胃癌MG7-Ag模拟表位为基础构建多表位联合的基因疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是严重威胁我国人民健康的恶性肿瘤,目前胃癌的治疗手段主要有手术切除和化疗,但均不能有效解决肿瘤转移、复发等问题。免疫治疗是肿瘤治疗的新方法,包括用外源性抗体治疗、用细胞因子调节免疫以及主动免疫治疗,用疫苗对患者的免疫系统产生特异性刺激。目前尚无有效的疫苗用于胃癌的主动免疫治疗。胃癌MG7抗原是本研究所在八十年代发现的特异性较高的肿瘤标志物,抗原分析表明其抗原决定簇位于糖链上。由于糖抗原免疫原性弱,纯化、制备困难,且不易诱导T细胞免疫反应。用分子模拟多肽替代糖抗原进行免疫治疗是解决问题的方法之一,并在动物模型中取得很好的效果。本研究所用噬菌体随机肽库技术筛选得到了MG7抗原的模拟肽表位,抗体竞争结合抑制实验证明模拟肽表位可以有效地模拟天然抗原,计算机辅助分析显示模拟表位可与HLA分子结合,这为胃癌疫苗的研究奠定了基础。
     DNA疫苗具有诱导特异、高效、持久的免疫反应,制备简便
    
     第四军医大学硕士学位论文
    等特点,已广泛用于肿瘤疫苗的基础研究。特别是可以模拟内源性
    抗原的加工呈递过程,诱发特异性细胞免疫反应。其免疫途径有肌
    肉注射、皮下注射、静脉注射等。目前进入临床实验的质粒DNA
    疫苗有针对黑色素瘤、B细胞淋巴瘤、人类免疫缺陷病毒、乙肝病
    毒和疟原虫等疾病,多使用肌肉注射。安全性实验表明,人体对
    DNA疫苗耐受良好。
     为了增强以表位为基础的DNA疫苗的免疫效果,常采用的策
    略有:辅助因子的融合或共注射:抗原表位基因与载体蛋白融合;
    多表位联合组建疫苗等。
     多个表位联合的疫苗可以诱导机体产生针对各个不同表位的
    抗原特异性免疫反应,重复单一表位可通过增加表位的拷贝数和加
    强Thl细胞反应而提高疫苗的免疫效能。在设计多表位串联疫苗
    时,表位的侧翼序列对于表位的免疫原性影响很大,故在表位之间
    添加间隔序列(sPacer)非常关键。合适的sPacer能避免表位间的
    相互干扰,以及联合表位与MHC分子的非特异性结合;对于蛋白
    酶对抗原肤水解也有影响。
     抗原模拟表位多为8一12多肤,在体内容易被降解,故难以激
    发有效的免疫反应,因此应选择适当的载体或佐剂保护抗原表位,
    并促进其递呈给T淋巴细胞,诱导特异性的免疫反应。热休克蛋
    白70(HSP7O)是MHCI类分子抗原呈递途径中的一种伴侣分子,
    在未与MHCI类分子结合之前,经蛋白酶体切割的内源性肤段很
    不稳定,而HSP70可与肤段结合,稳定肤段并将其送到内质网与
    TAP分子结合。HSP能够将肿瘤抗原肤转运至宿主的APC,再呈
    
     第四军医大学硕士学位论文
    递给T细胞,从而促进抗原特异性免疫反应。HSP本身具有免疫
    刺激剂的作用,可增加多种细胞因子的分泌。HSP70在各种生物体
    中高度保守,不易引起异体间的免疫反应,不会干扰抗原特异性免
    疫的结果。因此,HSP70被认为是一种良好的免疫佐剂,可用于
    肿瘤疫苗的研究。以HSP7O为基础的疫苗已进入临床试验阶段。
    从肿瘤中提纯的HSP7O一肤复合物能引起机体产生特异性抗瘤反
    应。体外重组的HSP70一肤复合物或HSP7O与抗原表位的融合基因
    均能诱导抗原特异性的免疫反应,并进行免疫治疗。
     趋化因子作为肿瘤疫苗的佐剂是增强疫苗效能的另一途径,在
    感染性疾病的疫苗研究中已有用。趋化因子MIG和IP一10不仅能
    够募集T细胞、NK细胞等,或将抗原肤段靶向转染APC细胞,
    还具有抑制血管生成的作用,可从双方面提高治疗肿瘤的效果。但
    是,趋化因子在肿瘤生物学中具有广泛的功能,可能通过与肿瘤细
    胞表达的趋化因子受体作用,在肿瘤的白细胞浸润的表型、新生血
    管生成、肿瘤细胞的生长、存活和转移等方面其重要作用。因此,
    在应用MIG或IP一10治疗胃癌之前,应首先明确胃癌中其受体
    CXC3的表达情况,以预测应用后的作用机理和效果。
     目的以HSP7O为载体,GGGS为间隔序列,构建含有4个
    串联的MG7一Ag模拟表位与HSP70的融合基因疫苗,并观察该疫
    苗能否诱导BALB/c小鼠产生特异性体液免疫、细胞免疫及其体内
    抗瘤效应。检测胃癌组织中趋化因子受体CXCR3的表达水平。
     方法1.将4个不同的胃癌MG7一Ag模拟表位依次设计于下
    游引物中,通过多次PCR将表位串联于一段无关的载体基因,将
    
