机载捷联惯性/天文组合导航系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天文导航是一种独立的、近自主的导航方式,天文导航通过天体敏感设备观测天体,从而直接解算出载体的位置、姿态等信息。天文导航所观测的目标是不能被人为摧毁和破坏的自然天体,且不受到地域限制,因此天文导航成为现代高科技战争中不可或缺的重要的导航方式,是各军事强国的研究重点。本文针对天文导航的特点,对机载环境下捷联惯性/天文组合导航系统中的惯性/天文松组合技术、惯性/天文紧组合技术、以及适应惯性/天文组合系统应用的非线性滤波方法等关键技术进行了深入研究,为提高惯性/天文组合导航系统的性能奠定理论基础。
     本文结合机载天文导航定位的应用需求,深入研究天文导航定位的基本原理,结合星体跟踪器工作原理研究并提出了机载捷联安装方式下的天文导航定位算法。针对机载捷联安装方式下天文导航定位受到水平姿态基准精度制约的问题,提出了基于机载天文定姿修正实现的高精度虚拟水平姿态基准构造技术,并进一步提出了基于虚拟水平姿态基准修正的机载捷联天文定位方案及算法,有效提高了天文导航定位精度。
     为有效利用天文导航系统信息,实现对惯性误差的综合修正,提高组合系统的综合性能,本文研究了基于天文位置、姿态观测的机载惯性/天文松组合导航系统。针对常规惯性/天文组合模式中,天文导航定位系统只能提供二维地理经、纬度信息,研究并提出了利用气压高度表辅助的惯性/天文松组合导航方案,解决了惯性导航系统高度通道不可观测的问题。基于天文星光姿态观测信息,本文从加性四元数误差模型出发,研究并提出了基于加性四元数误差补偿的机载捷联惯性/天文姿态组合导航方案和算法,推导了四元数误差传播特性模型,构建了基于加性四元数的机载捷联惯性/天文姿态组合导航方案和算法模型,为提高组合系统姿态定位精度奠定基础。
     为进一步提高机载惯性/天文组合导航系统性能,在惯性/天文松组合导航模式研究基础上,对惯性/天文组合导航方案和算法进行了更为深入的研究。通过对天文角度观测关系的研究,建立了基于位置误差建模的机载捷联惯性/天文紧组合导航模型,研究并提出了基于位置误差建模的机载捷联惯性/天文角度观测紧组合算法。以此为基础,本文还进一步考虑了天文导航系统捷联安装中的水平姿态基准误差,研究并提出了考虑捷联姿态误差影响的机载捷联惯性/天文角度紧组合导航方法。
     考虑到天文观测过程中通常需要利用惯性系统提供的位置和姿态信息,因此其观测信息输出不可避免会受到惯性系统误差的影响,导致机载惯性/天文组合导航系统中的量测信息具有较强的非线性特性。为此,本文在惯性/天文角度观测紧组合导航工作模式下,针对性地分析了机载捷联惯性/天文组合非线性量测特性,在对比和分析各种非线性滤波方法的基础上,构建了机载捷联惯性/天文非线性组合方案。研究并提出了基于简化Unscented Kalman Filter(UKF)的机载惯性/天文非线性天文角度量测紧组合算法,有效解决惯性/天文组合中的非线性量测问题。
     最后,本文在上述理论研究的基础上,还设计了机载捷联惯性/天文组合导航系统综合仿真平台,以实现对机载惯性/天文组合导航系统性能的综合验证。本文紧密结合机载惯性/天文组合导航应用需求,对机载惯性/天文组合导航所涉及的松组合、紧组合等关键技术进行了深入和系统的研究,论文的研究成果对于惯性/天文组合导航系统的工程应用具有重要的借鉴意义。
Celestial navigation is an independent, near autonomous navigation technology to determineone's geographic position and attitude by indentifying the observed celestial objects. Many powerfulmilitary nations put great efforts in the research on celestial navigation technology which is one of themost important navigation technologies in modern high-tech war for its independent characterbecause that the selected celestial objects for celestial observation can’t be destroyed by humanactivities and they are not subject to geographical restricts. Based upon the characteristics of celestialnavigation, this dissertation elaborates the research on key techniques including the loose integratedSINS/CNS technique and tight integrated SINS/CNS technique with the airborne environment, andthe nonlinear filtering adapting to SINS/CNS integrated system. The research provides the theoreticalbasis to improve its performances for SINS/CNS integrated system.
