcharacteristics, it founds that navigation efficiency by using near-infrared banddevices is higher than visual band at daytime. Simulation experiments show that it isfeasible to detect stars by H-band device at daytime in navigation, and the stellardistribution of the probability of three optical apertures is extremely higher than oneoptical aperture’s. The simulation results can guide the design of optical systemparameters. Paper presents an algorithm to extract the star catalog and staridentification database which are used in three optical aperture navigation device.
     The thesis provides automatic efficient and robust star pattern recognitionmethods used in three optical aperture navigation device. Identification methodextracts the stellar points from the acquired images, and then the star positions areconverted from the image plane coordinate system to the body coordinate system toperform the three optical aperture stars identification; this can get higher recognitionefficiency. There are three recognition modes. According to the different initialconditions, the recognition modes are classified as the entire celestial sphere identification, local identification, and tracking identification. If geographicinformation and direction information are unknown, system performs the entirecelestial sphere identification mode. If geographic information is known, but notdirection information, then system performs local identification mode. If geographicinformation and direction information are all known, system performs the trackingidentification mode. Stars in three aperture optical fields are identified as a whole inmulti-pattern recognition method, which combines the information of the initial stateto identify; this improves the recognition efficiency of the system and navigationefficiency. Analysis showed that the prerequisite probability of the identification ofthree apertures is higher than the single field of view’s. The correct rate of localidentification is3.7times the entire celestial sphere.
     A navigation information element is constructed by an identified stellar. Thisthesis presents a concise mathematical model to determine the location and directionof the carrier, and then verifies the correctness of this navigation model bysimulation tests. Spherical astronomy circle model is established in spacerectangular coordinate system. Model by solving the two or more observationsspherical astronomy circle intersection determines the carrier geographical locationand the carrier position. And then an optimization solution model is proposed inorder to get an optimal result. Compared with the traditional solution model, theconcept of this method is clear, concise.
     Star chart calculation and navigation simulation software simulation analysisshows that, the average positioning error of three aperture optical navigation deviceis257.9m; the orientation error was12.4asc. Three fields of view celestial fix is areliable and effective.
引文
[1]王安国.导航战背景下的天文导航技术——天文导航技术的历史、现状及其发展趋势[C].天文学进展——中国天文学会首届学术大会论文集,2001.325-330
