污染场地有机污染物迁移转化规律及其含水层系统天然净化能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在充分收集研究区河北保定某石油渗漏场地地质、水文等资料的基础上,首先建立水流概念模型和数学模型,然后利用地下水模拟系统软件(GMS)对研究区的23-26m的地下水含水层进行了数值模拟。经过模型的识别与验证计算误差范围都在国家容许范围内,证明水流模型的稳定可靠,所预测的流场能够较为真实的反应天然流场的情况。在所建立的模型中将含水层参数分为9个分区,采用将抽水试验的前后两段时间分别作为模型的识别与验证,经过调参后得到了较好的效果,能够较好的反映研究区地下水系统运动特征。
     在地下水流模型的基础上利用弥散试验建立地下水氯离子水质模型,运用MT3D模块对水质模型求解,通过对比氯离子浓度分布的实测值与计算值,对所建立的水质模型进行验证,对应确定研究区内9个分区的弥散度。
     在水质模型的基础上分两种情况对研究区存在的主要有机污染物BETX迁移转化进行模拟,首先是在对流-弥散原理下的污染物模拟预测,其次是不只考虑对流弥散作用,同时也考虑生物降解、化学反应作用下的污染物迁移转化的模拟,对比两种情况下的模拟结果,发现研究区内生物降解作用对于有机物的降解起着很好的作用,从而可以认为采用原位生物修复技术对有机污染区域进行治理在此区域内可行。
On the basis of full collection of datas of Geology and hydrology of a oil leakage field in Baoding of Hebei province, firstly, this article established of the concept, and mathematical model flow, hen simulated the groundwater between 23 to 26m of the area's aquifer by Groundwater Modeling System Software(Groundwater Modeling System Software).Finally, the model identification and verification of calculation error range were all allowed in the national context, and this proved the flow model was stable and reliable, and the the flow field that predict could be a more realistic response to the situation of the natural flow field. The model was divided into nine areas based on the aquifer parameters, and the time before and after the pumping test were used as identification and authentication. After adjusting for the participation we obtained the preferable result, and this could better reflect the characteristics of movement of groundwater system.
     On the basis of Groundwater flow model we use of chloride ion diffusion test to establish groundwater quality model, and use MT3D to get the Solution of the Water quality model, By comparing the measured and calculated values of the distribution of chloride concentration, we can validate the established water quality model, at last, we can determine the dispersion degree of partition 9 in the study area.
     Based on the water quality model we divided into two situations to simulate the main organic pollutants BETX in the study area. Firstly, in the convection dispersion of pollutants under the principles of simulation and prediction, secondly, not only to consider the role of convective dispersion, taking into account biological degradation, chemical reaction of migration and transformation of pollutants under simulated. Comparison of simulation results of both cases and found that biodegradation of the study area for the degradation of organic matter plays a good role, so that the use of in situ bioremediation technology for treatment of organic pollution in the region viable in this area is feasible.
引文
[1].陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002,4-5.
    [2]马军.中国水危机[M].北京:中国环境科学出版社,1999,29-22.
    [3]叶为民,金麒,黄雨,唐益群.地下水污染实验研究进展.水利学报2005,36(2):251-255.
    [4]王连生.有机污染物化学(下).科学出版社,1991,3-4.
    [5]王连生,韩朔睽.有机物定量结构-结构活性相关.中国环境科学出版社.1993,371-376.
    [6]陈望和.河北地下水[M].北京:地震出版社,1999,33-35.
    [7]马军.中国水危机[M].北京:中国环境科学出版社,1999,42-43.
    [8]叶为民,金麒,黄雨,唐益群.地下水污染实验研究进展.水利学报.2005,36(2):251-255.
    [9]岳梅.淮南市区浅层地下水水质污染预测模型探讨[J].地下水,2002,2:77-78.
    [10]叶为民,金麒,黄雨,唐益群.地下水污染实验研究进展.水利学报2005,36(2):251-255.
