高岭石有机插层复合物的制备、表征及应用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在综合分析高岭石有机插层复合物的发展历程、制备工艺、表征方法、应用前景、插层机理等大量文献的基础上,运用现代材料测试技术对以萍乡硬质高岭土为原料的高岭石有机插层复合物的制备、表征及应用进行了全面系统的研究,主要内容如下:
     用直接插层法制备了高岭石—乙酸钾、高岭石—二甲基亚砜、高岭石—甲酰胺、高岭石—N-甲基甲酰胺、高岭石—脲、高岭石—水合肼等插层复合物,并进行了表征。
     系统研究了高稳定性、多用途的高岭石—乙酸钾插层复合物的插层影响因素,第一次提出了乙酸钾插层的最低浓度阀值为8%;发现制备高插层率复合物的必要条件为保持反应系统处于乙酸钾饱和溶液状态,并确定了插层优化工艺参数;由实验结论还简化了高岭土原料的预处理工艺,为实现工业化生产提供了技术支持。
     系统研究了温度对高岭石—二甲基亚砜插层速率的影响,确定的优化工艺参数使插层时间由原来的5~7天缩短到3小时以内,插层效率大为提高;由实验确定的无水乙醇漂洗法,可有效去除高岭石表面吸附的多余二甲基亚砜分子,漂洗后的插层物烘干时间也大幅度缩短。该优化工艺为科学研究和技术应用提供了一种简捷高效的快速制备方法,从而可促进该系列插层复合物的产品开发与理论研究工作。
     用置换取代法制备了高岭石—苯甲酰胺、高岭石—甲醇、高岭石—对硝基苯胺、高岭石—聚丙烯酰胺、高岭石—聚乙二醇等插层复合物,并进行了表征。高岭石—甲醇是具有通用性的预插层体,而高岭石—对硝基苯胺则具有二次非线性光学特征,由此确认我国储量丰富的硬质高岭土可以开发功能性材料。
     确定了以高岭石—二甲基亚砜为前驱体用熔融法制备高岭石—苯甲酰胺、高岭石—聚乙二醇(PEG20000)插层复合物的最佳插层时间。用扫描电镜和透射电镜对后者的形貌进行了较全面详细的研究,分析表明高岭石被剥离成纳米级的片层。
     以高岭石—二甲基亚砜或高岭石—甲酰胺为前驱体,采用丙烯酰胺取代而后加热聚合的方法制备了高岭石—聚丙烯酰胺复合物,实验表明以前者作前驱体的插层效果较好。
     综合对比和评价了乙酸钾、水合肼、脲的插层剥片效果。实验结
On the basis of integrated analysis of a great deal of literatures and data about the kaolinite-organics intercalation compounds on the preparation , characterization and applications as well as the theories of intercalation, using modern material testing and analyzing techniques, this paper entirely and systematically studies the preparation, characterization and applications of the kaolinite-organics intercalation compounds prepared from the kaolinite rocks from Pingxiang. The main contents of the paper are as follows.Direct intercalated by potassium acetate, dimethyl sulfoxide, formamide , N-methylformamide, urea and hydrazine hydrate, some kaolinite-organics intercalation compounds were prepared respectively from kaolinite , and their characterizations are studied.Integratedly analyzing the influence factors on intercalation of the kaolinite- potassium acetate intercalation compound which is high stabile and multipurpose. It is put forword for the first time that the lowest concentration value of potassium acetate which can intercalate is 8%, the prerequisite for preparing the high intercalation ratio complex is the reaction system maintained in aqueous solution saturated with potassium acetate, the best technical parameters of intercalating are confirmed, and the pretreated procedures of raw kaolinites are simplified by experiment data, and all that provide the technique supports for industrial production.Systematically analyzing the influence of temperature on the intercalation ratio of kaolinite-dimethyl sulfoxide intercalation compound, the best technical parameters based on the experiment data change the time from the usual intercalation period of 5~7 days to within 3 hours, the redundant dimethyl sulfoxides adsorbed on the surface of kaolinites are removed effectively by repeated washes with absolute alcohol, and the period of drying the compound is shorteneid The best technical parameters provide a quick preparation method on this intercalation compound for its research, application and its derivatives.By means of displacement method, kaolinite-benzamide, kaolinite methanol, kaolinite-p-nitroaniline, Kaolinite-Polyacrylamide and Kaolinite-Polyethylene Glycols intercalation compounds are prepared and their characterizations are studied. Kaolinite-methanol intercalation compound was proved to be a highly versatile intermediate for further intercalation reaction, and kaolinite-p-nitroaniline intercalation compound