    [2] Wikipedia. Iran–U.S. RQ-170incident [EB/OL].http://en.wikipedia.org/wiki/Iran%E2%80%93U.S._RQ-170_incident
    [3]张国良,曾静著.组合导航原理与技术[M].西安:西安交通大学出版社,2005.1-5
    [4]房建成,宁晓琳.天文导航原理和设计[M].北京:航空航天大学出版社,2006
    [5]何炬.国外天文导航技术发展综述[J].船科学技术,2005,27(5):91-96
    [6]房建成,宁晓琳,田玉龙.航天器自主天文导航原理与方法[M].北京:国防工业出版社,2006
    [7]于开峰,吴德伟,戚君宜.天文导航技术应用及发展研究[J].导航技术,2006(1):21-25
    [8]中国人民解放军海军潜艇学院科研部.六分仪电子测控装置[P].中国:00213380.6,2000-12-27
    [9]王安国.现代天文导航及其关键技术[J].电子学报,2007,35(12):2348-2353
    [10]胡稳才,吴广华,黄丽卿.航海电子六分仪测角传感系统研究[J].上海海运学院学报,23(2):17-22
    [11]赵海波,郭立红,陈长喜.基于卡尔曼滤波的天文定位算法[J].光电工程,2006,33(8):86-89
    [12] Trex Enterprises Corp. Daytime Stellar Imager For AttitudeDetermination[P].USA: US7,349,803B2, Mar.25,2008-3-25
    [13]亚姆肯公司.天体定位仪[P].中国:00804480.5,2002-3-27
    [14]孟政.GPS(DGPS)全球定位系统在航海领域中的应用[J].2005,5:27-30
    [15]岳亚洲,田宇,张晓冬.机载惯性-天文组合导航研究[J].光学与光电技术,2008,6(4):1-5
    [16]徐维安.光谱滤波装置在白天测星中的应用[J].光学精密工程,1996,4(4):84-88
    [17]续敏,王建立,陈涛.短波红外用于白天卫星探测的研究[J].光学技术,2008,34(2):277-34
    [18]曹文达.红外波段太阳观测技术方法研究[D].北京:中国科学院研究生院,2001
    [19]沈湘衡,李清军,王建军.利用视频判读进行白天测星方法的研究[J].光学精密工程,2000,8(2):189-191
    [20]万敏,苏毅,杨锐等.提高白天观测星体信噪比的方法研究[J].强激光与粒子束,2003,15(12):1151-1154
    [21]陈新锦.空间目标光谱探测的信噪比分析[D].北京:中国科学院研究生院,2007
    [22]华建军,张建强.空中目标红外特性的计算方法[J].激光与红外,2001,32(3):166-168
    [23]李青,田国昌,汪建业.低信噪比下星光点目标的检测[J].大气与环境光学学报,2008,3(1):77-80
    [24]邹志.一种基于原则的昼夜星体检测方法[J].光学与光电技木,2006,4(3):56-58
    [25]王学伟,王春歆,张玉叶.点目标图像信噪比计算方法[J].电光与控制,2010,17(1):18-21
    [26]叶松,方勇华,孙晓兵等.一种基于偏振信息的恒星白天观测方法[J].大气与环境光学学报,2007,2(3):222-226
    [27]魏合理,陈秀红,余凯等.白天CCD观星可探测极限星等值分析[J].强激光与粒子束,2007,19(2):188-192
    [28]张同双,李清军,沈湘衡.提高海上白天测星能力的方法研究[J].光学精密工程,2000,8(3):261-264
    [29] International Earth Rotation and Reference Systems Service Central Bureau.IERS Technical Note No.32[EB/OL].http://www.iers.org/iers/publications/tn/tn32/,2004
    [30] Wikipedia. Geodetic system [EB/OL].http://en.wikipedia.org/wiki/Geodetic_system
    [31] Wikipedia. World Geodetic System [EB/OL].http://en.wikipedia.org/wiki/World_Geodetic_System
    [32]刘真.基于天文导航的无人机定位方法研究[D].西安:西安电子科技大学,2009
    [33]刘俊峰.三维转动的四元数表述[J].大学物理,2004,23(4):39-62
    [34] Mathworks. Representations of Body Orientation [EB/OL].http://www.mathworks.cn/help/toolbox/physmod/mech/gs/f13-7317.html
    [35] Office of GEOINT Sciences. WGS84[EB/OL].http://earth-info.nga.mil/GandG/wgs84/
    [36] wolfram. Rotation Matrix [EB/OL].http://mathworld.wolfram.com/RotationMatrix.html
    [37] Wikipedia. Rotation Matrix [EB/OL].http://en.wikipedia.org/wiki/Rotation_matrix
    [38] Wikipedia. Euler angles [EB/OL]. http://en.wikipedia.org/wiki/Euler_angles
    [39] Wikipedia. Proxima Centauri [EB/OL].http://en.wikipedia.org/wiki/Proxima_Centauri
    [40]百科.比邻星[EB/OL]. http://baike.baidu.com/view/146676.htm
    [41] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions onPattern Analysis and Machine Intelligence,22(11):1330-1334,2000.
    [42] Z. Zhang. Flexible Camera Calibration by Viewing a Plane from UnknownOrientations. International Conference on Computer Vision (ICCV'99), Corfu, Greece,pages666-673, September1999.
