海洋油气勘探仪器参数设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油被誉为现代化工业发展的血液,近些年,随着我国经济的高速增长,石油在我国常规能源结构中所占的比重越来越大,中国石油需求的缺口也越来越大,石油已经威胁到了我国国家能源战略安全。现今我国陆上油田开发已经进入中后期,而近海海域油气资源相当丰富,如何开发这些海上油气资源已迫在眉睫。2001年,“863”国家高科技研究计划就立项开始研究具有自主知识产权的海上油藏勘探设备。我们实验室承担了子课题时移地震数据采集与记录系统(简称TMSDARS)的研究开发任务。在四年的研发实验过程中,我们认识到在地震仪器开发中,除了单纯的电子设备和用户界面之外,还有很多重要因素。勘探仪器的参数必须与实际的地层结构相配合。由于进行海上油气勘探需要花费大量的时间和资金,因此勘探前参数的预规划和在线修正就成为了必要。当前,TMSDARS系统并没有配套的预规划软件,用户界面程序也没有配备足够的在线数据处理功能。本论文即是基于以上背景,将研究重点放在海上地震数据处理和仪器参数设计上。
     预规划软件与在线修正软件具有若干共同点,两者都需要对地质模型和海上油气勘探过程的理解。本文将先介绍这两条,然后讨论仪器参数与勘探分辨率的关系,接下去给出海上地震数据的基本处理算法和抗噪声技术,再结合其复杂度讨论如何选择和应用这些算法。最后给出将以上理论和算法结合入TMSDARS系统和单缆测试系统的软件规划方法。本文分为七章,各章的概要如下:
     第零章导言
     本章是正篇论文的总领,首先介绍了开展此论文研究的背景和原因,然后评价了此项研究的亮点、介绍了已经完成的工作,最后给出了将来继续研究的可能方向。
     第一章海洋地震勘探简介
     本章首先介绍了全球的石油产量和需求量,并特别讨论了中国的石油供需;然后介绍了海上地震勘探的主要三个步骤,即数据采集、信号处理和解释。勘探的主要思路是:先产生一个窄脉冲声波信号,然后将接下去的一段时间内的水压分布信息转化为数字信号。因为不同的地层结构将导致反射波的时间和幅度不同,所以根据这些数据可以反推出地下结构,而地质专家将根据这些结构,推测油气蕴藏的可能性与储量。本章最后还简要地介绍了本文的研究意义。
     第二章地震勘探物理模型
     本章首先介绍了液体中和各项同性固体中的声波传播方程,然后根据水中无法存在P波的原理,将其作了简化。对于单次反射,不同位置的检波器上接收到的反射到达时间为双曲线。如果使用均方根速度代替单一地层速度,这个双曲线公式可以被推广到多层反射。本章最后简要介绍了正演和反演的思路,分别是根据地层结构推导可能的压力分布,和根据已经获得的压力分布推导可能的地层结构。
     第三章地震勘探参数要求
     本章首先介绍了地震勘探的分辨率定义,即最终可以分辨的最小地下结构的尺寸,包括垂直分辨率和水平分辨率。然后归类介绍了地震勘探仪器的参数,包括:枪阵信号、检波器物理模型、模拟电路频率响应、FIR/IIR滤波器、采样率、信噪比、测量范围、电缆的近段偏移和远端偏移、放炮时间间隔、采集时间等。接下来具体给出了实际使用的仪器参数,主要依据是2005年海试使用的时移地震数据采集与记录系统参数,以及与其配套其他仪器参数。最后讨论了仪器参数与分辨率的制约关系。
     第四章从地震数据中提取与仪器参数相关的信息
     本章首先介绍了地震数据处理的基本流程,然后重点研究了如何从地震数据中提取信息的方法。为了研究反射信号的特性,使用了频域和F-K域的分析与滤波。此外还给出了推导地层速度和厚度的方法。为了压制噪声,还讨论了噪声的分布特性以及对应的噪声压制方法。本章和第三章中的数据和参数均来源2005年11月使用时移地震数据采集系统在南中国海进行的海上试验。
     第五章仪器参数规划软件设计
     本章首先给出了三个中国自主设计的地震数据采集系统,即时移地震数据采集与记录系统,单缆测试系统和深水石油高精度地震采集与记录系统。然后讨论了将第三章和第四章中各种算法结合到这些系统软件中的可能性。最后,规划了具体的算法实现软件结构,包括用户界面、核心算法、日志和报告。
     第六章总结与展望
     本章比较了国产系统与国外系统的参数,总结了本论文工作的创新点,介绍了本人在与此论文相关项目中的工作,并给出了将来可以进一步改进的方向。
Oil is honored blood of modern industry development. The requirement on oil grows together with the rapid development of Chinese economy. Now that the exploitation of China inland oil fields has entered its middle stage, while the offshore strips and deep sees are abundant in oil and gas, how to exploit these offshore resources has becoming more important and urgent. 863, the National Hi-tech Research and Development Program, began in 2001 a project of research on development of offshore oil resource exploration equipments, with Chinese self-owned intellectual authority. Our lab is responsible for research and development of the Time-lapse Marine Seismic Data Acquisition and Recording System (TMSDARS). During the years of development, we realized that there are far more things in exploration than developing electronics devices and user interface. The parameters of equipment should fit the real crust structure. Because offshore oil exploration costs a huge amount of money and time, pre-exploration parameters design and on-line re-adjustment are quite essential. However, currently our equipment has no offshore exploration pre-exploration plan software, and the user interface program has no on-line data processing functions. This thesis is based on the above background, focuses on offshore seismic data processing and equipment parameters design.