    exhibit second-order nonlinear optical properties, so that the abundant kaolinite rocks in China is capable of making function materials.By melt method, both kaolinite- benzamide and kaolinite-polyethylene glycols intercalation compounds are prepared and their optional periods of intercalation are determined. The appearance features of the latter are studied by TEM and SEM images, which shows that the kaolinite exfoliates to nano-lamellars.Through acrylamide polymerized between the layers of kaolinite by heat treatment, kaolinite-polyacrylamide is prepared. The acrylamide monomer is first intercalated by the displacement reaction between a kaolinite- dimethyl sulfoxide or kaolinite-formamide intercalation compound and a acrylamide aqueous solution. The experimental results show that kaolinite- dimethyl sulfoxide intercalation compound is better as a intermediate.By means of contrasting and evaluating on the effects of exfoliation with potassium acetate, hydrazine hydrate and urea, experiment data shows that the speed of exfoliation of kaolinites is the highest by intercalated with hydrazine hydrate, which has a advantage of industrial production, but a hermetically-sealed chamber and a ventilative workshop are needed and the investment is higher. The time of exfoliation of kaolinite by intercalated with potassium acetate is long, but potassium acetate could be firstly applied to industrial production for its innocuity, no pollution, ordinary equipment and simple operation for intercalation. The Urea, used for exfoliation, has too small profits for its heating equipment, long period of reaction and complexity of filtration and rinse, but the kaolinite-urea intercalation compound could be used to prepare nano-kaolinite by which saturated in acid aqueous solution.Using the kaolinite- dimethyl sulfoxide intercalation compound as the precursor, the kaolinite-silver nanoparticle complex are synthesized. The results indicate that the diameter of the silver particles, which can be adjusted by controlling the reaction conditions, has a direct relative to the initial concentration of the reactants. This research provides a effective way to produce high active catalysts by means of using the interlamellar space of a layered kaolinite clay mineral as nano-reactor to synthesize metal nanoparticles.
引文
[1] 陶维屏,苏德辰。中国非金属矿产资源及其利用与开发[M]。北京:地震出版社,2002。
    [2] 刘研,李宪洲。高岭土的深加工与新材料[J]。世界地质,2004,23(2):195-200。
    [3] 孔浩。高岭土改性和层柱材料的制备与表征[D]。天津:天津大学硕士论文,2002。
    [4] 白杉。我国建筑卫生陶瓷发展综述[J]。江苏陶瓷,2003,(1):
    [5] 吴铁轮。我国高岭土市场现状及展望。非金属矿,2004,27(1):1-4。
    [6] Bish D.L.. [J]. Clays Clay Miner. 41, 738(1993).
    [7] 袁树来,等,编著。中国煤系高岭岩(土)及加工利用[M]。北京:中国建材工业出版社,2001。
    [8] Ma C, Eggleton R A. Surface layer types of kaolinite: A high-resolution transmission electron microscope study [J]. Clays and Clay Minerals, 1999, 47: 181-191.
    [9] Frost R L, Kdstof J, Schmidt J M, et al. Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature [J]. Spectrochimica Acta Part A, 2001, 57: 603-609.
    [10] Adri C.T. van Duin, Steve R. Larter. Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces [J]. Organic Geochemistry, 2001, 32: 143-150.
    [11] 李恒德。现代材料科学与工程词典[M]。济南:山东科技出版社,2001:411-412。
    [12] Bandyopadhyoy S, Mukerji J. Effect of nitrogen content on the sintering behavior and properties of Sialon prepared from kaolin[J]. Ceram Inter, 1993, 19(3): 133-139.
    [13] Suvorov S A, Dolqushev N V, Zabolotskij A V. Highrate synthesis of dispersed sialon power [J]. Ogneupory i Tekhnicheskaya Keramika, 2002, 4: 2-5.
    [14] Antsiferov V N, Gilev V G. Membrane-porous materials from sialon [J]. Ogneupory i Tekhnicheskaya Keramika, 2001, 2: 2-8.