     第四军医大学硕士学位论文
    目的基因插入PMD一1 ST载体,酶切鉴定,测序后,利用BamHI
    和EeoRI将基因亚克隆入真核表达载体peDNA3 .IB载体,Hind
    111酶切除无关载体基因,用EcoRI和Xhol将热休克蛋白基因插
    入表位之后作为佐剂,得到多表位串联的DNA疫苗。采用脂质体
    转染的方法将重组质粒瞬时转染至小鼠骨髓瘤SPZ/0细胞。W已stem
    blotting鉴定重组蛋白4MG7一HSP70的表达2.
    peDNA3 .IB/4MG7一HSP70基因疫苗采用肌肉注射和静脉注射两种
    方式免疫接种BALB/c小鼠,每隔2周加强免疫一次,共免疫3次。
    以生理盐水、空载体质粒、peDNA3 .1(+)/HSP70质粒和
    pcDNA3.l(+)/IMG一HSP70质粒为对照。分别于初次免疫后2、4、
    6周收集血清,进行ELISA。第6周时取小鼠脾细胞,用MTT法
    进行体外杀伤实验,检测?
Background Gastric cancer is among the most common malignant tumors in China and is mainly treated by surgery and chemotherapy. However, those conventional therapies cannot deal with such problems as tumor metastasis and recurrence. Cancer immunotherapy is a rather new field of tumor therapy, which includes monoclonal antibodies, tumor vaccines, immune response modifiers, such as Interferon-a, Interleukin-2 and Interleukin-12. But now there is no effective gastric cancer vaccine developed yet. MG7-Ag is a specific marker molecule of gastric cancer, which was discovered by our institute. Its antigenicity was found to locate in a sugar chain, which means it is a carbohydrate antigen. Carbohydrate antigens are intrinsically T- cell-independent antigen, often eliciting a short-lived IgM response of poor memory without inducing a T-cell response. It is also hard to purify or mass-produce carbohydrate antigen. One way to
    
    
    solve these problems is to substitute carbohydrate antigen with peptides that could mimic the original antigen, which has been proved in many animal experiments. By screening the phage display library, a series of mimicry peptides were identified in our institute. Competitive antibody binding assay indicated that the mimicry peptides could mimic MG7-Ag well, and analysis with computer showed that the mimicry peptides could bind with HLA molecules.
    DNA vaccine is now widely used in lab research because of its ability to induce specific, effective and persisting immunity. It also can mimic the processing and presenting of endogenous antigen, thus inducing T cell response. The immunizing pathways of DNA vaccine include intramuscular injection, intradermal injection, skin gene gun bombard and intraveinous injection. Many DNA vaccines have been evaluated in clinical trials, such as DNA vaccines against melanoma, B cell lymphoma, HIV, HBV and plasmodium, in which most of them were given by intramuscular injection. It is implicated that the DNA vaccine are well tolerated by human body.
    To enhance the effect of epitope-based gene immunization, several strategies could be adopted: fusion or coinjection of cytokines; fusion of the epitope to a carrier protein; combination of multiple epitopes, etc.
    Multi-epitope vaccine induces specific immune response against each epitope in the vaccine. And the potency of repeated-epitope
    
    vaccine could be improved because the epitope's copy is increased and Thl response is enhanced. When several epitopes are combined together, flanking sequence will affect the potency of the vaccine. Therefore, it is crucial to insert spacers between epitopes. Proper spacer can prevent mutual interference between epitopes and unspecific binding with MHC molecules.
    Oligopeptides are degraded easily in vivo and require carrier proteins to protect them. Heat shock protein 70 is a molecular chaperon in the pathway of MHC I-dependent antigen processing. It can stabilize the peptide and transfer it to endoplasm reticulum. Acting as a immune stimulator, HSP70 can up regulate the expression level of cytokines. Therefore, HSP70 is a good carrier of vaccine. Vaccines based on HSP70 have been explored in clinical research. The HSP70-peptide complex derived from tumor tissues or recombined in vitro can induce specific anti-tumor response. Similar effect could be obtained with the fusion gene of HSP70 and peptides.
    Another approach to improve the immunogenicity of DNA vaccine is through the co-delivery of chemokine expression plasmid or fusion of the antigen to chemokines. Studies in a variety of infectioius disease clearly demonstrate that chemokine could alter the magnititude and direction of the immune response elicited by DNA vaccine. MIG and IP-10 not only recruit immune cells such as T cells, NK cells, but also inhibit angiogenesis, which makes them especially fit for tumor
    