     Considering the requirements for celestial position determination in airborne application, thispaper explores the basic theory of celestial position algorithm as the beginning and the celestialposition algorithm adaptive to airborne environment when the star tracker is strap assembled on aplane has been proposed. With the intention to remove the restrictions caused by horizontal coordinatein celestial position determination, the technique of establishing high precision horizontal attitudecoordinate was studied. The improved strap-down celestial navigation localization algorithm andproject based on virtual horizontal attitude coordinate correction was elaborated, which improved theprecision of celestial position determination effectively.
     To correct the inertial error effectively through the celestial navigation system and improve thecomprehensive performances of the integrated navigation system, this paper studies the SINS/CNSloose integrated navigation system which is based on the measurement of celestial position andattitude information.To insure the observability of altitude channel of inertial navigation system, thescheme of integrated SINS/CNS assisted by barometric altimeter is also proposed. Furthermore, thispaper discusses the additive quaternion model with the attitude error of inertial system based on thecelestial attitude information. And a new inertial/celestial attitude integrated scheme based on thecompensation of additive quaternion with attitude error is presented which lays the foundation forimproving the precision of integrated system.
     To further increase the performance of SINS/CNS integrated system, the algorithm of SINS/CNSintegrated navigation based on celestial angle observation is scrutinized on the basis of study on loose integrated mode. The tight integrated technology of SINS/CNS with the celestial angle measurementis studied on the analysis of the height angle and the azimuth angle information. And the tightintegrated mode based on position errors has been elaborated. Concerning the attitude errors in CNShorizontal attitude coordinate, the tight integrated SINS/CNS mode with the consideration of attitudeerrors has been presented in this dissertation.
     Considering that the celestial measurement would be inevitably affected by the inertialnavigation error which leads that the observation equations are nonlinear,the nonlinear characteristicof measurement for SINS/CNS is analyzed and the unscented Kalman filter(UKF) is adopted toestablish the INS/CNS nonlinear integrated system. The tight integrated project of airborne INS/CNSwith simplified UKF based on celestial angle observation difference has been presented which solvesthe problem of nonlinear observation in SINS/CNS integrated navigation system.
     Finally, to verify the performance of the SINS/CNS integrated navigation system proposed above,this paper designs a simulation platform for SINS/CNS integrated navigation system with detailedscheme.Focusing on the application of SINS/CNS integrated navigation system for flight, thisdissertation systematicly elaborated the research on both loose and tight integrated SINS/CNS.Theresearch on SINS/CNS integrated navigation system conducted by the author has importantsignificance on the engineering application.
引文
[1]于开峰.天文导航技术的军事应用及发展.国防科技基础,2006(7):26-28.
    [2]秦永元,张洪钺,汪叔华.卡尔曼滤波和组合导航系统[M].西安:西北工业大学出版社,1998.
    [3]刘建业,曾庆化,赵伟,熊智.导航系统理论与应用.西安:西北工业大学出版社,2009.
    [4] Zbrutsky A.V., Nesterenko O.I., Lykholit N.I., et al., Astro inertial navigation system for aircraft applic-ations.Proceedings of the9th Saint Petersburg International Conference on Integrated Navigation Systems,Russia,2002:152–154.
    [5] CEiiang Y.T., Changl F.R., Wang L.S. et al. Data Fusion of Three Attitude Sensors. SCIE,2011:234-239.