    [15] Panda P K, Mariqppan L, Kannan T S. Carbothermal reduction of kaolinite under nitrogen atmosphere [J]. Ceram Inter, 2000, 26(5): 455-461.
    [16] Panneerselvam M, Rao K J. A microwave method for the preparation and sintering of β prime-Sialon [J]. Mat R Bull, 2003, 38(4): 663-674.
    [17] 张海军,李文超,钟香崇。天然原料合成o′-Sialon-ZrO_2-SiC复合材料[J]。稀有金属,2000,34(1):25-29。
    [18] 张海军,李文超,钟香崇。粘土还原氮化合成o′-Sialon基复合材料[J]。耐火材料,2000,34(3):137-140。
    [19] 李亚伟,李楠,王斌耀,等。β—赛隆(Sialon)/刚玉复合耐火材料研究[J]。无机材料学报,2000,15(4):612-618。
    [20] 钱扬保,王福明,徐利华,等。黏土碳热还原氮化二步法制备β—Simon结合刚玉复相材料[J]。耐火材料,2002,36(2):77-69。
    [21] Davidovits J. Geopolymer and geopolymeric materials [J]. J Then Angl, 1989(35): 429-441.
    [22] Jian-Ying Miao, Dennis W. Hwang, Che-Chen Chang, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD [J].Diamond and Related Materials, 2003, 12: 1368-1372.
    [23] 王银叶。天然矿高岭土制备莫来石复合纳米晶微观结构表征[J]。硅酸盐学报,2000,28(2):68-71。
    [24] Karch J, Birringer R, Gleiter H. Ceramics at low temperature [J]. Nature, 1987, 33(6148): 556-559.
    [25] 吕凤柱,张宝砚,王文斌,窦臻。PA1010/高岭土杂化材料的制备和探讨[J]。高分子材料科学与工程,2002,18(2):187-191。
    [26] 古映莹,廖仁春,吴幼纯,等。高岭石—MBT复合材料的制备及其对Pb~(2+)的吸附性能[J]。贵州化工,2001,26(3):23-25。
    [27] 王新。聚合填充法制备UHMWPE/Kaolin复合材料的结构与性能[D]。北京:中国科学院化学研究所博士论文,2001。
    [28] 魏月琳,吴季怀。高岭土—丙烯酰胺系超吸水性复合材料表征[J]。华侨大学学报(自然科学版),2002,23(4):412-416。
    [29] 朱秀林,顾梅,赵峰。高岭土—聚丙烯酸钠高吸水性复合树脂的合成及性能研究[J]。高分子材料科学与工程,1994,(5):46-49。
    [30] 熊传溪,刘起虹,董丽杰,王雁冰。HDPE/高岭土复合材料的制备与性能[J]。武汉理工大学学报,2002,24(1):1-3。
    [31] 曾清华,王栋知,王淀佐。聚合物—粘土矿物纳米复合材料[J]。化工进展,1998,17(2):1-。
    [32] 王立新,张楷亮,任丽,等。聚合物/层状硅酸盐纳米复合材料的研究进 展[J]。复合材料学报,2001,18(3):5-9。
    [33] Giannalis E P. Polymer layered silicate nanocomposites[J]. Adv Mater, 1996, 8(1): 29-35.
    [34] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J]. Mater Sci Eng, 2000, R28.
    [35] 徐卫兵。聚合物/蒙脱土插层纳米复合材料的研究[D]。中国科学技术大学,博士论文,2001。
    [36] 张琴。熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能[D]。四川大学,博士论文,2002。
    [37] 袁昌来,董发勤。粘土/有机纳米复合粉体材料[J]。中国非金属矿工业导刊,2003,(4):14-17。
    [38] 吕建坤。环氧树脂及高性能热塑性树脂与粘土插层复合的研究[D]。浙江大学,博士论文,2001。
    [39] 须藤俊男,著。严寿鹤,刘万,贾克实,译。粘土矿物学[M]。北京:地质出版社,1981。
    [40] Olejnik S L, et al. [J]. J Phys Chem, 1968, 72(1): 241-249.
    [41] B. K. G. Theng, G. J. Churchman, J. S. Whitton, G. G. C. Claridge. Comparison of Intercalation Methods for Differentiating Halloysite from Kaolinite [J]. Clays and Clay Minerals, Vol 32, No. 4, 249-258, 1984.