    vaccine. However, many human involve a complex chemokine network that may influence the extent and phenotype of the leukocyte infiltration, angiogenesis, tumor cell growth , survival and metastasis. Chemokine rereptors exp
引文
1. Plunkett. T. A., & Miles, D. W. (2002). New biological therapies for breast cancer, Int J Clin Pract 56(4), 261-266.
    2. Peipp, M., & Valerius, T. (2002). Bispecific antibodies targeting cancer cells. Biochem Soc Trans 30(4), 507- 511.
    3. Modak, S., Gerald, W.. & Cheung, N. K. (2002). Disialoganglioside GD2 and a novel tumor antigen: potential targets for immunotherapy of desmoplastic small round cell tumor. Med Pediatr Oncol 39(6). 547-551.
    4. Yei. S.. Bartholomew. R. M.. Pezzoli. P., Gutierrez, A.. Gouveia, E., Bassett. D.. Soo Hoo. W.. & Carlo, D. J. (2002). Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Gene Ther 9(19), 1302-1311.
    5. Atzpodien, J., Hoffmann, R., Franzke, M., Stief, C., Wandert, T., & Reitz, M. (2002). Thirteen-year, long-term efficacy of interferon 2alpha and interleukin 2-based home therapy in patients with advanced renal cell carcinoma. Cancer 95(5), 1045-1050.
    6. Lee, P., Wang, F., Kuniyoshi, J., Rubio, V., Stuges, T., Groshen, S., Gee, C., Lau, R., Jeffery, G., Margolin, K., Marty, V., &Weber, J. (2001). Effects of interleukin-12 on the immune response to a multipeptide vaccine for reseeted metastatic melanoma. J Clin Oncol 19, 3836-3847.
    7. Old LJ. Chen Y-T. New paths in human cancer serology. J Exp Meal 1998; 187:1163-7.
    8. Kao H, Amoscato AA, Ciborowski P,et al. A new strategy for tumor antigen discovery based on in vitro priming of naive T cells with dendritic cells. Clin Cancer Res 2001:7(3 Suppl):773-780.
    9. J.B. Ridgway, E. Ng, J.A. Kern et al., Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res. 59 (1999), pp. 2718-2723.
    10. W. van Ewijk, J. de Kruif, W.T.V. Germeraad et al., Substractive isolation of phage-displayed single-chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl. Acad. Sci. USA 94 (1997). pp. 3903-3908.
    11. K.P. Topping. J. Greenman and J.R. Monson, Isolation of anti-colorectal tumour antibodies from a phage-display library.. Biochem. Soc. Trans. 25 (.1997), p. 268S.
    12. Wilson. D. R. (2002). Viral-mediated gene transfer for cancer treatment. Curr Pharm Biotechnol 3(2). 151-164.
    13. Oka. Y.. Tsuboi. A.. Elisseeva. O. A.. Udaka. K.. & Sugiyama. H. (2002). WTI as a novel target antigen for cancer immunotherapy. Curr Cancer Drug Targets 2(1). 45-54.
    
    
    14. Schreiber H. Tumor Immunology. In: Paul WE ed. Fundamental Immunology. 4th ed. Paul Lippincott-Raven Publishers, Philadelphia: 1999. 1237-1270
    15. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997; 18:175-82.
    16. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 1995:92:11993-7.
    17. Hakomori. S.. Zhang, Y.. 1997. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 4, 97-104.
    18. Gorelik. E.. Galili, U., Raz, A., 2001. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20, 245-277.
    19. Dennis, J.W., Laferte, S., 1989. Oncodevelopmental expression of GIcNAcbl,6Manal,6Manai-branched asparagine-linked oligosaccharides in murine tissues and human breast carcinoma. Cancer Res. 49, 945-950.
    20. McMahon, R.F.. McWilliam, L.J.. Clarke, N.W.. George, N.J.. 1994. Altered saccharide sequences in two groups of patients with metastatic prostatic carcinoma. Br..J. Urol. 74, 80-85.
    21. Appelmelk, B.J., Simoons, S.I., Negrini, R., Moran, A.P., Aspinall, G.O.,Forte, J.G., De Vries, T., Quan, H., Verboom, T., Maaskant, J.J., Ghiara, P., Kuipers, E.J., Bloemena, E., Tadema, T.M., Townsend. R.R.,Tyagarajan, K., Crothers, J.J., Monteiro, M.A., Savio, A., DeGraaff, J., 1996. Potential role of molecular mimicry between Helicobacter pylorilipopolysaccharide and host Lewis blood group antigens in autoimmunity.Infect. Immun. 64, 2031-2040.
    22. Burchell, J.M., Mungul, A., Taylor-Papadimitriou, J., 2001. O-linked glycosylation in the mammary gland: changes that occur during malignancy. J. Mammary Gland Biol. Neoplasia 6. 355-364.
    23. Hiraizumi. S., Takasaki, S., Ochuchi. N., Harada. Y., Nose, M., Mori, S. A. 1992. Altered glycosylation of membrane glycoproteins associated with human mammary carcinoma. Jpn. J. Cancer Res. 83,1063-1072.
    24. Goldblatt, D. 2000. Conjugate vaccines [editorial]. Clin. Exp. Immunol. 119. 1-3.
    25. Ben-Yedidia. T.. Beignon, A.S.. Partidos. C.D.. Muller, S., Arnon, R., 2002. A retro-inverso peptide analogue of influenza virus hemagglutinin Bcellepitope 91-108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. Mol. Immunol. 39. 323-331.
    26. Apostolopoulos. V.. Sandrin. M.S.. McKenzie. I.F.. 1999a. Carbohydrate peptide mimics: effect on MUCI cancer immunotherap. J. Mol. Med. 77. 427-436.
    