    [6]何炬.国外天文导航技术发展综述.舰船科学技术,2005,27(5):91-96.
    [7] Van Allen J.A. Basic principles of celestial navigation. American Journal of physics,2004,72(11):1418-1424.
    [8]房建成,宁晓琳.天文导航原理及应用.北京:北京航空航天大学出版社,2006:69-90.
    [9] Ted H, Doug A,Mitch M. The B2Stealth Bomber Integrated Navigation System,23rd Joint Service Data Exchangefor Guidance,Navigation and control,1996.
    [10] Atkinson D, Agnew J, Miller M. The B-2Navigation system. Aerospace and Electronnics Conference, Proceedingof the IEEE1993nation.
    [11] Northnop Gruman. LN-120G Stellar-Inertial Navigation System.Navigation Syatem,2006.
    [12] Sungkoo Bae Bob, Schutz.E. Geosciences Laser Altimeter System Precision attitude determination. Center forSpace Research. The University of Texas at Austin.2002.
    [13] Sigel D.A. Wettergreen D. Star tracker celestial localization system for a lunar rover. International Conference onIntelligent Robots and Systems. San Diego, CA, US A,2007.
    [14] Hosken R W., Wertz J R. Microcosm Autonomous Navigation System On-Orbit Operation. AAS95-047,18thAnnual AAS Guidance and Control Conference, Keystem Colorado,Ferbuary,1995.
    [15] Liebe,CC.Star Tracker Design Considerations for the Europe Orbiter Mission[A],Proceedings of IEEE AerospaceConference,1999(2):67-81.
    [16] US Naval observatory. Celestial Augmentation of Inertial Navigation Systems:A Robust NavigationAlternative.Washington:SPAWAR System Center,San Diego,2000.
    [17]王安国.现代天文导航及其关键技术.电子学报,2007,35(12):2347-2352.
    [18]王振华.天文导航技术与装备的发展现状及对策.光学与光电技术,2005,3(5):7-13.
    [19]张圣云,宋辉,潘红华.天文定位新方法的研究.天津航海,2000,3:1-4.
    [20] Sungkoo B. GLAS spacecraft attitude determination using CCD star tracker and3-axis gyros,[PhD thesis].USA:University of texas,1998.
    [21] Armstrong R.W., Staley D.A. A survey of current solid-state star tracker technology.Journal of the AstronauticalSciences,1985,33(12):341-352.
    [22] Shuster M.D. A survey of attitude representations.Journal of the Astronautical Sciences,1993,41(4):439-517.
    [23] Mark E.P. Everything Is Relative in Spacecraft System Alignment Calibration. Journal of Spacecraft and Rocket2002,39(3):460-466.
    [24] Bar-Itzhack I.Y., Harman R.R. Optimized TRAID Algorithm for Attitude Determination.Journal of Guidance,Control,and Dynamics,1997,20(1):208-211.
    [25]孙才红.轻小型星敏感器研制方法与研制技术,[博士学位论文].北京:中国科学院,2002.
    [26]郁丰,刘建业,熊智,等.微小卫星姿态确定系统多信息融合滤波技术.上海交通大学学报,2008,42(5):831-835.
    [27]张晨.基于星敏感器的航天器姿态确定方法,[博士学位论文].武汉:华中科技大学,2005.
    [28] Julie Parish Stellar Positioning System Part I: Applying Ancient Theory to a Modern World.AstrodynamicsSpecialist Conference and Exhibit, Honolulu, Hawaii,2008:18-21.
    [29]林雪原,刘建业,汪叔华.双星定位/SINS组合导航系统研究中国空间科学技术.2003,23(2):34-38.
    [30]夏坚白,陈永龄,王之卓.实用天文学.武汉:武汉大学出版社,2007.
    [31]郁丰,熊智,屈蔷.基于多圆交汇的天文定位与组合导航方法.宇航学报,2011,32(1):88-92.