    [11]丁继红,周德亮.国内外地下水模拟软件的发展现状与趋势[J].勘察科学技术,2002,NO.1,30-32.
    [12]徐乐昌.地下水模拟常用软件介绍[J].铀矿冶,2002,21(1):33-38.
    [13]祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,87(5):53-55.
    [14]孙讷正.地下水污染-数学模型和数值方法[M],地质出版社,1989,55-53
    [15]胡桂全.BTEX在含水层中迁移转化规律研究[D].吉林:吉林大学,2009,60-66.
    [16]孙道林.典型垃圾堆放场对地下水污染模拟及控制技术研究[D].合肥:合肥工业大学,200712-14.
    [17]刘新华,沈照理,傅家谟.地下水油类污染的水文地球化学指标-以山东省淄博市某地下水水源地为例[J].沉积学报,1997,(02):108-112.
    [18]刘敏,许世远,陈振楼.上海南汇淤泥质潮滩表层沉积物中多环芳烃[J].中国环境科学.1998,18(3):284-288.
    [19]王新红,徐立,陈伟琪等.厦门西港沉积物中多环芳烃的垂直分布特征与污染追踪[J].中国环境科学.1997,17(1):19-22.
    [20]贾瑞宝.水中痕量多环芳烃类环境污染物监测方法的研究[J].中国环境检测,1999,1,40-42.
    [21]王连生.有机污染物化学(上)[M].科学出版社,1990,17-18.
    [22]金相灿,程振华,徐南妮,李海生.有机化合物污染化学-有毒有机物污染化学[M].北京:清华大学出版社.1990,49-52.
    [23]王连生,韩朔睽.有机物定量结构一结构活性相关,中国环境科学出版社[M],1993,371-376.
    [24]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘测,2003,(1):24-28.
    [25]郭华明,王焰新,陈艳玲,王玉梅.地下水有机污染的水文地球化学标志物探讨-以河南油田为例[J].地球科学,2001,(03)2627.
    [26]张朝炎等.糖碳自水溶液和四氯化碳溶液中吸附脂肪酸[N].科学通报,197318(5):223-228.
    [27]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000(9)3:24-29.
    [28]张丽珍,杜丽娟,刘淑玲.地下水污染途径与污染机制的探讨[N].河北省科学院学报.2001,18(1):57-60.
    [29]钟左桑.地下水有机污染控制及就地恢复技术研究展望[J].水文地质工程地质.2001年第三期:1-3.
    [30]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘察.2003(1):24-28.
    [31]徐恒振等.HPLC-UVD-FID测定海洋环境样品中PAHs的研究[J].交通环保,1999,6:5-10.
    [32]贾瑞宝.水中痕量多环芳烃类环境污染物监测方法的研究[J].中国环境检测,1999,1,40-42.
    [33]杨琛,傅家谟,盛国英,党志.菲在不同成熟度干酪根上的吸附与解吸行为[J].中国环境科学.2005,25(2):178-182.
    [34]杨秀敏等城市垃圾渗滤液对地下水的污染及防治对策[J].上海水利科技,2005,(11):60-65.
    [35]陈春云,庄源益,刘斐,杨敏.燃料在干污泥上的吸附平衡动力学.安全与环境学报.2003,3(6):46-50.
    [36]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展.土壤.2005,37(4):362-369.
    [37]李绪谦,潘晓峰,孙大志,商书波等.张士灌区细河流域地下水污染物空间分布特征及污染源判别分析[C].东北老工业基地环境污染形成与污染控制学术研讨会论文集.2006,4:19-24.
    [38]罗雪梅,刘昌明.离子强度对土壤与沉积物吸附多环芳烃的影响研究[J].生态环境,2006,15(5):983-987.
    [39]陈宝梁,李菱,朱利中.温度和离子强度对SDBS增溶菲的影响及机理[J].环境化学,2006,25(6):697-700.