    
    27. Alfonso, M., Diaz, A., Hernandez, A.M., Perez, A., Rodriguez, E., Bitton, R., Perez, R., Vazquez, A.M., 2002. An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J. Immunol. 168, 2523-2529.
    28. Haurum, J.S., Arsequell, G.. Lellouch. A.C., Wong, S,Y.. Dwek. McMichael, A.J.. Elliott. T. 1994. Recognition of carbohydrate major histocompatibility complex class I-restricted. glycopeptidespecific cytotoxic T lymphocytes. J. Exp. Med. 180, 739-744.
    29. Jensen, T., Galli. S.L., Mouritsen, S., Frische, K., Peters, S., Meldal, M., Werdelin. O.. 1996. T cell recognition of Tn-glycosylated peptide antigens. Eur. J. Immunol. 26. 1342-1349.
    30. Jensen, T., Hansen. P., Galli, S.L., Mouritsen, S., Frische, K., Meinjohanns. E.. Meldal. M., Werdelin, O.. 1997. Carbohydrate and peptide specificity of MHC class Ⅱ-restricted T cell hybridomas raised against an O-glycosylated self peptide. J. Immunol. 158, 3769-3778.
    31. Ito D, Ogasawara K, Iwabuchi K, et al, Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. : J Immunol 2000; 164(3): 1230-1235.
    32. Minev.B,R,McFarland, B,J,Spiess,P.J, Rosenberg, S,Aand Restifo,N,P(1994) Insertion signal sequences fused to minimal peptides elicits specific CD8+T—cell response and prolongs survival of thymomoa-bearing mice. Cancer Res54:4155-4161
    33. Marchand M, Van Baren N, Weynants P, et al. Tumor regression observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-AI. Int J Cancer 1999; 80:219-30.
    34. Bukowski, R., Ernstoff, M. S., Gore, M. E.. Nemunaitis, J. J., Amato, R.,Gupta, S. K..& Tendler, C. L. (2002). Pegylated interferon alfa-2b treatment for patients with solid tumours: a phase Ⅰ/Ⅱ study. J Clin Oncol 20(18), 3841- 3849.
    35. Naglieri, E., Lopez, M., Lelli, G., Morelli, F., Amodio, A., Di Tonno, P., Gebbia, N., Di Seri, M., Chetri, M. C., Rizzo, P., Abbate, I., Casamassima, A., Selvaggi, F. P., & Colucci, G. (2002). Interleukin-2, interferon-alpha and medroxyprogesterone acetate in metastatic renal cell carcinoma. Anticancer Res 22(5). 3045-3051.
    36. Rini. B. I.. Weinberg. V.. Bok. R.. & Small. E..J. (2003). Prostate-specific antigen kinetics as a measure of the biologic effect of granulocytemacrophage colony-stimulating factor in patients with serologic progression of prostate cancer. J Clin Oncol 21(1). 99-105.
    37. Krieg. A.M.. 2000. CpG oligonucleotides as immune adjuvants. Ernst Schering Res
    
    Found Workshop, 105-118.
    38. Sutter, G., Wyatt, L. S., Bennink, J. R. and Moss, B (1994) A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity inmice to influenza virus. Vaccine 12:1032-1040
    39. H.L. Robinson, D.C. Montefiori, R.P. Johnson, et al. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations Nat. Med. 5 (1999), pp. 526-534.
    40. Matsui M, Moriya O, Akatsuka T. Enhanced induction of hepatitis C virus-specific cytotoxic T lymphocytes and protective efficacy in mice by DNA vaccination followed by adenovirus boosting in combination with the interleukin- 12 expression plasmid, Vaccine, Volume 21, Issue 15, 2 April 2003, Pages 1629-1639
    41. Sedegah M, Jones TR, Kaur M, et al. Boosting, with recombinant vaccinia increases immnogenicity efficacy malaria DNA vaccine. Proc Natl Acad Sci USA 1998; 95:7648-7653.
    42. P. Gonin, W. Oualikene, A. Fournier and M. Eloit. Comparison of the efficacy of replication-defective adenovirus and Nyvac poxvirus as vaccine vectors in mice Vaccine 14 (1996), pp, 1083-1087.
    43. Meyer, H., Sutter, g. and Maye,A. (1991) Mapping of deletions in genome of the highly attenuated vaccinia virus MVA and their influence on virulence .J.Gen.Virol. 72:1031-1038
    44. Sutter, G and Moss, B (1992) Nonreplicating vaccinia vector efficiently expresses recombinant genes.
    45. Minev, B. R., Chavez, F.L. and Mitchell, M. S.(1998) Enhancing class I antigen presentation by human dendritic cells loaded with fusion peptide. Proc. Am. Assoc. Cancer Res: 39:137
    46. Bronte. V., Carroll. M. W.. T.J.. Wang, M.. Overwijk, W. W., Marincola.F., Rosenberg, S. A.. Moss, B. and Restifo, N. P. (1997) Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant pox-virus tumor vaccine. Proc. Natl. Acad. Sci. USA 94:3183-3188
    47. Hsu. F.J.. Benike. C., Fagnoni. F., Liles. T. M.. Czerwinski, D., Taidi. B.. Engleman. E. G. and Levy. R (1996) Vaccination of patients With B-cell lymphoma using autologous antigen-plusw dendritic cells. Nature Med. 2:52-58
    48. Kim. C. J.. Prevette. T.. Cormior. J., Overwijk. W.. Roden. M.. Restitb. N. P.. Rosenberg. S. A. and Marincola. F. M.(1997) Dendritic cells infected with poxvirus encoding MART-1/Melan A sensitize T lymphocytes in vitro. J. Immunother.
    