    [42] John G. Thompson.Interpretation of Solid State .(13)C and ~(29)Si nuclear Magnetic Resonance spectra of Kaolinite Intercalates [J]. Clays and Clay Minerals, Vol.33, No.3, 173-180, 1985.
    [43] Yoshiyuki Sugahara, Shigeo Satokawa, Kazuyuki Kuroda, Chuzo Kato. Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinite [J]. Clays and Clay Minerals, 1988, 36(4): 343-348.
    [44] P. Sidheswaran, A.N. Bhat, P. Ganguli. Intercalation of Salts of Fatty Acids into Kaolinite [J]. Clays and Clay Minerals, Vol. 38, No. 1, 29-32, 1990.
    [45] Yoshiyuki Sugahara, Shigeo Satokawa, Kazuyuki Kuroda, Chuzo Kato. Preparation of a kaolinite-polyacrylamide intercalation compound [J]. Clays and Clay Minerals, Vol. 38, No. 2, 137-143, 1990.
    [46] James J. Tunney, Christian Detellier. Preparation and Characterization of two Distinct Ethylene Glycol Derivatives of Kaolinite[J]. Clays and Clay Minerals, Vol. 42, No.5, 552-560, 1994.
    [47] James J. Tunney, Christian Detellier. Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates [J]. Chem. Mater.1996, 8, 927-935.
    [48] Ray L. Frost, Thu Ha Tran, Janos Kristof. FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates [J]. Vibrational Spectroscopy 13(1997) 175-186.
    [49] Ray L. Frost, Janos Kristof. Intercalation of Halloysite: a Raman Spectroscopic Study [J]. Clays and clay Minerals, Vol.45,No.4, 551-563, 1997.
    [50] R. L. Frost, T. H. Tran, J. Kristof. The structure of an intercalated ordered kaolinite—a Raman microscopy study [J]. Clay Minerals,(1997)32, 587-596.
    [51] Ray L. Frost, Janos Kristof. Intercalation of halloysite: a RAMAN spectroscopic study [J]. Clays and Clay Minerals. Vol.45, No. 4.551-563.1997.
    [52] Yoshihiko Komori, Yoshiyuki Sugahara. A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite [J]. J. Mater. Res., Vol. 13, No. 4, Apr 1998.
    [53] Yoshihiko Komori, Yoshiyuki Sugahara, Kazuyuki Kuroda. Thermal transformation of a kaolinite-poly(acrylamide) intercalation compound [J]. J. Mater. Chem., 1999, 9, 3081-3085.
    [54] Jose Eduardo Gardolinski, Patricio Peralta-Zamora, Fernando Wypych. Preparation and Characterization of a kaolinite-1-methyl-2-pyrrolidone Intercalation Compound [J]. Journal of Colloid and Interface Science, 211, 137-141 (1999).
    [55] Tetsuro Itagaki, Yoshihiko Komori, Yoshiyuki Sugahara, Kazuyuki Kuroda. Synthesis of a kaolinite-poly(β-alanine) intercalation compound [J]. J. Mater. Chem., 2001, 11, 3291-3295.
    [56] Yoshihiko Komori, Yoshiyuki Sugahara. Kazuyuki Kuroda. Direct intercalation of poly(vinylpyrrolidone) into kaolinite by a refined guest displacement method [J]. Chem. Mater. 1999. 11, 3-6.
    [57] Yoshihiko Komori, Yoshiyuki Sugahara, Kazuyuki Kuroda. Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate [J]. Applied Clay Science 15(1999)241-252.
    [58] Ryoji Takenawa, Yoshihiko Komori, Shigenobu Hayashi, Jun Kawarnata, Kazuyuki Kuroda. Intercalation of nitroanilines into kaolinite and second harmonic generation[J]. Chem. Mater. 2001, 13, 3741-3746.
    [59] Asako Matsumura, Yoshihiko Komori, Tetsuro Itagaki, Yoshiyuki Sugahara, Kazuyuki Kuroda. Preparation of a kaolinite-nylon 6 intercalation compound [J]. Bull. Chem. Soc. Jpn., 74, 1153-1158 (2001).
    [60] Szilvia Papp, Anna Szucs, Imre Dekany. Colloid synthesis of monodisperse Pd nanoparticles in layered silicates [J]. Solid State Ionics 141-142(2001) 169-176.
