冀北山地天然次生林与人工林典型生态系统服务功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态系统服务功能是指生态系统与生态过程所形成及所维持的人类赖以生存的自然环境条件与效用。人工林因其起源、结构与天然林有很大不同,其生态系统服务功能也可能存在很大不同。人工落叶松林和天然次生杨桦林是冀北山地分布最为广泛的森林类型之一。本研究以不同年龄阶段的天然次生杨桦林(13a、18a、28a)与人工落叶松林(9a、13a、15a、30a)为研究对象,分析比较了两种林分类型之间物质生产功能、生物固碳功能、理水功能、土壤肥力维持功能、植被物种多样性维持功能的差异。得出如下主要结论:
     (1)人工落叶松林在生物量、生产力等方面方面均高于天然次生杨桦林。13a、15a、30a人工落叶松林总生物量分别比13a、18a、28a天然次生杨桦林高27.32%、16.82%、19.53%。13a、18a及28a杨桦林的林分生产力分别为6.67 t/hm2·a、6.67 t/hm2·a和7.10 t/hm2·a,13a、15a及30a人工落叶松林的生产力分别为7.12 t/hm2·a、10.27 t/hm2·a和11.70 t/hm2·a。
     (2)人工落叶松林生物固碳功能强于天然次生杨桦林。两种林分相近年龄阶段相比,人工落叶松林的总碳贮量及生物碳贮量的积累速率均明显高于天然次生杨桦林,人工落叶松林的总碳贮量比天然次生杨桦林要高20%。在两种林分生物碳库中,乔木层碳贮量在总碳贮量中所占比例均最高(64.56%-88.92%),林下植被层碳贮量最低,凋落物碳贮量较高,最高占到林分总碳贮量的33.84%。人工落叶松林凋落物碳贮量是相近林龄天然次生杨桦林的2倍左右。
     (3)人工落叶松林林分最大持水量与天然次生杨桦林相比没有明显差异,分别为2266.47t?hm-2和2238.88 t?hm-2。但人工落叶松林地上部分持水量明显高于天然次生杨桦林,其中,林冠截留量9a、13a、15a、30a人工落叶松林分别为6.62 t·hm-2、8.35 t·hm-2、7.81 t·hm-2和5.92 t·hm-2;13a、18a和30a天然次生杨桦林分别为2.84 t·hm-2、4.64 t·hm-2和6.16 t·hm-2。凋落物在地上部分持水量中作用显著,人工落叶松林平均凋落物持水量(48.64 t?hm-2)为天然次生杨桦林(22.26 t?hm-2)的2倍。对于两种林分来说,土壤最大持水量主导着林分最大持水量,其在林分总持水量中所占比例均达到96%以上。
     (4)除全氮含量人工落叶松林与天然次生杨桦林持平外,其余各指标人工落叶松林均略高于或高于天然次生杨桦林,没有发现华北落叶松林土壤养分含量有明显的下降趋势。表现在具体林分上,13a天然次生杨桦林的土壤有机质、速效磷、全氮、全磷含量高于13a人工落叶松林,速效钾、全钾含量则低于13a落叶松林,碱解氮含量两者持平;30a人工落叶松林则是除了全钾含量低于28a天然次生杨桦林外,其余各指标均高于28a杨桦林。不同土壤养分指标随林龄的变化趋势不同,天然次生杨桦林土壤有机质、速效磷、速效钾、全氮含量随林分年龄增加而降低,全钾含量随林龄增加而升高,碱解氮和全磷含量变化不明显;人工落叶松林土壤速效磷、速效钾、全钾含量随林分年龄增加而降低,有机质、全氮、碱解氮、全磷含量随林龄变化不明显。两外,随土层深度增加各养分含量均表现出逐渐降低的趋势,速效磷变化规律不明显。两种林分类型中,土壤磷元素含量都处于较低水平
     (5)人工落叶松林乔木层以及灌木层、草本层物种多样性与天然生杨桦林无明显差异,仅在乔木层生长后期,由于多次的人类经营活动,其物种多样性低于相近林龄的天然次生杨桦林,在该地区通过调整经营目标和经营策略,可以提高人工林的物种多样性,使人工林同样可以发挥维持物种多样性的功能。
Ecosystem services are the conditions and processing through which natural ecosystems, and the species that make them up, sustain and fulfill human life. Ecosystem services in plantation can have significant difference to which in natural forest as the difference of forest source and structure between them. Larch plantation Secondary and poplar-birch forest have widespread distribution in north mountain of Hebei province. In this paper, we chose an age sequence of Secondary poplar-birch forest (SF) and Larch plantation (LP) respectively for the study of ecosystem services, and compared the services between the two forests including production of goods, carbon storage, water conservation, soil fertility maintenance and biodiversity conservation. Result showed that:
     (1) The tree biomass, total biomass, tree productivity and total productivity are all higher in LP than SF.