     The pre-exploration plan and on-line re-adjustment have many common points. Both require knowledge on geologic model and offshore oil exploration process, which will be discussed first. The relationships between equipment parameters and exploration resolution are then demonstrated. After introducing basic offshore seismic data processing procedures and the special designed anti-noise techniques, the feasibility and choice in on-line data processing is discussed. At last, an implement is given, showing how to integrate the theories and algorithms into the user interface of TMSDARS and single cable checking system. This thesis is composed of seven chapters, whose abstracts are listed below.
     Chap 0 - Brief Description of the Whole Thesis
     This chapter introduces the soul of this thesis. It begins with the background and reasons for the research, then introduces the works that have already been done and its corresponding significance, at last points out possible directions of future research.
     Chap 1- Introduction to offshore seismic exploration
     This chapter starts with the background of oil yield and consumption worldwide, especially that of China, then introduce the procedures used in offshore seismic exploration, e.g. data gathering, signal processing, and interpretation. The key idea of exploration is to generate a short wave pulse, then convert water pressure distribution within the next few seconds into digital data. Because different rock layout structure leads to reflections different in time and amplitude, from the digital data rock layout structure can be deduced, and geophysical experts will check out the possibility and capacitance of oil resource. At last, the main purpose and meanings of this thesis are pointed out.
     Chap 2 - physical models of offshore seismic exploration
     This chapter starts with Wave Equation of sound in water and solid rock, then simplifies them because in water exists no P-Wave. The sensor offset and reflection arrive time forms a hyperbolic equation for a single interface reflection. If equivalent velocity is considered, this equation can be extended to fit multi-interfaces reflections. At last, the method of forward modeling, which deduces pressure distribution from possible terrane structure, and the method inversion, which deduces structure from distribution, are briefly introduced.
     Chap 3 - requirements on seismic exploration parameters
     This chapter starts with the resolution definition of seismic exploration, including vertical resolution and horizontal resolution, which ultimately base on the size of the smallest visible structure, then introduces the parameters of seismic exploration equipments, including the air-gun array signal, physical model of hydrophone, the frequency and phase response of A/D and the following FIR/IIR filter, sample rate, signal noise rate, measuring range, near offset and far offset of hydrophone matrix, shot interval and record time length. Real parameters of TMSDARS and other exploration equipments that are used in offshore experiment 2005 are given out. At last, the relationship between equipment parameters and the resolution are discussed, respectively in vertical and horizontal directions.
     Chap 4 - Draw equipment parameters related information from seismic data
     This chapter first discusses the fundamental seismic data processing work-flow, then focus on how to draw information from seismic data. Frequency analyse and filterring, F-K analyse and filterring and used to check the characters of reflection. Velocity and thickness of each stratum are calculated. Noise and anti-noise methods are discussed. The data processing methods in Chap 4 and 5 are based on the real seismic data that are obtained using TMSDARS on November, 2005, on South-China Sea.