    [32] Liebe C.C.Pattern recognition of star constellation for spacecraft applications.IEEE Transactions on Aerospaceand Electronic Systems,1992.34-39.
    [33] Hyland,D.C. JunkinsJ.L.Active control technology for large space structures.Journal of Guidancd,Control,andDynamics,1993,16(5):801-821.
    [34] Juang J.N., Kim H.Y., Junkins J.L.An efficient and robust singular value method for star pattern recognition andattitude determination.Journal of the Astronautical Sciences,2004,52(1):211-220.
    [35] B.Robert.Distribution of points on a sphere with application to star catalogs.Journal of Guidance,Control,andDynamics,2000,20(1):130-13.
    [36] Jamshaid Ali, Zhang CY, Fang J C. An algorithm for astro-inertial navigation using CCD star sensors. AerospaceScience and Technology,2006,10:449–454.
    [37]杨廷高,南仁东,吴一帆.X射线脉冲星导航原理.天文学进展,2007,25(3):249-261.
    [38] Qiao L, Liu J Y, Zheng G L et al.Novel celestial navigation for satellite using X-ray pulse.Transactions of NanjingUniversity of Aeronautics&Astronautic,2008,25(2):101-105.
    [39]帅平,陈绍龙,吴一帆.X射线脉冲星导航原理.宇航学报,2007,28(6):1538-1543.
    [40] Sheikh SI., Hanson J E., Graven P. et al. Spacecraft navigation and timing using X-ray pulsars. Navigation,Journal of the Institute of Navigation,2011,58(2):165-186.
    [41] Masukawa J. Microcosm Announces Advances in Daytime Stellar Imaging. News release,2006.
    [42]李临,吴新建.大视场天文定位系统多星同步检测算法研究与实现.舰船科学技术,2004,26(2):58-61.
    [43] Quan W, Fang J C, Xu F, et al. Hybrid simulation system study of SINS/CNS integrated navigation. IEEEAerospace and Electronic systems Magazine,2008,23(2):17-24.
    [44]吴海仙,俞文伯,房建成.高空长航时无人机SINS/CNS组合导航系统仿真研究.航空学报,2006,27(2):299-304.
    [45]于永军,刘建业,熊智,等.基于多圆迭代和H∞滤波的捷联/天文定位算法研究.控制与决策,2011,21(5):717-720.
    [46]郁丰,刘建业,曾庆化.伽利略卫星定位系统三载波姿态确定技术研究.宇航学报,2006,27(6):1187-1190.
    [47]陈海明,熊智,乔黎.天文/惯性组合导航技术在高空飞行器中的应用.传感器与微系统,2008,27(9):4-6.
    [48]王新龙,马闪.高空长航时无人机高精度自主定位方法.航空学报,2008,19(s):40-45.
    [49]刘真.基于天文导航的无人机定位方法研究,[硕士学位论文].西安:西安电子科技大学,2009.
    [50] Gerge H, Kaplan. Determining the position and motion of a vessel from celestial observation.Navigation.1995,42(4):633-650.
    [51] Parish J. Stellar Positioning System Part I: Applying Ancient Theory to a Modern World.AstrodynamicsSpecialist Conference and Exhibit, Honolulu, Hawaii,2008.
    [52] Janiczek P. M. Stella: Toward Automated Celestial Navigation[J]. Surface Warfare,1996,21(2):34-37.
    [53]吴广华.测量误差与天文定位误差.集美大学学报,2006,11(1):75-78
    [54]林雪原,何友.双星定位/捷联惯导组合导航技术.上海交通大学学报,2005,39(9):1485-1488.
    [55]林雪原.双星定位/SINS组合导航技术研究,[博士学位论文].南京:南京航空航天大学,2004.
    [56]屈蔷,刘建业,熊智,李荣冰.基于数学基准修正的机载SINS/CNS组合定位算法.中国惯性技术学报,2010,18(5):574-579.
    [57] Choukroun D.Novel method for attitude determination using vector observations.[PhD Thesis],Israel,IsraelInstitute of Technology,2003.