    [61] Rita Patakfalvi, Albert Oszko, Imre Dekany. Synthesis and characterization of silver nanoparticle/kaolinite composites [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 45-54.
    [62] 卢寿慈。粉体加工技术[M]。北京:中国轻工业出版社,1999。
    [63] 杨雅秀,张乃娴,苏昭冰,等。中国粘土矿物[M]。北京:地质出版社,1994。
    [64] Shigenobu Hayashi. NMR Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl Sulfoxide [J]. Clays and Clay Minerals, Vol. 45, No. 5, 724-732,1997.
    [65] Shigenobu Hayashi. NMR Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation Compound [J]. J. Phys. Chem. 1995, 99, 7120-7129.
    [66] Hayashi S, Ueda T, Hayarnizu K, et al. NMR study of kaolinite. Ⅰ. ~(29)Si, ~(27)Al, ~1H spectra [J]. J Phys Chem, 1992, 96: 10992-10928.
    [67] Xie X L, Hayashi S. NMR study of kaolinite intercalation compound with formamide and its derivatives, Ⅰ. Structure and orientation of guest molecules [J]. J Phys Chem B, 1999, 103: 5949-5955.
    [68] James J. Tunney, Christian Detellier. Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates [J]. Chem. Mater.1998, 8, 927-935.
    [69] Yoshihiko Komori, Yoshiyuki Sugahara. A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite [J]. J. Mater. Res., Vol, 13, No. 4, Apr 1998.
    [70] Yoshihiko Komori, Yoshiyuki Sugahara, Kazuyuki Kuroda. Thermal transformation of a kaolinite-poly(acrylamide) intercalation compound [J]. J. Mater. Chem., 1999, 9, 3081-3085.
    [71] B. P. Kelleher, D. Sutton, T.F. O'Dwyer. The Effect of Kaolinite Intercalation on the Structural Arrangements of N-Methylformamide and 1-Methyl-2-pyrrolidone [J]. Journal of Colloid and Interface Science, 255,219-224 (2002).
    [72] Frost R L, Kristof J, Horrath E, et al. [J], J Colloid Interface Sci, 1999, 412: 380.
    [73] 王林江,吴大清,袁鹏,等。高岭石/甲酰胺插层的~1H魔角旋转核磁共振谱[J]。科学通报,2001,46(22):1910-1913。
    [74] James J. Tunney, Christian Detellier. Chemically modified kaolinite.Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite [J]. J. Mater. Chem., 1996, 6(10), 1679-1685.
    [75] 赵顺平,夏华,张生辉。高岭石/有机插层复合材料的研究进展[J]。材料科学与工程学报,2003,21(4):620-624。
    [76] R. L. Frost, S. J. Van Der Gaast, Marek Zbik, J. T. Kloprogge, G. N. Paroz. Birdwood kaolinite: a highly ordered kaolinite that is difficult to intercalate—an XRD,SEM and Raman spectroscopic study [J]. Applied Clay Science 20(2002) 177-187.
    [77] 王林江,吴大清。高岭石有机插层反应的影响因素[J]。化工矿物与加工,2001,(5):29-32。
    [78] 李伟东,黄建国,许承晃。高岭土—二甲亚砜夹层复合物的形成机理[J]。华侨大学学报(自然科学版),1994,15(1):48-52。
    [79] 李学强,夏华。高岭土—乙酸钾夹层复合物制备[J]。非金属矿2002,25(4):22-23。
    [80] James J. Tunney, Christian Detelliet. Preparation and Characterization of two Distinct Ethylene Glycol Derivatives of Kaolinite [J]. Clays and Clay Minerals, Vol. 42, No. 5, 552-560,1994.
    [81] Makoto Sato. Preparation of Kaolinite-Amino acid intrecalates derived from hydrated kaolinite [J]. Clays and Clay Minerals, 1999, 47(6): 793-802.
    [82] Itagati A., Matsumura A., Kato M., et al. [J]. Journal of material of science letters, 2001,20: 1483-1484.
    [83] 沈忠悦,袁明永,叶瑛,杨帅杰。高岭石的夹层化合物及其剥片作用[J]。非金属矿 2000,23(6):12-13。
    [84] Ryoji Takenawa, Yoshihiko Komori, Shigenobu Hayashi, Jun Kawamata, Kazuyuki Kuroda. Intercalation of nitroanilines into kaolinite and second harmonic generation [J]. Chem. Mater. 2001, 13, 3741-3746.