     Chap 5 - parameters plan and adjust software design
     This chapter first lists out three offshore seismic exploration systems developed or to be develped by China, e.g. TMSDARS, Single Cable Checking System and Deep-sea High Resolution Seismic Data Acquisition and Record System. Then discussed the possibility of embedding various algorithms introduced in Chapter 3 and 4 into the software of these systems. At last, the details of software structure are designed, including user interface, core algorithms design, log and result report.
     Chap 6 - conclutions and the future
     This chapter compares the parameter of Chinese self-developed systems and foreign ones, concludes the original ideas of this thesis, introduces my work in corresponding projects, and points out possible direction of future amendment.
引文
[1] 冯连勇、邓玉辉、牛燕,世界大型油田服务公司发展趋势分析及对中国公司的建议,石油大学学报(社会科学版),2005.8,21(4)
    [2] 高安荣,冯连勇,世界石油勘探开发趋势分析,当代石油石化,2006.4,14(4)
    [3] 赵纪新,孟祥华,我国的能源结构及能源战略构成探讨,煤炭经济研究,2005.6,11~13
    [4] 中国投资咨询网,2006年中国石油市场分析及投资咨询报告,2006.2
    [5] 高安荣,田楠,安丰全,世界与中国的石油储产量现状及趋势,中外能源,6~10,2006.11
    [6] 2006-2007 年中国海洋石油勘探行业发展及竞争研究报告,http://www.htzh.cn/Article_Show3.asp?ArticlelD=2461
    [7] Herman W. Cooper, Robert E. Cook, Seismic Data Gatering, Proceedings of IEEE, vol. 72, No 10 October 1984
    [8] Lawrence C. Wood, Sven Treitel,. Seismic Signal Processing, Proceedings of IEEE, Vol. 63, No. 4, April 1975
    [9] Lesile R. Denham, Seisimic Interpretation, Proceedings of IEEE, Vol. 72, No 10 October 1984
    [10] 崔毅,林庆礼,吴彰宽,宋云利,杨琴芳,石油地震勘探对海洋生物及海洋环境的影响研究,海洋学报,125~130,1996.07,18(4)
    [11] 赵政璋,赵贤正,国外海洋深水油气勘探发展趋势及启示,勘探论坛,2006(6)
    [12] 张树林,夏斌,何家雄,海上多波多分量地震采集技术的应用——以莺歌海盆地为例,天然气地球科学,103~107,2005.2,16(1)
    [13] Thomas L. D. Multicomponent, Geophysics, 19~51, 2001. 66(1)
    [14] 中国石油研究中心,国家863项目《海上时移地震油藏检测技术》海试数据分析报告,2005.12
    [15] Philip. S. Schultz, Seismic Velocity Estimation, Proceedings of IEEE, vol. 72, No 10 October 1984
    [16] 熊翥,我国物探技术的进步及展望,石油地球物理勘探,2003.12,38(6),701~706
    [17] 谢晓军,邓宏文,王居峰,储层精细描述的地震处理、解释一体化思路探讨——以准噶尔盆地腹部莫西庄地区为例,石油与天然气地质,2004.10,25(5),533~538
    [1] 杜功焕,朱哲民,龚秀芬,声学基础,南京大学出版社,2001年3月第2版,514~531
    [2] 阎贫,海底地震仪记录中的横波,海洋地质与第四纪地质,115~118,1998.2,18(1)
    [3] 朱红涛,陈开远,朱培民,陈志宏,莺歌海盆地中深层速度特征研究,江汉石油学院学报,2003.12,25(4),49~50
    [4] P. S. Schultz, Seismic velocity estimation, Proceedings of IEEE, vol. 72, No 10 October 1984
    [5] 王庆海,徐明才,抗干扰高分辨率浅层地震勘探,地质出版社,1991年7月北京第一版,1~27