    [58] Sungkoo B.Glas Spacecraft Attitude Determination Using CCD Star Tracker and3-Axis Gyros[PhDThesis].U.S.:The University of Texas,1998.
    [59] Sigel D.A. Wettergreen D. Star tracker celestial localization system for a lunar rover. International Conference onIntelligent Robots and Systems. San Diego, CA, USA2007.
    [60] Stuart R G. Applications of complex analysis to celestial navigation. Navigation, Journal of the Institute ofNavigation,2009,56(4):221-227.
    [61]林玉荣,邓正隆.基于星敏感器估计卫星姿态的预测Kalman滤波算法.中国科学(E辑),2002,32(6):817-823.
    [62] Gai E,Daly K, Harrison J.Star-Sensor-Based Satellite Attitude/Attitude Rate Estimator[J]. Journal of Guidance,19858(5):560-565.
    [63]史话.星图识别算法及空间飞行器姿态确定研究.[硕士学位论文],哈尔滨:哈尔滨工业大学,2006.
    [64] Mortari D. Euler q algorithm for attitude determination from vector observation.Journal of Guidance, Control, andDynamics,1998,21(2):245-334.
    [65] Liebe C C,Gromov K, Meller D M. Toward a Stellar Gyroscope for Spacecraft Attitude Determination. Journal ofGuidance Control and dynamics,2004,27(1):91-99.
    [66] Malcolm D. In quest of better attitudes.Proceedings of llth AIAA Apace Flight Mechanics Meeting, Santa Barbara,California, USA,2001:2809-2117.
    [67] Itzhack Y.B, Richard R.H. Optimized TRIAD Algorithm for Attitude Estimation. Journal of Guidance, Control,and Dynamics,1997,20(1):208-211.
    [68] Kalman R. E. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal ofBasic Engineering,1960,82:34-45.
    [69] R van der Merwe, Wan E A. The squared-root unscented Kalman filter for state and parameter estimation. SaltLake City: Acoustics, Speech, and Signal Processing,2001Proceedings,2001IEEE International Conference on,2001:3461-3464.
    [70] Crassidis J L.,mareley F L. Unsendtend Filtering for Spacecraft Attitude Estimation.Journal of Guidance Controland Dynamics,2003,26(4):536-542.
    [71] Britting K.R.Inertial navigation system analysis.NewYork,1971.
    [72]袁信,俞济祥,陈哲.导航系统.北京:航空工业出版社,1993.
    [73]杜亚玲,刘建业,熊智,姜涌.GPS/SINS全组合导航系统的姿态组合算法.中国空间科学技术.2006,2(1):53-57.
    [74]王鹏,张迎春.基于SINS/星敏感器的组合导航模式.东南大学学报,2005,35:84-89.
    [75]杨波,秦永元,柴艳,彭辉煌.高精度SINS/CCD/GPS组合导航系统研究与仿真.中国空间科学技术,2008,(2):42-50.
    [76]熊智,冷雪飞,刘建业.基于北斗双星定位辅助的SAR/INS组合导航系统研究.宇航学报,2007,28(1):88-92.
    [77]熊智,刘建业,林雪原.高度辅助的INS/SAR组合导航系统研究.中国空间科学技术,2003,(4):62-66.
    [78]屈蔷,刘建业,熊智.机载天文/惯性位置组合导航.南京理工大学学报,2010,24(6):729-732.
    [79] Choukroun D., Bar-Itzhack I. Y., Oshman Y. Novel Quaternion Kalman Filter. Transaction on Aerospace andElectronic Systems2006,42(1):174-190.
    [80] Gebre-Egziabher D., Elkaim G.H., Powell, J.D.etal. A gyro-free quaternion-based attitude determination systemsuitable for implementation using low cost sensors. Position Location and Navigation Symposium,2000:185-192.