    [85] Rita Patakfalvi, Albert Oszko, Imre Dekany. Synthesis and characterization of silver nanoparticle/kaolinite composites [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 45-54.
    [86] Szilvia Papp, Anna Szucs, Imre Dekany. Colloid synthesis of monodisperse Pd nanopartieles in layered silicates [J]. Solid State Ionies 141-142(2001) 169-176.
    [87] 刘岚,罗远芳,贾德民。聚合物/高岭石嵌入纳米复合材料研究进展[J]。合成橡胶工业,2002,25(3):190-193。
    [88] Lawrence G, Ginanelis P. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates [J]. Adv Mater, 1995, 7(2): 154-156.
    [89] Liu Y J, Schindler J L, De Groot D C, et al. Synthesis, structure, and reactions of poly(ethyleneoxide)/V2O5 interealative nanocomposites [J]. Chem Mater, 1996, 8(2): 525-534.
    [90] Murray H H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview [J]. Appl Clay Sci, 2000,17(5~6): 207-221.
    [91] Balbir Singh, Woodlands; Ian Donald Richard Maekinnon, Ellengrove, Both of Australia. Modified Kaolins[P]. No. 6022821. Feb.8,2000. U.S.
    [92] John Gerard Thompson, Page; Ian Donald Richard Mackinnon, Ellengrove; Sasha Koun, Cook; Neil Gabbitas, Kambah, all of Australia. Kaolin derivatives[P]. US Patent 5 858 081, 1999.
    [93] 李伟东,许承晃。粘土—有机物夹层复合物的形成及应用[J]。中国矿业,1994,3(5):80-83。
    [94] 王林江,吴大清。高岭石有机插层材料的研究现状[J]。材料导报,2001,15(6):41-43。
    [95] 张生辉,夏华。高岭石插层复合材料研究进展[J]。化工新型材料,2003,31(6):5-8。
    [96] 曹秀华,王炼石。高岭土夹层复合物的合成、结构和应用[J]。材料科学与工程学报2003,21(3):456-459。
    [97] 钟远,陈开惠。有机化合物在高岭石结构中的夹层作用实验研究[J]。地质科学,1992,(4):356-362。
    [98] 李伟东,黄建国,许承晃。高岭土—聚丙烯酰胺夹层复合物的合成[J]。复合材料学报,1994,11(1):23-28。
    [99] 陈祖熊,张建中。二维高岭土材料的制备与性质[J]。华东理工大学学报,1995,21(1):54-57。
    [100] 刘钦甫,丁述理,宋丽君,朱在兴。煤系高岭石有机夹层作用的实验研究 [J]。岩石矿物学杂志,1996,15(2):153-157。
    [101] 丁述理,金瞰昆,刘炳辛。夹层高岭石的热稳定性试验研究[J]。河北煤炭建筑工程学院学报,1996,(1):62-65。
    [102] 刘钦甫,丁述理。煤系高岭石—醋酸钾复合体的热行为[J]。矿物学报,1997,17(3):276-279。
    [103] 丁述理,杨晓杰,刘钦甫。煤系高岭石有机夹层作用及在剥片中的应用[J]。中国矿业,1997,6(5):17-22。
    [104] 何萌,和寿英,王强,马衡。有机化合物插入高岭石研究初探[J]。云南师范大学学报 1998,18(4):86-87。
    [105] 陈祖熊,颜卫,王坚,等。肼对高岭土插层的研究(Ⅰ)—肼溶液浓度对插层的影响[J]。建筑材料学报,2000,3(2):151-155。
    [106] 陈祖熊,颜卫,王坚,季春勇。肼对高岭土插层的研究(Ⅱ)—高岭土结构对插层的影响[J]。建筑材料学报,2000,3(3):240-245。
    [107] 任子平,鲁安怀,周平,方勤方。高岭土有机改性实验研究[J]。岩石矿物学杂志,2001,20(4):485-489。
    [108] 厦华,佟健,侯常娥。高岭石—聚丙烯腈夹层复合物的制备[J]。矿物岩石,2001,21(4):7-10。