    [6] 丁绪荣,普通物探教程——地震附声波探测(第五篇 地震勘探),地质出版社,1984年11月第一版,38~39
    [7] 韩波,地震勘探中二维波动方程的小波数值正演模拟,哈尔滨工业大学硕士毕业论文,2002.7
    [8] 常旭,刘伊克,地震正反演与成像,华文出版社,2001年9月第一版,8~9
    [9] 杨文采,评地球物理反演的发展趋向,地学前缘,2002.10,9(4),389-396
    [10] 马劲风,许升辉,王桂水,高乐,地震道反演面临的问题与进展,石油与天然气地质,2002.12,23(4),321-325
    [1] 姚姚,詹正彬,饯绍湖,地震勘探新技术与新方法,中国地质大学出版社,1991年10月第一版,1~4
    [2] 杨汝超,王晓华,周彤,乔大军,张文龙,如何制定高分辨率地震勘探中的技术指标,石油物探,2001.3,40(1),121-126
    [3] 王庆海,徐明才,抗干扰高分辨率浅层地震勘探,地质出版社,1991年7月北京第一版,55
    [4] O. Koefoed, Aspects of Vertical Seismic Resolution, Geophysical Prospecting, Vol. 29, 21~30, 1981
    [5] M. B. Widess, Quantifying Resolving Power of Seismic System, Geophysics, Vol. 47(8), 1982
    [6] 石人骥,光学的启示——地震资料横向分辨率问题辨析,石油物探,2003.12,42(4),562~565
    [7] M.A.摩根,M.莱恩 著,刘颂威 译,实用地震数据采集技术,石油工业出版社,1984年11月第一版,20~25
    [8] 孙传友,潘正良,地震勘探仪器原理,石油大学出版社,1996年12月第一版,14~15,29-32
    [9] 周宝华,刘威北.气枪震源的发展与使用分析(上),物探装备,1998,8(1):1~6.
    [10] 周宝华,刘威北.气枪震源的发展与使用分析(下),物探装备,1998,8(2):1~5,9
    [11] 罗桂纯,王宝善,葛洪魁,陈顒,气枪震源在地球深部结构探测中的应用研究进展,地球物理学进展,2006.6,21(2),400-407
    [12] 刘光鼎,海洋地球物理勘探,地质出版社,1978年9月第一版,35-42
    [13] 丛岩,胜利701气枪震源船改造设计,中国海洋平台,2003.8,18(4),34-37
    [14] 陈浩林,全海燕,刘军,李晓东,徐开静,基于近场测量的气枪阵列模拟远场子波,石油地球物理勘探,2005.12,40(6),703-707
    [15] 狄帮让,唐博文,陈浩林,王长春,气枪震源的理论子波研究,石油大学学报(自然科学版),203.10,27(5),32-35
    [16] A. Ziolkowski, Measurement of air-gun signatures with gun-port pressure transducers, SET Int'l Exposition and Annual Meeting, 1970, 9~14
    [17] 刘海波,李海军,陈浩林,刘原英,气枪震源信号的产生及其对海洋哺乳动物的影响(一),物探装备,2005.6,15(2),77-80
    [18] 刘海波,李海军,陈浩林,刘原英,气枪震源信号的产生及其对海洋哺乳动物的影响(二),物探装备,2005.9,15(3),156-160,165
    [19] 张新生,浅谈可控震源在煤田地震勘探中的应用,河北煤炭,2006.4,20-23
    [20] 曾鸾,李志勇,高凤珍,大吨位可控震源的应用及效果分析,石油物探,2002.9,41(3),327-333
    [21] 阎福旺,凌青,张增平,水声换能器技术,海洋出版社,1999年10月第一版,41-59
    [22] 吴毅强,邓忠华,压电器件,电子工业出版社,1995年10月第一版,64-75
    [23] 曾楠,施纯峥,张敏,王利威,廖延彪,赖淑蓉,一种可用于油藏检测的3分量光纤加速器传感器,光电子·激光,2005.8,16(8),901-905
    [24] 彭保进,张敏,廖延彪,赖淑蓉,匡武,王泽涵,光纤传感器相位漂移及倍频问题的解决方法,光电子·激光,2005.8,16(8),913-917
    [25] 万旭,彭保进,廖延彪,张敏,赖淑蓉,消除温度对应变测量的影响,激光与红外,2005.10, 35(10), 755-757
    [26] Maxim, Application Note 1870: Demystifying Sigma-Delta ADCs
    [27] 王超,采集板详细设计(Version 2.0),时移地震数据采集与记录系统项目二期验收文档
    [28] Society of Exploration Geophysicists, SEG Subcommittee of the Technical Standards Committee on Digital Seismic Recorder Specifications, 1988
    [29] 马灵,阮福明,VPR工作站软件IQC测试的详细算法(Version 2.0),时移地震数据采集与记录系统项目二期验收文档
    [30] 蔡志恂,申扣喜,拖曳线列阵中压电陶瓷水听器的设计,声学技术,1995,14(4),178-180,186
    [31] Teledyne Benthos Inc., Geopoint Export Hydrophone,2003
    [32] Teledyne Benthos Inc., Hydrophones Brochure
    [33] 奋斗四号压电陶瓷拖缆地震仪器班报(九~十盘),2005.11.9
    [34] 王超,采集板性能测试报告,时移地震数据采集与记录系统项目二期验收文档
    [35] 周民都,张元生,李清河,范兵,天水地震区Q值结构,地球物理学报,1996,39(增刊),216-223
    [36] Cirrus Logic, CS3302 High-Z Programmable Gain Differential Amplifier
    [37] 牛滨华,孙春岩,张中杰,沈操,海洋深部地震勘探技术,地学前缘,2009.9,7(3),274-281
    [38] J. Gazdag, P. Sguazzero, Migration of Seismic Data, Proceedings of IEEE, vol. 72, No 10 October 1984
    [1] Lawrence C. Wood, Sven Treitel, Seismic Signal Processing, Proceedings of IEEE, Vol. 63, No. 4, April 1975
    [2] Matlab Online Help—Contents: Filter Design Toolbox, Getting Started
    [3] 王庆海,徐明才,抗干扰高分辨率浅层地震勘探,地质出版社,1991年7月北京第一版,266~268
    [4] S. Treitel, E. A. Robinson, The stability of digital filters, IEEE Trans. Geosci. Electron., vol. GE-2, Nov. 1964
    [1] 阮福明,中国科学技术大学博士毕业论文,时移地震中高精度数据采集和大容量记录系统的研究,16-17,2004.7
    [2] CHENG Jingyuan, SONG Kezhu, WANG Yanfang, YANG Junfeng, LU Zengyuan, Data gathering and transferring sub-System Designing of Time-lapse Marine Seismic Data Acquisition and Recording System, Journal of Basic Science and Engineering, 181-193, 2006. 6, 14(2)
    [3] 程敬原,宋克柱,杨峻峰,时移地震数据采集和记录系统中的单缆测试系统设计,吉林大学学报(工学版),2006.3,36(2),238-241
    [4] 程敬原,时移地震数据采集与记录系统——单缆测试系统详细方案,2005.11
    [5] 程敬原,时移地震数据采集与记录系统——单缆测试系统控制软件安装使用指南,2006.5
    [6] 中国科学技术大学快电子实验室,《海上高精度地震技术》《深水高精度地震勘探》“十一五”工作计划细则
    [7] 杨峻峰,室内记录系统硬件详细设计方案,2006.10
    [8] 杨俊峰,水下拖缆结构及通讯协议详细设计方案,2006.8
    [9] Matlab 7.4 System Requirements, 参见 http://www.mathworks.com/products/matlab/requirements.html
    [10] 杨高波、亓波,精通Matlab7.0混合编程,电子工业出版社,2006年1月第一版,45-87
    [11] 孙仲康,快速傅立叶变换及其应用,人民邮电出版社,1982年第一版
    [12] 曹平,陈佳,时移地震数据采集与记录系统——OCM主控软件详细设计,2006.5
    [13] 陈佳,时移地震数据采集与记录系统——OCM主控软件使用说明,2006.3
    [14] 唐向宏,岳恒立,郑雪峰,MATLAB及其在电子信息类课程中的应用,电子工业出版社,2006年8月第一版,1~2
    [15] E. J. Northwood, R. C. Weisinger, J. J. Bradley, 1967, Recommended Standards for Digital Tape Formats, Geophysics, 32(06), 1073-1084
    [16] Lewis, Firth, Aatland, Hagelund, Svenkerud, Hamon, Lansley, Stott, Al-Ghambi, Richard, Hubbell, SEG-D, Rev 2.1 SEG Field Tape Standards
    [17] SEG Technical Standards Committee, SEG Y rev 1 Data Exchange Format, Release 1.0, May 2002
    [18] 姚振兴,高星,李维新,用于深度域地震剖面衰减与频散补偿的反Q滤波方法,地球物理学报,2003.3,46(2),229-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700