    20:276-286
    49. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, M., Grabbe,S., Dummer, R.,Burg, G and Schadendorf. D (1998) Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic ceils. Nature Med. 4:328-332
    50. Srivastava P, Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002;2(3):185-94.
    51. Carbonetti NH, Tuskan RG, Lewis GK. Stimulation of HIV gp120-specific cytolytic T lymphocyte responses in vitro and in vivo using a detoxified pertussis toxin vector. AIDS Res Hum Retroviruses 2001 ; 17(9):819-27.
    52. Singh-Jasuja H, Toes RE, Spee P. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 2000; 191 (11): 1965-74
    53. Hong-Li Liu I, Yu-Zhang Wu ,1, Jian-Ping Zhao, Bing Ni, Zheng-Cai Jia, Wei Zhou, Li-Yun Zou Effective elicitation of anti-tumor immunity by collocation of antigen with encoding gene in the same vaccine Immunology Letters 89 (2003) 167-173
    54. Yu-quan Wei ,Mei-juan Huang, Li Yang, Xia Zhao, Ling Tian, You Lu, Jing-mei Shu Chong-jiu Lu, Ting Niu, Bin Kang, Yun-qiu Man, Fen Liu Immunogene thearapy of the tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. (2001) PNAS vol 98 no. 20:11545-11550
    55. Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Felgner, P.L., Dwarki, V.J., Gromkowski, S.H,. Deck, R.R.. DeWitt, C.M., Friedman, A., et al.. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein [see comments]. Science 259, 1745-1749.
    56. Tang, D.C., De Vit, M., Johnston, S.A., 1992. Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152-154.
    57. Wang, R., Doolan, D.L., Le. T.P., Hedstrom, R.C., Coonan. K.M.,Charoenvit, Y., Jones, T.R., Hobart, P., Margalith. M., Ng, J.. Weiss, .R., Sedegah, M., de Taisne, C., Norman. J.A., Hoffman, S.L.. 1998. Pertmer. T.M., Eisenbraun. M.D.. McCabe, D., Prayaga. S.K.. Fuller. D.F.. Haynes. J.R.. 1995. Gene gun-based nucleic-acid immunization - elicitation of humoral and cytotoxic t-lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 13. 1427-1430.
    58. Haas. J.. Park. E.C.. Seed. B.. 1996. Codon usage Iimitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6. 315-324.
    59. Zur Megede..J.. Chen. M.C., Doe. B.. Schaefer. M.. Greer. C.E.. Selby. M.. Otten, G.R.. Barnett. S. W.. 2000. Increased expression and immunogenicity of sequence-modified
    
    human immunodeficiency virus type 1 gene. J. Virol. 74, 2628-2635.
    60. King, C.A.. Spellerberg, M.B., Zhu, D.. Rice, J., Sahota, S.S., Thompsett, A.R., Hamblin. T.J., Radl, J., Stevenson, F.K., 1998. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med. 4, 1281-1286.
    61. Spellerberg, M.B., Zhu, D., Thompsett, A., King, C.A., Hamblin, T.J., Stevenson, F.K., 1997. DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J. lmmunol. 159. 1885-1892.
    62. Nabel, G.J., Gordon, D., Bishop, D.K., Nickoloff, B.J., Yang, Z.Y., Aruga, A., Cameron, M.J., Nabel, E.G., Chang, A.E., 1996. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc. Natl. Acad. Sci. USA 93, 15388-15393.
    63. Boyer, J.D., Cohen, A.D., Vogt, S., Schumann, K., Nath, B.. Ahn, L.. Lacy,K., Bagarazzi, M.L., Higgins, T.J., Baine, Y., Ciccarelli, R.B., Ginsberg, R.S., MacGregor, R.R., Weiner, D.B., 2000. Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J. Infect. Dis. 181,476—483.
    64. Le, T.P., Coonan, K.M., Hedstrom, R.C., Charoenvit, Y., Sedegah, M., Epstein, J.E., Kumar, S., Wang, R., Doolan, D.L., Maguire, J.D., Parker, S.E., Hobart, P., Norman, J., Hoffman. S.L., 2000, Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18, 1893-1901.
    65. Nabel, G.J., Gordon, D., Bishop, D.K., Nickoloff, B.J., Yang, Z.Y., Aruga, A., Cameron, M.J., Nabel, E.G., Chang, A.E., 1996. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc. Natl. Acad. Sci. USA 93, 15388-15393.
    66. MacGregor, R.R.. Boyer, J.D.. Ugen, K.E., Lacy, K.E., Gluckman. S.J., Bagarazzi, ML.. Chattergoon. M.A.. Baine. Y.. Higgins, T.J.. Ciccarelli. R.B.. Coney, L.R.. Ginsberg, R.S.. Weiner. D.B.. 1998. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type I infection: safety and host response [see comments]. J. Infect. Dis. 178. 92-100.
    67. Roy. M.J., Wu, M.S.. Barr. L.J., Fuller. J.T., Tussey. L.G., Speller, S., Culp. J.. Burkholder, J.K.. Swain, W.F.. Dixon. R.M.. Widera. G.. Vessey. R.. King. A.. Ogg. G.. Gallimore. A.. Haynes. J.R.. Heydenburg Fuller. D.. 2000. Induction of antigen-specific CD8 t T cells. T
    
    helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764-778.
    68. Donnelly, .J.J., Friedman, A., Martinez, D., Montgomery, D.L., Shiver, J.W., Motzel, S.L., Ulmer, J.B., Liu, M.A., 1995. Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nat. Med. 1,583-587.
    69. Selby. M.. Goldbeck. C.. Pertile, T., Walsh, R., Ulmer. J., 2000. Enhancement of DNA vaccine potency by electroporation in vivo, J. Biotechnol. 83. 147-152.
    70. Daheshia, M., Kuklin. N., Manickan, E., Chun, S.. Rouse, B.T., 1998. Immune induction and modulation by topical ocular administration of plasmid DNA encoding antigens and cytokines. Vaccine 16, 1103-1110.
    71. Fan, H., Lin, Q., Morrissey, G.R., Khavari, P.A., 1999. Immunization via hair follicles by topical application of naked DNA to normal skin. Nat. B iotechnol. 17, 870-872.
    72. Gramzinski, R.A., Millan, C.L., Obaldia, N., Hoffman, S.L.. Davis, H.L., 1998. Immune response to a hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol. Med. 4, 109-118.
    73. Barouch, D.H., Craiu, A., Kuroda, M.J., Schmitz, J.E., Zheng, X.X., Santra, S., Frost, .J.D., Krivulka, G.R., Lifton, M.A., Crabbs, C.L., Heidecker, G., Perry, H.C., Davies, M.E., Xie, H.. Nickerson, C.E., Steenbeke, T.D., Lord, C.I. Montefiori, D.C., Strom, TB.. Shiver, J.W., Lewis. M.G., Letvin, N.L., 2000a. Augmentation of immune responses to HIV- 1 and simian immunodeficiency virus DNA vaccines by IL-2/lg plasmid administration in rhesus monkeys. Proc. Natl. Acad. Sci. USA 97, 4192-4197.
    74. Billaut-Mulot, O., Idziorek, T., Loyens, M., Capron. A., Bahr, G.M., 2001. Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine 19, 2803-2811.
    75. Eo, S.K., Lee. S.. Kumaraguru, U., Rouse, B.T.. 2001. Immunopotentiation of DNA vaccine against herpes simplex virus via co- delivery of plasmid DNA expressing CCR7 ligands. Vaccine 19, 4685-4693.
    76. Garren. H.. Ruiz. P.J., Watkins, T.A.. Fontoura, P.. Nguyen, L.T., Estline. E.R.. Hirschberg, D.L.. Steinman. L.. 2001. Combination of gene delivery, and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15.
    77. Hanlon. L.. Argyle. D,. Bain, D.. Nicolson. L.. Dunham. S.. Golder. M.C.. McDonald. M.. McGillivray. C..Jarrett. O.. Neil..J.C.. Onions. D.E.. 2001. Feline leukemia virus DNA
    
    vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors. J. Virol. 75, 8424-8433.
    78. Burger, J.A., Mendoza, R.B., Kipps, T.J., 2001. Plasmids encoding granulocyte-macrophage colony-stimulating factor and CD 154 enhance the immune response to genetic vaccines. Vaccine 19, 2181-2189.
    79. Ciernik F. Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol, 1996,156:2369
    80. Drew, D.R., Boyle, J.S., Lew, A.M., Lightowlers, M.W., Chaplin, P.J., Strugnell, R.A., 2001. The comparative efficacy of CTLA-4 and Lselectin targeted DNA vaccines in mice and sheep. Vaccine 19, 4417-4428.
    81. Fu. T.M.. Guan, L., Friedman, A., Ulmer, J.B., Liu, M.A., Donnelly, J.J., 1998. Induction of MHC class I-restricted CTL response by DNA immunization with ubiquitin-influenza virus nucleoprotein fusion antigens. Vaccine 16, 1711-1717.
    82. Rodriguez, F., An, L.L., Harkins, S., Zhang, J., Yokoyama, M., Widera, G., Fuller, J.T., Kincaid, C., Campbell, I.L., Whitton, J.L., 1998. DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J. Virol. 72, 5174-5181.
    83. Rodriguez, F., Zhang, J., Whitton, J.L., 1997. DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J. Virol. 71, 8497-8503.
    84. Chu, W., Gong, X., Li, Z., Takabayashi, K., Ouyang, H., Chen, Y., Lois, A., Chen, D., Li, G., Karin, M.. Raz, E., 2000. DNA PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103, 909-918.
    85. Hemmi, H., Takeuchi, O.. Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M.. Hoshino, K., Wagner, H., Takeda, K., Akira, S., 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745.
    86. Krieg, A.M., 2000. CpG oligonucleotides as immune adjuvants. Ernst Schering Res Found Workshop. 105-118.
    87. Correale P. Walmsley K. Zaremba S, Zhu M, Schlom J, TsangKY. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitopepeptide. J Immunol 1998:161(6):3186-94
    88. Eberl G. Renggli J. Men Y. Roggero MA. Lopez JA. CorradinG. Extracellular processing and presentation of a 69-mer synthetic polypetide to MHC Class I-restricted T cells. Mol Immunol 1999:36(2): 103-12
    