    [109] 廖仁春,古映莹,吴幼纯,等。高岭石—插层复合材料的制备及吸附性能[J]。嘉兴学院学报,2002,14(6):25-29。
    [110] 王林江,吴大清,袁鹏,等。高岭石/甲酰胺插层的Raman和DRIFT光谱[J]。高等学校化学学报2002,23(10):1948-1951。
    [111] 陈洁渝,严春杰,谌祺。用SEM分析肼对高岭石的插层作用[J]。电子显微学报2002,21(5):775、756。
    [112] 王林江,吴大清,刁桂仪。高岭石/聚丙烯酰胺插层复合物的制备与表征[J]。无机化学学报,2002,18(10):1028-1031。
    [113] 曹秀华,王炼石,周奕雨。一种制备插层和无定形高岭土的新方法[J]。化工矿物与加工2003,(7):10-12。
    [114] 高岭土/吡啶插层复合物的制备与表征。夏华,李学强,孟祥庆。矿物学报2003,23(3):216-219。
    [115] 王宝祥,李佳,赵晓鹏。高岭土/羧甲基淀粉插层复合微粒及其电流变性能[J]。材料研究学报,2003,17(3):235-240。
    [116] 孙红,刘志强,单永奎,何鸣元。剥片高岭土的有机改性[J]。矿物学报2003,23(2):97-101。
    [117] 陈洁渝,严春杰。快速制备肼—高岭石插层复合物的方法及意义[J]。岩石 矿物学杂志2003,22(1):99-102。
    [118] 瞿金蓉,胡明安,陈敬中,韩炜。插层高岭石层间醋酸钾的作用和取向[J]。矿物岩石,2003,23(4):50-53。
    [119] 王林江,吴大清。甲酰胺在高岭石层间的定向研究[J]。矿物岩石,2003,23(4):25-27。
    [120] 张生辉,夏华,杨薇,赵顺平,韩利雄。高岭石/苯甲酰胺插层复合物的制备与表征[J]。硅酸盐学报,2004,32(5):631-635。
    [121] 张生辉,夏华,杨薇,赵顺平,韩利雄。高岭石/对硝基苯胺插层复合物的制备与表征[J]。材料工程,2004,(3):24-27。
    [122] 吴德意,孔海南,褚春凤。高岭石-甲醇夹层复合体的合成及其特性[J]。土壤,2004,36(1):51-55。
    [123] Ray L. Frost. Hydroxyl deformation in kaolins [J]. Clays and Clay Minerals, 1998, 46(3): 280-289.
    [124] 段长强,孟庆芳,张泰,等。现代化学试剂手册第一分册通用试剂[M]。北京:化学工业出版社,1986:253。
    [125] Ray L. Frost, Oliver B. Locos, Janos Kristof, J. Theo Kloprogge. Infrared spectroscopic study of potassium and cesium acetate-intercalated kaolinites [J]. Vibrational Spectroscopy, 2001, 26, 33-44.
    [126] M. D. Ruiz Cruz, F. I. Franco Dttro. New data on the kaolinite-potassium acetate complex [J]. Clay Minerals, 1999, 34, 565-577.
    [127] Gardolinski J E, Carrera L C M, Cantao M P, et al. Layered polymer-kaolinite nanocomposites[J]. Journal of materials science, 2000, 35(12): 3113-3119.
    [128] 夏华,李学强,孟祥庆。高岭土/吡啶插层复合物的制备与表征[J]。矿物学报,2003,23(3):216—220。
    [129] 王宝祥,李佳,赵晓鹏。高岭土/羧甲基淀粉插层复合微粒及其电流变性能[J]。材料研究学报,2003,17(3):235—239。
    [130] 张生辉,夏华,杨薇,赵顺平,韩利雄。高岭石/苯甲酰胺插层复合物的制备与表征[J]。硅酸盐学报,2004,32(5):631—635。
    [131] 张生辉,夏华,杨薇,赵顺平,韩利雄。高岭石/对硝基苯胺插层复合物的制备与表征[J]。材料工程,2004,(3):24—27。
    [132] James J. Tunney, Christian Detellier. Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite[J]. Clays and Clay Minerals, 1994, 42(5): 552-560.
    [133] James J. Tunney, Christian Detellier. Aluminosilicate Nanocomposite Materials. Poly(ethylene glycol)-Kaolinite Intercalates[J]. Chem. Mater. 1996, 8(4), 927-935.