    [43] Jean-Yves Bouguet. Description of the calibration parameters [EB/OL].http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
    [44]陈刚,陈华,车仁生.空间点的立体视觉传感器标定方法[J].光学精密工程,2007,15(9):14439-1444
    [45]孙军华,吴子彦,刘谦哲,等.大视场双目视觉传感器的现场标定[J].光学精密工程,2009,17(3):633-640
    [46] J. Heikkila, O. Silven. A four-step camera calibration procedure with implicitimage correction[C]. IEEE Computer Society Conference on Computer Vision andPattern Recognition (1997), pp.1106-1112
    [47] R. Y. Tsai. A versatile camera calibration technique for high accuracy3Dmachine vision metrology using off-the-shelf TV cameras and lenses [J]. RoboticsAutomat,1987,3(4):323-344
    [48] Wikipedia. Coordinated Universal Time [EB/OL].http://en.wikipedia.org/wiki/Coordinated_Universal_Time
    [49] George H. Kaplan. The IAU Resolutions on Astronomical ReferenceSystems,Time Scales, and Earth Rotation Models Explanation andImplementation[EB/OL].http://www.usno.navy.mil/USNO/astronomical-applications/publications/Circular_179.pdf,2010-6-6
    [50]金文敬,李东明,唐正宏.未来的国际天球参考架[J].紫金山天文台台刊,2003,22(1):64-68
    [51]张捍卫,许厚泽,王爱生.天球参考系与地球参考系之间的坐标转换研究进展[J].2005,30(5):106-109
    [52]魏学,金文敬,须同祺.天球参考系及其现状[J].天文学进展,1992,10(4):284-290
    [53]张捍卫,许厚泽,王爱生.天球参考系的基本理论和方法研究进展[J].测绘科学,2005,30(2):111-113
    [54]金文敬,夏一飞,唐正宏,王叔和.国际天球参考系[J].天文学进展,1999,17(4):282-289
    [55]张云飞,郑勇,苏牡丹.基于IERS2003规范的坐标系转换实现及其方案应用[J].测绘科学,2005,30(6):96-112
    [56] G. H. KAPLAN, J. A. HUGHES, P. K. SEIDELMANN, et al. Mean andApparent Place Computations In The New IAU System. III. Apparent, Topocentric,and Astrometric Places Of Planets And Stars [J]. The AstronomicalJournal,1989,97(4):1197-1210
    [57]连重绪,王书晓,刘鑫.用GPS导航仪求天体计算方位和高度[J].海军大连舰艇学院学报,2003,26(6):23-25
    [58]王桂如,刘利强.一种求恒星视位置的新算法[J].应用科技,2006,33(2):36-39
    [59]王文武,王辉,孙枫.恒星视位置的长期计算法[J].哈尔滨工程大学学报,1998,19(6):35-41
    [60]王安国,贾传荧,孙鹏.航用行星高精度视位置计算研究[J].中国航海,2005,1:30-34
    [61]王占统,韩春好.基于星心坐标系的视位置计算[J].测绘学院学报,2005,22(2):88-90
    [62]王生春.恒星视位置及观测指向角的计算方法[J].通信与测控,68:47-57
    [63]施闻明,杨晓东.天文定位中选星系统的建模与仿真[J].系统仿真学报,2007,19(7):1428-1568
    [64]蔡志武,韩春好,陈金平.一种高精度星载导航星库的构建方法[J].测绘科学技术学报,2006,23(1):30-32
    [65]陈元枝,郝志航,王国辉.适用于星敏感器的导航星星库制定[J].光学精密工程,2000,8(4):332-334
    [66]田宏,林玲,郝永杰等.星敏感器导航星表建立[J].空间控制技术与应用,2010,36(3):43-46
    [67]蔡志武,韩春好,陈金平.一种高精度星载导航星库的构建方法[J].测绘科学技术学报,2006,23(1):29-32
    [68]郑万波,刘智,郝志航.二维精简索引分层导航星库的构造[J].吉林大学学报(信息科学版),2003,21(2):123-127
    [69]全伟,房建成.天文导航系统半物理仿真研究[J].系统仿真学报,2006,18(2):353-358
    [70]全伟,房建成.高精度星图模拟及有效性验证新方法[J].光电工程,2005,32(7):22-26
    [71]庄显忠.快速区域星图显示与分析[D].南京:南京航空航天大学,2006
    [72]赵明波,刘雨,陶征宇.一种机载天文导航星图模拟的实现方法[J].光电子技术,2008,28(3):185-192
    [73]张伟,潘海斌,鲍文卓等.星空背景数字图像的生成[J].光学精密工程,2009,17(3):676-17
    [74]王文华,何斌,韩双丽等.星上CCD成像非均匀性的实时校正[J].光学精密工程,2010,18(6):1420-1428