    
    89. Gilles Dadaglio, Zhora Moukrim, Richard Lo-man, Valeria Sheshko, Peter Sebo,AND Claude Leclerc Induction of a Polarized Th1 Response by Insertion of Multiple Copies of a Viral T-cell Epitope into Adenylate Cyclase ofBordetella pertussis. Infection and Immunity, July 2000, 3867-3872
    90. Mireille Astori and Jean-Pierre Kraehenbuhl Recombinant Fusion Peptides Containing Single or Multiple Repeats of a Ubiquitous T-helper Epitope are Highly Immunogenic Molecular Immunology. Vol 33, No.13 pp. 1017-1024 1996
    91. Desmezieres E, Jacob Y, Saron MF. Lyssavirus glycoproteins expressing immunologically potent B cell and cytotoxic T lymphocyte epitopes as prototypes for multivalent vaccine. J Gene Virol, 1999, 80:2343
    92. Markwin P. Velders, et al. Defined Flanking Spacers and Enhanced Proteolysis Is. Essential for Eradication of Established Tumors by an Epitope String DNA Vaccine The Journal of Immunology, 2001, 166:5366-5373
    93. Mireille Astori and ,Jean-Pierre Kraehenbuhl Recombinant Fusion Peptides Containing Single or Multiple Repeats of a Ubiquitous T-helper Epitope are Highly Immunogenic Molecular Immunology, Vol 33, No. 13 pp. 1017-1024 1996
    94. Niedermann G. Geier E, Lucchiari-Hartz M. The specificity of the proteasomes: impact on the MHC class 1 processing and presentation of antigens, Immunol Rev, 1999. 172:29
    95. Brian Livingston. Claire Crimi, Mark Newman, Yuichiro Higashimoto, Ettore Appella, John Sidney, and Alessandro Sette A Rational Strategy to Design Multiepitope Immunogens Based on Multiple Th Lymphocyte Epitopes The Journal of Immunology. 2002, 168:5499-5506
    96. Brian D. Livingston, Mark Newman, Claire Crimi, Denise McKinney, Robert Chesnut, Alessandro Sette Optimization ofepitope processing enhances immunogenicity of multiepitope DNA vaccines Vaccine 19 (2001) 4652-4660
    97. Man Ki Song, Seung Woo Lee, You Suk Suh, Ki Jeong Lee, and Young Chul, Sung Enhancement of Immunoglobulin G2a and Cytotoxic T-Lymphocyte Responses by a Booster Immunization with Recombinant Hepatitis C Virus E2 Protein in E2 DNA-Primed Mice J Virol. Mar. 2000, p. 2920-2925
    98. J. F. L. Richumond. S. Lu, J. C. Santoro. J. Weng, Shiu-Lok Hu. D, C. Montefiori and H. L. Robingson Studies of the Neutralizing Activity and Avidity of Anti-Human Immunodeficiency Virus Type 1 Env Antibody Elicited by DNA Priming and Protein Boosting J Virol Nov. 1998. p. 9092-9100
    99. Tetsuro Matano. Munehide Kano. Hiromi Nakamura. Akiko Takeda. and Yoshiyuki Nagai Rapid Appearance of Secondary Immune Responses and Protection from Acute
    
    CD4 Depletion after a Highly Pathogenic Immunodeficiency Virus Challenge in Macaques Vaccinated with a DNA Prime/Sendal Virus Vector Boost Regimen. J Virol, Dec. 2001, p. 11891-11896
    100. Martha Sedegah, Gary T. Brice. William O. Rogers, Denise L. Doolan, Charoenvit, Trevor R. Jones, Victoria F. Majam, Arnel Belmonte, Minh Lu, Maria Belmonte, Daniel J. Carucci. and Stephen L. Hoffman. Persistence of Protective Immunity to Malaria Induced by DNA Priming and Poxvirus Boosting: Characterization of Effector and Memory CD8_-T-Cell Populations Infection and immunity, July 2002, p. 3493-3499
    101. Audrey Tanghe, Sushila D'Souza, Vale'Rie Rosseels, Olivier Denis, Thomas H. M. Ottenhpff,2 Wilfried Dalemans,3 Carl Wheeler, and Kris Huygen Improved Immunogenicity and Protective Efficacy of a Tuberculosis DNA Vaccine Encoding Ag85 by Protein Boosting Infection and immunity, May 2001, p. 3041-3047
    102. Wilson S. Meng,2 Lisa H. Butterfield, Antoni Ribas, Vivian B. Dissette, Justin B. Heller, Gustavo A. Miranda, John A. Glaspy, William H. McBride, James S. Economou3 _-Fetoprotein-specific Tumor Immunity Induced by Plasmid Prime-Adenovirus Boost Genetic Vaccinationl . Cancer Research 61, 8782-8786, December 15, 2001
    103. Pasquini S, Peralta S, Missiaglia E, Carta L, Lemoine NR. Prime-boost vaccines encoding an intracellular idiotype/GM-CSF fusion protein induce protective cell-mediated immunity in murine pre-B cell leukemia. Gene Ther. 2002 Apr;9(8):503-10
    104. Xu L, Qiao T, Chen B Mimic epitope recognized by monoclonal antibody MG7 against gastric cancer through screening phage displayed random peptide library Zhonghua Yi Xue Za Zhi. 2000 Apr;80(4):304-7
    105. HAN Quan-Li, DING Jie, FAN Dai-Ming, et al. Selection of mimic epitope of gastric cancer associated antigen by using peptide library. J Fourth Mil Med Univ 2000,21(9) 1162-1164
    106. Chien-Hung Chen. Tian-Li Wang, Chien-Fu Hung, Yanqin Yang, Richard A, Young, Drew M. Pardoll, and T-C. Wu Enhancement of DNA Vaccine Potency by Linkage of Antigen Gene to an HSP70 Gene Cancer Research 60, 1035-1042. Febr
    107. Casey DG, Lysaght J, James T. Bateman A. Melcher AA. Todryk SM Heat shock protein derived from a non-autologous turnout can be used as an anti-tumour vaccine Immunology. 2003 Sep: 110(1): 105-111
    108. Janetzki S. Palla D. Rosenhauer V. et al Immunotherapy of tumor with autologou cancer-derived heat shock gp96 preparations: a pilot study. Int J Cancer. 2000.88(2):232-238
    109. Peetermans. W.E. et al. (1995) Mycobacterial 65-kilodalton heat shock protein induces
    