    [134] Jose Eduardo Gardolinski, Luiz Pereira Ramos, Gabriel Pinto de Souza, Femando Wypych. Intercalation of benzamide into kaolinite[J]. Journal of Colloid and Interface Science, 2000, 221: 284-290.
    [135] 任子平,鲁安怀,周平,方勤方。高岭土有机改性实验研究[J]。岩石矿物学杂志,2001,20(4):485—489。
    [136] 丁述理,杨晓杰,刘钦甫。煤系高岭石有机夹层作用及在剥片中的应用[J]。中国矿业,1997,6(5):17—21。
    [137] Rita Patakfalvi, Albert Oszko, Imre DeKany. Synthesis and characterization of silver nanoparticle/kaolinite composites[J] Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 220: 45-54.
    [138] Ray L. Frost, Janos Kfistof, Gina N. Paroz, J. Theo Kloprogge. Molecular structure of dimethyl sulfoxide intercalated kaolinites[J]. J. Phys. Chem. B, 1998, 102: 8519-8532.
    [139] John G. Thompson. Interpretation of solid state ~(13)C and ~(29)Si nuclear magnetic resonance spectra of kaolinite intercalates[J]. Clays and clay minerals, 1985, 33(3): 173-180.
    [140] F. Franco, M. D. Ruiz Cruz. High-temperature X-ray diffraction, differential thermal analysis and thermogravimetry of the kaolinite-dimethyl sulfoxide intercalation complex[J]. Clays and clay minerals, 2002, 50(1): 47-55.
    [141] Shigenobu Hayashi. NMR study of dynamics and evolution of guest molecules in Kaolinite/Dimethyl Sulfoxide[J]. Clays and clay minerals, 1997, 45(5), 724-732.
    [142] Andrea Michalkova, Daniel Tunega, Ladislav Tuff Nagy. Theoretical study of interactions of dickite and kaolinite with small organic molecules[J]. Journal of Molecular Structure (Theochem), 2002, 581, 37-49.
    [143] Arthur I. Vogel. A textbook of Practical Organic Chemistry[M]. 3rd ed., London, 797, 1956.
    [144] Ryoji Takenawa, Yoshihiko Komori, Shigcnobu Hayashi, et al. Intercalation of nitroanilines into kaolinite and second harmonic generateon [J]. Chem. Mater, 2001, 13, 3741-3746.
    [145] R.K. hailstone. [J]. J. Phys. Chem. 99(1995)4414.
    [146] M. Haneda, Y. Kintaichi, M. Inaba, H. Hamada. [J]. Catal. Today 42(1998)127.
    [147] H. Tada, K. Teranishi, Y. Inubushi, S. Ito. [J]. Langmuir 16(2000)3304.
    [148] T. Pal. [J]. J. Chem. Educ. 71(1994)679.
    [149] 王玉林,万怡灶,成国祥,等。活性碳纤维载银工艺及其表面银颗粒的形态特征[J]。材料工程,1998,(8):28—34。
    [150] 张昭,林向农,罗文彬,等。多孔载银抗菌剂和灭菌性能评价[J]。高校化学工程学报,2003,17(4):451—456。
    [151] 刘晓洪,夏军,金晓红。海泡石载银抗菌剂的制备研究[J]。武汉科技学院学报,2003,16(4):63—66。
    [152] 胡发社,程海丽,杨飞华,等。坡缕石型载银抗菌剂的研制[J]。现代化工,2001,21(6):35—37。
    [153] 李殿超,蒋引珊,姚爱华,等。载银沸石的抗菌性能及热稳定性研究[J]。非金属矿,2003,26(3):8—9。
    [154] 严建华,冯乃谦,翟凡,等。载银天然沸石抗菌耐久性的研究。硅酸盐通报,2002,(3):7—10。
    [155] 李博文,肖清华。载银膨润土的抗菌性能研究[J]。非金属矿,2001,24(5):17—18。
    [156] 余海霞,张泽强,谢恒星。载银型抗菌累托石的制备及其性能[J]。武汉化工学院学报,2003,25(1):46—48。
    [157] Rita Patakfalvi, Albert Oszko, Imre DeKany. Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids and Surfaces A: Physicochem. Eng. Aspects 220(2003)45-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700