    [40]郑西来,钱会,等.地下水系统中石油污染物的吸附转移研究[J].勘察科学技术,1998,1:26-29.
    [41]胡宏韬,林学钰,廖资生等.阿特拉津在地下水中迁移转化的实验研究[N].长春科技大学学报.2001,31(3):284-287.
    [42]陈建峰,王政友.大同地区地下水弥散试验研究[J].地下水,2002,4:168-169.
    [43]何江涛,史敬华,崔卫华,刘菲,陈鸿汉.浅层地下水氯代烃污染天然生物降解的判别依据[J].地球科学,2004,(03).30-32
    [44]柴宏伟,雷美清.金堤河对地下水污染演化的模拟分析[J].土工基础.2004,18(6):61-63.
    [45]丁继红,周德亮.国内外地下水模拟软件的发展现状与趋势[J].勘察科学技术,2002,1,22-25.
    [46]张红梅,速宝玉.垃圾填埋场渗滤液及对地下水污染研究进展[J].水文地质工程质,2003,(6):110-116.
    [47]陆军,王菊思,赵丽辉等.苯系化合物好氧降解菌的驯化和筛选[J].环境科学,1996,17(6):1-5.
    [48]李建萍,李绪谦,王存政等.垃圾填埋场对地下水污染的模拟研究[J].环境污染治理技术与设备,2004,5(11):60-65.
    [49]戴树桂.环境化学[M].高等教育出版社.1997,80-82.
    [50]Blumer M.Polycylic Aromatic Compounds in Nature. Sci.Amer.1976,234(3):34-45.
    [51]Lloyd-Jones G, Laurie A.D, Hunter D, etal. Analysis of catabolic Genes for naphthalene and phenanthrene degradation in contaminated New Zealang soils[J]. FEMS Microbiology Ecology,1999,29: 69-79.
    [52]Coates J D, Woodward J, Allen J, etal. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments[J]. Appl Environ Microbiol,1997,63: 3589-3593.
    [53]Hayes L A, Nevin K P,Lovley D R. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine Harbor sediments[J],Organic Geochemistry,1999,30:937-945.
    [54]Eaton R W, Chapman P J. Bacterial metalobolism of naphthalene Construction and use of recombinancec bacteria to study ring Cleavage of 1,2-dihydroxy-naphthalene and subsequent reactions[J]. J Bacterial,1992,174:7542-7554.
    [55]Charles J. Moreti and Ronald D. Neufeld, PAH partitioning mechanisms with activated sludge. Water Research.1989,23(1):93-102.
    [56]Ho Y S, Mckay G.The sorption of lead[Ⅱ]ions on peat [J]. Wat Res,1999,32(2):578-584.
    [57]Manuel J. Fermandez, et al. Evaluation of Liqiud-Liqiud Extraction and Liqiud-Soid Extraction with a New Sorber for The Determination of Polycyclic Aromatic Hydrocarbons in Raw And Finished Drinking Waters,J, Agric. Food Chem.1996,44,1785-1789.
    [58]Aksu Z. Biosorption of reactive dyes by dried activated Sludge:Equilibri-umand kinetic modeling[J]. Biochem Eng J,2001,7:79-84.
    [59]Wise. S.A et al, Certification of Polycyclic Aromatic Hydro-carbons in a Marine Sediment Standard Reference Material,Anal. Chem,1995,67,1171-1178.
    [60]Lee Cl, Kuo LJ, Wang HL, Hsieh PC. Effects of ionic Strength on the binding of phenanthrene and pyrene to humic substances:three-stage variation model. Water Research,2003,37:4250-4258.
    [61]Raber B, Koegel-Knabner I, Stein C, Klem D. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere,1998,36:79-97.
    [62]E.Benfenati, E.Porazzi, R.Bagnati. Organic tracers identification as a convenient strategy in industrial landfills monitoring. Chemosphere[J].2003,51(5):677-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700