    tumor necrosis factor alpha and interleukin 6, reactive nitrogen intermediates, and toxoplasmastatic activity in murine peritoneal macrophages. Infect. Immun. 63, 3454-3458
    110. Chen, W. et al. (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol. 162, 3212-3219
    111. Wells, A.D. et al. (1997) Restoration of MHC class Ⅰ surface expression and endogenous antigen presentation by a molecular chaperone. Scand J. Immunol. 45,605-612
    112. Ciupitu AM. Petersson M. Kono K. Charo J. Kiessling R Immunization with heat shock protein 70 from methylcholanthrene-induced sarcomas induces tumor protection correlating with in vitro T cell responses Cancer Immunol Immunother. 2002 May;51 (3): 163-70. Epub 2002 Mar
    113. Wells, A.D. et al. (1998) Hsp72-mediated augmentation of MHC class Ⅰ surface expression and endogenous antigen presentation, Int. Immunol. 10, 609-617
    114. Altman JD, Moss PA, Goulder P J, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996:274:94-96
    115. Frasca L, Scotta C, Del Porto P, Nicosia A, Pasquazzi C, Versace I, Masci AM, Racioppi L, Piccolella E. Antibody-selected mimics of hepatitis C virus hypervariable region 1 activate both primary and memory Th lymphocytes. Hepatology. 2003 Sep;38(3):653-63
    116. Arya Biragyn, Kenji Tanil, Michael C. Grimml, Steven Weeks, and Larry W. Kwak2 Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity Nature Biotechnology vol 17 March 1999
    117. Eric S. W, Scott R. B. Strom, N L. Wys, and Douglas AA Non-Small Cell Lung Cancer Cells Induce Monocytes to Increase Expression of Angiogenic Activity Journal of Immunology, 2001, 166: 7549-7555.
    118. Ohshima K, Suefuji H, Karube K, Hamasaki M, Hatano B, Tutiya T. Yamaguchi T. Suzuki K, Suzumiya J, Kikuchi M. Expression of chemokine receptor CXCR3 and its ligand, mig, in gastric and thyroid marginal zone lymphomas. Possible migration and autocrine mechanism. Leuk Lymphoma. 2003 Feb.44(2).329-36
    119. Chen Y. Stamatoyannopoulos G. Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 2003 Aug 15:63(16).4801-4
    120. Youngs SJ. Ali SA. Taub DD, Rees RC Chemokines induce migrational responses in human breast carcinoma cell lines Int J Cancer 1997 Apr 10:7112):257-66
    121. Ding Y. Shimada Y. Maeda M. Kawabe A, Kaganoi .J. Komoto I. Hashimoto Y. Miyake M.
    
    Hashida H, Imamura M. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma Clin Cancer Res. 2003 Aug 15,9(9):3406-12
    122. Christopher ES, Thane AB, Ho SC, Sung KL, Stephen JP and Sum PL Expression of cytokine and chemokine mRNA and secretion of tumor necrosis factor by gallbladder epithelial cells: Response to bacterial lipopolysaccharides BMC Gastroenterology. 2002, 2:23
    123. George K, Karen LW, Nicola JJ, Jane BL, Duncan AF and John W. C-X-C and C-C chemokine expression and secretion by the human colonic epithelial cell line,HT-29: differential effect of T lymphocyte-derived cytokines Eur. J. Immunol. 1999.29. 530-536
    124. Aihua Li, Michelle LV and Rakesh KS. Expression of Interleukin 8 and Its Receptors in Human Colon Carcinoma Cells with Different Metastatic Potentials Clinical Cancer Research Vol. 7, 3298-3304, October 2001
    125. Reinhold F, Elisabeth K, Andreas S, Dagmar B, Andrea K, Christoph N, Gu nter B and Martin L Intracellular and Surface Expression of the HIV-1 Coreceptor CXCR4/Fusin on Various Leukocyte Subsets: Rapid Internalization and Recycling Upon Activation The Journal of Immunology. 1998, 160:1522-1531.
    126. Lisa ME and Shaun RM Coregulation of CXC Chemokine Receptor and CD4 Expression on T Lymphocytes During Allogeneic Activation The Journal of Immunology, 2001, 166: 4870-4878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700