    [81]武元新.对偶四元数导航算法与非线性高斯滤波研究,[博士学位论文].长沙:国防科技大学,2005.
    [82]李家齐,王红卫,刘爱东,王振华.一种天文/惯性导航系统组合模式的研究.控制理论与应用.2005,24(4):13-15.
    [83]李涛.非线性滤波方法在导航系统中的应用研究,[博士学位论文].长沙:国防科技大学,2003.
    [84] Liebe C.C.Accuracy performance of star tracker-A tutorial.IEEE Transactions on Aerospace and ElectronicSystems,2002,38(2):587~597.
    [85]陈希军,张泽,史话.基于恒星敏感器的姿态确定算法研究.控制工程,2008,15(3):254-256.
    [86] Stuart RG.,Valhalla NY. Applications of complex analysis to celestial navigation. Navigation,Journal of theInstitute of Navigation2009,56(4):221-227.
    [87]熊智,刘建业,郁丰等.基于天文角度观测的机载惯性/天文组合滤波算法研究.宇航学报,2010,31(2):397-403.
    [88]施闻明,杨晓东.天文定位中选星系统的建模与仿真.系统仿真学报.2007,19(7):1428-1568.
    [89]于波,陈云相,郭秀中.惯性技术.北京:北京航空航天大学出版社,1994.
    [90]Julier SJ., Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions.Technical Report, Robotics Research Group, Department of Engineering Science, University of Oxford,1996.
    [91]Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. Orlando, Florida, In Proc ofAeroSence: The11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls,1997:54-65.
    [92] Kubo Y., Fujioka S., Nishiyama M. etal. Nonlinear filtering methods for the INS/GPS in-motion alignment andnavigation. International Journal of Innovative Computing, Information and Control,2006,2(5):1137-1151.
    [93] R van der Merwe, E A Wan. The squared-root unscented Kalman filter for state and parameter estimation. SaltLake City: Acoustics, Speech, and Signal Processing,2001Proceedings,2001IEEE International Conference on,2001:3461-3464.
    [94] Jwo DJ, Lai CN.Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation.GPSSolutions,2008,9(12):249-260.
    [95] Kubo Y., Fujioka S., Nishiyama M. etal. Nonlinear filtering methods for the INS/GPS in-motion alignment andnavigation. International Journal of Innovative Computing, Information and Control,2006,2(5):1137-1151.
    [96] Julier SJ., Uhlmann JK. Unscented filtering and nonlinear estimation. Proceedings of the IEEE,2004,92(3):401-422.
    [97]熊剑.粒子滤波及其在光纤捷联惯性导航系统中的应用.[博士学位论文].南京:南京航空航天大学,2010.
    [98] Thomas S., Fredrik G. Marginalized particle filters for mixed linear/nonlinear state-space models.IEEETransactions on Signal Processing,2005,53(7):2279-2289.
    [99]周翟和,刘建业,赖际舟.组合导航直接滤波模型中的高斯粒子滤波.应用科学学报,2009,27(1):97-101.
    [100]周翟和,刘建业,赖际舟,等. Rao-Blackwellized粒子滤波在SINS/GPS深组合导航系统中的应用研究.宇航学报,2009(2):515-520.
    [101]潘泉,杨峰,叶亮,等.一类非线性滤波器-UKF综述.控制与决策,2005,20(5):481-494.
    [102]陆海勇,赵伟,熊剑,等.强跟踪UKF滤波在SINS/GPS组合导航中的应用研究.航空电子技术,2008,39(4):5-10.
    [103] Julier SJ. The scaled unscented transformation. Jefferson: Proc of the American Control Conference,2002:4555-4559.
    [104]Julier S J, Uhlmann J K and Durrant-Whyte. H F A new method for the nonlinear transformation of means andcovariances in filters and estimators. IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [105]陆海勇.捷联惯性导航系统中UKF滤波技术的应用研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [106]付梦印,邓志红等.Kalman滤波理论及其在导航系统中的应用.北京:科学出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700