    [75] E. H g, C. Fabricius, V.V. Makarov, et al. The Tycho-2Catalogue of the2.5Million Brightest Stars [J]. Astronomy and Astrophysics,2000,355:27-30
    [76] IPAC. The Two Micron All Sky Survey at IPAC [EB/OL].http://www.ipac.caltech.edu/2mass/
    [77] Wikipedia. Sunlight [EB/OL]. http://en.wikipedia.org/wiki/Sunlight
    [78]李志刚.大气折射的计算[J].陕西天文台台刊,1997,20:95-100
    [79]李双刚,聂劲松.大气折射对光电探测定位的影响[J].红外与激光工程,2008,37:170-173
    [80]张学军,姜文汉.大气折射和大气色散的数值计算及结果分析[J].光电工程,2002,29(2):1-34
    [81]杨晓东,姜璐.基于天体红外测量的蒙气差计算方法[J].红外与激光工程,2002,31(2):121-124
    [82]王长波,王章野,曾运等.考虑大气折射的天空场景真实感绘制[J].计算机学报,2005,28(6):939-949
    [83]穆军.天文大气折射的研究[D].北京:中国科学院研究生院,2004
    [84]张捍卫,冒蔚,铁琼仙.天文大气折射与映射函数的数值模拟[J].辽宁工程技术大学学报(自然科学版),2008,27(1):32-34
    [85]何俊华,陈良益.一种大气折射数据修正方法[J].应用光学,2004,25(1):58-59
    [86]李德良,阮锦.一种适用于星敏感器的星点提取方法[J].激光与红外,200939(12):1347-1350
    [87]潘波,杨根庆,刘勇.星点质心定位算法最优门限研究[J].光学精密工程,2008,16(9):1788-1792
    [88] SANDRIN T. Optimized centroid computing in a Shack-Hartmann sensor [J].Advancements in Adaptive Optics,SPIE,2004,5490:1238-1246
    [89] M K Samaan. Toward faster and more accurate star sensors using recursivecentroiding and star identification [D]. Texas,University of Texas,2003
    [90] Carl Christian Liebe. Pattern Recognition of Star Constellations for Spacecraft[J]. Applications IEEE AES Systems Magazine,1993
    [91] B.M.G. Lamy au Rousseau, J.Bostel. New star pattern recognition algorithm foraps star tracker application: Oriented triangles [J]. IEEE AerospaceElectron.Syst.Mag,2005:27-31
    [92]邬惠国,潘琪祥.两种天体高度定位的直接解法[J].上海海运学院学报,1997,18(4):87-93
    [93]张圣云,宋辉,潘红华.天文定位新方法的研究[J].天津航海,2000,3:1-4
    [94]秦晓生.一种不受推算船位精度限制的天文定位程序[J].远洋科技,1991,18(1):73-78
    [95]王富华.计算法求取天文船位[J].天津航海,1998,1:4-8
    [96]张圣云,杨仕才,王连柱.空间解析几何法天体定位精度分析[J].天津航海,2004,2:10-12
    [97]唐建博.大视场多星定位定向原理[J].船舰光学,2001,37(2):22-25
    [98]张轶元.天文定位公式推导过程[J].船舰光学,2002,38(1):17-23
    [99]翟立新,唐正平,朱宝义.天文观测船位的一种直接解算法[J].航海技术,1997,6:14-16
    [100]毕修颖.一种天文定位的计算方法[J].大连海运学院学报,1993,19(2):135-138
    [101]张超,郑勇,李长会.用任意星进行天文定向的研究[j].测绘科学,2005,30(4):30-32
    [102] Kaplan, G. H., Practical Sailing Formulas for Rhumb-Line Tracks on an OblateEarth[J].Navigation,1995,42(2):313-326
    [103] Kaplan, G. H., Determining the Position and Motion of a Vessel from CelestialObservations[J].Navigation,1995,42(4):631-648
    [104] Kaplan, G. H., A Navigation Solution Involving Changes to Course andSpeed[J].Navigation,1996,43(4):469-482
    [105] Kaplan, G. H., The Motion of the Observer in CelestialNavigation[J].Navigator's Newsletter,1996,51:10-14
    [106] Kaplan, G. H., New Technology for Celestial Navigation[J].Proceedings,Nautical Almanac Office Sesquicentennial Symposium,1999:239-254
    [107]昊广华.测量误差与天文定位误差[J].集美大学学报(自然科学版),2006,11(1):75-78
    [108]宋耘.减小天文定位误差的方法[J].舰船光学,1998,3:20-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700