     Total biomass in 13-, 15-, and 30-year old LP is higher about 27.32%, 16.82%, 19.53% than 13-, 18-, and 28-year old SF, respectively, Tree biomass is the largest portion in total biomass (about 60.21%-86.59%) , then is litter, shrub and herb. Total productivity in 13-, 18-, and 28-year old SF is 6.67 t/hm2·a, 6.67 t/hm2·a and 7.10 t/hm2·a, and 13-, 15-, and 30-year old LP is 7.12 t/hm2·a, 10.27 t/hm2·a and 11.70 t/hm2·a, respectively. Tree productivity have dominion in community productivity (about 86.28-98.09% ) .
     (2) Carbon storage in PL is larger than in SF. Total carbon stock in LP is higher about 20% than in SF in each age class, and it increases with stand age. The tree carbon stock accounts for 64.56% - 88.92% of total carbon stock, and understory vegetation is the smallest portion. Pay attention to the carbon stock of litter, which can cover 33.84% in some stands. And litter carbon stock in LP is about twice as much as in SF.
     Annual variations of tree carbon stock in studied stands are low entirely. Comparison between LP and SF in the same age class, the accumulated rate of carbon stock in LP is higher than in SF in early stand development, but barely equals in late.
     (3) The water holding capacity in LP (2266.47t?hm-2) is higher than in SF, but the differences between forest types are non significant. So that water conservations in both forest types are ultimately equal entirely. Soil plays dominated role in forest water conservation, which accounts for more 96% of whole stand water holding capacity. Water holding capacity of aboveground in Lp is obviously higher than in SF, whereas soil maximum water capacity and non-capillary water capacity show different results. Water holding in litters account for 66.94% - 90.52% of aboveground, which have more effect in water conservation than in tree and shrub.
     (4) Soil organic matter, available N, P, K, total N, P, K are chose for evaluation of soil fertility. Besides soil total N, other indices in LP are a little higher or higher than in SF. Comparisons between forest types in the same age class show that: soil organic matter, available P, total N and P in 13-year old SF are higher than in 13-year old LP,available K and total K contrarily, and available N fairly; besides total K, other indices in 30-year old Lp are higher than 28-year old SF.
     Different soil indices have different trend with the stand age. Soil organic matter, available P, K and total N in SF decline with the stand age, total K contrarily, and available N and total P non obviously. Soil available P, K and total K in LP decline with the stand age, soil organic matter, total N, P and available N non obviously. Basically, each soil index decline with the depth of soil, but available P non obviously.
     (5) Biodiversities in LP have no significant differences with SF, without reference to tree, shrub or herb layer. Difference occur only in late stand development as forest management intensified, biodiversity in LP is lower than in SF. It suggests that high level biodiversity could be maintain through reasonable forest management objectives and strategies.
引文
[1] Daily,G.C.eds. Nature’s services: Societal Dependence on Natural Ecosystems, Island Press, Washington D. C. 1997.
    [2]欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10 (5):635~640.
    [3]欧阳志云,李文华.生态系统服务功能内涵与研究进展[J].生态系统服务功能研究.气象出版社.北京:2002,1~27.
    [4] Ehrlich P R., Ehrlich A H.. