组合稳定塘系统对污水处理厂CAST工艺出水深度处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化的迅速发展,水污染现象变得越来越严重。加强污水处理、提高污水厂出水水质,是防止水体遭到进一步污染的主要途径。人类环保意识的加强,政策法规对污水厂出水水质要求的不断提高,使污水的深度处理变得越来越重要。稳定塘作为是一种利用天然净化能力的生物处理构筑物的总称,能够有效去除污水中的有机物,具有投资省、运行管理方便、成本低等优点。近年来在国内外得到了广泛的应用,具有广阔的市场前景。
     镇江市地处长江三角洲,是一座集工业、港口、旅游为一体的城市,加强水环境的保护显得尤为重要。随着国家对环境保护的重视,镇江市也作出了相应措施。《镇江市“十一五”主要污染物减排规划》中规定,2008年起,镇江市所有污水处理厂尾水排放均要求达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准的要求。
     征润州污水厂主要负责镇江市主城区生活污水,采用CAST工艺,出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。通过对污水厂出水水质的分析,发现该污水厂对COD、BOD_5、TP去除效果较好,而对TN、NH3-N、SS的去除效果较差,经常出现超标。特别是在冬季气温较低的情况下,氮的去除效果变得更不理想。
     本文阐述了稳定塘系统及其小试装置的设计,系统由调节塘、好氧塘、兼性塘和生物塘串联系统组成,试验装置采用等水力停留时间准则对稳定塘系统进行模拟。该稳定塘系统作为深度处理塘,对污水厂二级出水作进一步处理;好氧塘采用较常规水深较大的设计,可由曝气机对塘水进行充氧。生物塘中种植风车草、水芹菜、菹草和菱等水生植物,并养殖鲤鱼、鲫鱼、鲢鱼等鱼类构成生物塘生态系统。
     试验研究了温度、溶解氧、水力停留时间等因素对稳定塘系统深度处理的影响和变化规律,以及稳定塘系统各单元对主要污染物去除的效能和贡献率,为工艺调控和运行模式的选择提供依据。试验主要分为冬季、夏季两个阶段。在每个阶段考察稳定塘系统对征润州污水厂二级出水进行深度处理过程中对氮、磷等有机物去除的情况。在冬季阶段,总停留时间为6.4d,此阶段稳定塘系统对COD、TN、NH_3-N、TP、SS的去除率分别为50%、40%、70%和55%;在夏季阶段,采用较长的总停留时间10.6d时,稳定塘系统对COD、TN、NH3-N、TP、SS的去除率分别为60%、90%、98%和92%;总停留时间为7.9d时,稳定塘系统对COD、TN、NH_3-N、TP、SS的去除率分别为58%、74%、98%和95%;总停留时间为5.4d时,稳定塘系统对COD、TN、NH_3-N、TP、SS的去除率分别为55%、56%、97%和76%。通过对有无水生植物情况下试验结果的对比,发现水生植物可以使COD、TN、NH_3-N、TP的去除率提高6~12%、15~25%、20~30%和13~22%。试验结果表明,水生植物在稳定塘系统中对污染物去除起到明显的促进作用,该装置能够有效的去除污水中主要污染物,出水主要指标均达到《城镇污水厂污染物排放标准》(GB18918-2002)一级A标准。
With the rapid development of urbanization, water pollution has become more and more serious. Enhancing the treatment of wastewater and improving the quality of effluent are important approaches to prevent water from further contamination. The improvement of our Environmental awareness and quality of wastewater treatment plant effluent, make the advanced treatment of wastewater becoming more important. Stabilization ponds are biological treatment system that purfying water by natural self-purification capability.Stabilization ponds has many advantages, such as low cost of investment and energy, convenience of management, and can remove the substance effectively. They have been widely applied both at home and abroad recend years, and have a broad market prospect.
     Zhenjiang, located in the Yangtze river delta, is an integrated industrial, ports and travel for the integration of the city. Enhancing the protection of water environment become particularly important.Recently years the country payed more attention to environmental protection, and Zhenjiang also strengthened the protection measures of water environment. In accordance with the "Eleventh Five-Year" plan of pollutant discharge reduction of Zhenjiang City, effluent of all the wastewater treatment plant should reach grade-one standard A of the urban WWTP pollutant discharge standards (GB18918-2002).
     Zheng Runzhou wastewater treatment plant, which uses CAST process, is mainly responsible for the urban district. The effluent can reach grade-one standard B of the urban WWTP pollutant discharge standards (GB18918-2002). Through the analysis of effluent water quality, we find that Zheng Runzhou wastewater treatment plan has good effect on COD, BOD_5 and TP, while the TN, NH_3-N, SS removal effect are poor, which often exceeding standards. Nitrogen removal effect is poorer, especially in case of low temperature of winter.
     The paper describes the design of stabilization ponds and experimental equipment. The system consists of regulating pond, aerobic ponds, facultative ponds and biological pond system components in series. And the experimental equipment is simulation of the stabilization ponds by the same HRT. The stabilization ponds system is used for advanced treatment of secondary effluent. The depth of aerobic pond is deeper than normal, and DO in pond is supplemented by aerator. We plant C.alternifolius L, cress cripus and water caltrop, and farm carp, crucian, silver carp and so on, which can make up an artifical ecosystem.
     The experiment studies the impact of temperature, DO, HRT that haved on the treatment effect and the relationship, which can provide a basis for process control. The experiment studies efficiency and contribution of each unit, which can provide a basis for selection of operation mode.The experiment mainly divided into two stages: winter and summer. We will study the removal condition of nitrogen, phosphorus and organic matter, etc, at each stage. When HRT is 6.4d in winter, parameters including COD, TN, NH_3-N, TP and SS removal efficiency is 50%, 40%, 70% and 55%. When HRT is 10.6d in summer, parameters including COD, TN, NH3-N, TP and SS removal efficiency is 60%, 90%, 98% and 92%. When HRT is 7.9d, parameters including COD, TN, NH3-N, TP and SS removal efficiency is 58%, 74%, 98% and 95%.When HRT is 5.4d, parameters including COD, TN, NH_3-N, TP and SS removal efficiency is 55%, 56%, 97% and 76%. Based on the comparion of results that whether water plants are in the ponds or not, we find that water plants can promote the parameters including COD, TN, NH3-N and TP removal efficiency by 6~12%, 15~25%, 20~30% and 13~22%.The results show that water plants can promote the removal efficiency of pollutant. The system can remove the pollutant effectively, and the effluent can reach grade-one standard A of the urban WWTP pollutant discharge standards (GB18918-2002).
引文
[1]刘永懋.水,21世纪人类面临的最严重的危机[J].水资源保护,1995,(4):22~25.
    [2]马有江.节约用水是长期的、必要的方针[J].给水排水,1998,24 (3):26~29.
    [3]安哥拉·乔菲特.水污染吞噬中国发展成果[J].海外文摘, 2008(5):56.
    [4]甘萍.浅析我国水资源污染状况及处理技术[J].江西化工,2006(4):82~83.
    [5]沈琳.我国水资源污染的现状、原因及对策[J].生态经济,2009, (4):182~185.
    [6]马志毅.城市污水资源化概述[J].给水排水,1997,23 (12) :61-63.
    [7]刘昌明,何希吾主编.中国21世纪水问题研究[M].北京,科学出版社,1996.
    [8] D.K. Ammerman. Once the province of communities the South and West, water reuse is gaining popularity throughout the United States[J]. Water Environment &Technology, 1998:67-71.
    [9] M. Richmqn. City Sets New Standard for Converting Wastewater to Potable Water [J]. Water Environment & Technology. 1997:22-24.
    [10]许京骐.城市废水回用中法规、执行机构和项目实施问题[J].给水排水,1998,24 (4) :67-30.
    [11]许京骐.城市废水回用项目设施规划[J].给水排水,1998,24 (8) :6-9.
    [12] V. Jagnnatha. Minimising & Recyclingurba[J]. Wastewater Asian Water, 1998:28-29.
    [13]周国成等.我国城市污水回用事业的现状与发展[J].化工给排水设计,1996 (4) :12-23 .
    [14]杨振喜.山西铝厂污水资源化问题的探讨[J].给水排水,1997,23 (10) :34-36.
    [15]马志毅等.太原市城市污水资源化规划总结[J].给水排水,1997,23 (2) :18-20.
    [16]马志毅等.纺织工业空调废水处理回用的试验研究[J].环境工程,1998,16(2):2-6.
    [17]朱德仁等.矿井水污染控制及资源化[J].中国人口资源与环境,1997,7 (4):82-85 .
    [18]樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17 (1) :68-74 .
    [19]高深谋.城市污水回用工程一例[J].工业水处理,1997,17 (2) :33-35 .
    [20]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社, 2004: 159-165.
    [21]韩泰畴.稳定塘污水处理技术研究的新态势[J].环境保护科学,1992,18(4):28~33.
    [22]杨昌述,詹玉涛.稳定塘技术及其在处理城市污水中的应用[J].环境科学动态,1999,16(2):11~14.
    [23]国家环保局:稳定塘污水处理技术[J].中国环境科学出版社,1991 .
    [24]向连城.新型稳定塘污水处理技术AIPS[J].环境科学研究,1995,8(1):48~50.
    [25] Rich L.G. Troubleshooting aerated lagoon systems [J]. Public Works, 1989, 120(10): 50~52.
    [26] Rich L.G. Modification of design approach to aeratedlagoons [J]. Journal of Environmental Engineering, 1996, 122: 149~153.
    [27] Rich L.G. Connor B.W. Benthal stabilization of waste activated sludge [J]. Water Research, 1982,16: 1419~1423.
    [28] White S.C., Rich L.G. How to design aerated lagoon systems to meet 1977 effluent standards-Ewperimental studies [J]. Water and Sowage Works, 1976,123 (3): 85~87.
    [29]孙铁珩等.城市污水自然生态处理与资源化利用技术[M].北京,化学工业出版社. 2006: 199-203.
    [30]董良徳,张民,陆上岭,孙圣.我国稳定塘废水处理的现状简述.污染防治技术, 1995, 2 , 52~53.
    [31]刘华波,杨海真.稳定塘污水处理技术的应用现状与发展[J].天津城市建设学院学报, 2003, 9(1): 19-22.
    [32]刘恒福,杨武学.近年来渭河中下游污染状况及带来的问题[J].陕西水利, 2002年科技专辑: 79-80.
    [33]张自杰,林荣忱,金儒霖.排水工程(下册)[M].中国建筑工业出版社,2000,6:258~270.
    [34]周春丽.污水的生物净化[J].长春师范学院学报,2000,19(2):78~82.
    [35]董良德,张民等.我国稳定塘废水处理的现状简述[J].污染防治技术,1995, 8(1):52~55.
    [36]胡西城,何增耀.串联好氧塘的不同分隔位置对氮化物去除率及其形态变化的影响[J].水处理技术,1991(2):22~26.
    [37]邹家庆.工业废水处理技术[M].北京:化学工业出版社,2003:233~243.
    [38]张建英,方益萍.厌氧塘处理污水效果初探[J].杭州大学学报:自然科学版,1996, l:45~46.
    [39]李艺.氧化塘在非洲的适用性及其设计方法探讨[J].给水排水,1995,(6):34~36.
    [40]杨书平,洪育才.兼性塘的设计[J].中国给水排水, 1990,2:56~57.
    [41]李海心.高效去除OBDS和氨的低技术系统[J].市政工程国外动态,1996,6:13~15.
    [42] H.E. Maynard, S.K. Ouki, S.C. Williams. Tertiary Lagoons: A Review of Removal Mechanisms and Performance [J].Water Research.1999, 33 (1):1-13.
    [43] D.D.Mara, S.W.Mills, H.W.Pearson, G.P.Alabaster. Waste Stabilization Ponds [A]: A Viable Alternative for Small Community Treatment Systems[C].Institution of Water nvironment Management.1992, 6 (1):72-78.
    [44] S.A.Silva,R.D.Oliverira,J.Soares.Nitrogen Removal in Pond Systems with Different Configurations and Geometries[J].Water Science and Technology.1995,31(12):321-330.
    [45] J.Soares,S.A.Silva,R.de.Oliveira.Ammonia Removal in a Pilot-Scale WSP Complex in Northeast Brazil[J].Water Science and Technology.1996,33(7):165-171.
    [46] O.R.Zimmo, N.P.van der Steen and H.J.Gijzen.Comparison of Ammonia Volatilisation Ratesin Algae and Duckweed-based Waste Stabilization Ponds Treating Domestic Wastewater [J].Water Research.2003, 37(19):4587-4594.
    [47] O.R.Zimmo, N.P.van der Steen and H.J.Gijzen.Nitrogen Mass Balance across Pilot-scaleAlgae and Duckweed-based Wastewater Stabilisation Ponds [J].Water Research. 2004, 38(4):913~920.
    [48] M.A.Senzia, A.W.Mayo, T.S.A.Mbwette.ōodelling Nitrogen Transforma Removal in Primary Facultative Ponds [J].Ecological Modelling.2002,154(3):207-215.
    [49] Hong Wang, Adhityan Appan and John S.Gulliver.Modeling of Phosphorus Dynamics inAquatic Sediments: I-Model Development [J].Water Research.2003, 37(16):3928-3938.
    [50] B.B.Hosetti & H.S.Patil,“Performance of Wasterwater Stabilization Ponds at DifferentDepths”, water, Air and Soil pollution,1987, 34(2):191~198.
    [51]许春华,周琪.高效藻类塘的研究和应用[J].环境保护, 2001,(8):41~43.
    [52] B.Picot, A Bahlaoui, S Moersidik, B Baleux and Bontoux, Comparison of the purifyingefficiency of high rate algal pond with stabilization pond, Wat Sci Tech,1992,25(12): 197~206
    [53] A Sukenik, W Schroder, J Lauer, G Shelef and C Soeder, Coprecipitation of microalgalbiomass with calcium and phosphate ions, Wat Res, 1985,19(1): 127~129.
    [54] T Moutin, J Y Gal, H EL.Halouani, B Picot and J Bontoux, Decrease of phpsphateconcentration in a high rate algal pond by precipitation of calcium phosphate: theoretical andexperimental results. Wat Res. 1992, 26 (11): 1445~1450.
    [55] R Gilbin, E Gómez, J Paing and B Picot. Algal decomposition in sediments andphosphorusbehaviour, 8th interactions between sediment and water, Beijing,1999.
    [56] Hermann Orth, Kittiya Lert pocasombut and Petera Wilderer,“Wastewater Treatment forindustrial. Estates in Southeast Asia Using Water Hyaeinths”,《Water Science andTechnology》,1987,19(12):85~96.
    [57]汪慧贞,吴俊奇,曹秀琴.超深厌氧塘的技术特性[J].环境工程, 1997,(3): 16~18.
    [58]何小莲.水解酸化-稳定塘工艺处理石河子开发区污水试验研究[D].石河子大学硕士论文, 2008, 5: 20~50
    [59]刘智晓,祁佩时等.气浮/氧化沟/稳定塘处理亚麻废水[J].中国给水排水, 2004,20(9):73~74.
    [60]龚丽雯,龚敏红等.微电解/接触氧化/稳定塘处理猪场废水[J].中国给水排水, 2003,19(8): 92~94.
    [61]司朝晖,李立丽.混凝/生物膜曝气池/氧化塘法处理印染废水[J].中国给水排水, 2003,19(5): 89~90.
    [62]沈劲凤.氧化塘的系统研究[J].环境科学与技术, 1995, (2): 6~10.
    [63]王宝贞,王琳,祁佩时.生态塘系统分析及生物种属合理组成的设想[J].污染防治技术, 2000(2): 74~76.
    [64]龙腾锐,冯裕钊,郭劲松.考虑不确定因素的污水厂日进水量预测法[J].中国给水排水, 2001,17(5): 1~5.
    [65]李献文,钱易,聂梅生.城市污水稳定塘设计手册[M].北京,中国建筑工业出版社.1990,276~281.
    [66]徐颂军.滇池治理人工湿地植物的筛选与应用研究[J].中山大学学报(自然科学版).2005,44(增刊):299~318.
    [67]程香菊,陈永灿.水体大气复氧能力综述[J].科学导报, 2008, 26(17):89~91.
    [68]张宗才.有机污染水体的生物修复[D].四川大学博士论文.2005, 4:132~135.
    [69] Zimmo O R, Van Der Steen N P, Gijzen H J. Comparison of ammonia volatilization rates in algae and duckweed-based waste stabilization ponds treating domestic wastewater [J]. Water Research, 2003, 37 (19): 4587-4594.
    [70] Zimmo O R, Van Der Steen N P, Gijzen H J. Nitrogen mass balance across pilotscale algae and duckweed-based wastewater stabilization ponds [J]. Water Research, 2004, 38 (4): 913-920.
    [71]彭剑峰,王宝贞等.组合生态系统氨氮去除最佳单元及去除机制研究[J].中国给水排水, 2007, 23(15): 62-65.
    [72] R H R Costa, W Medri, C C Perdomo, High-rate pond for treatment of piggery wastes [J]. Wat. Sci. Tech., 2000, 42(10~11): 357-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700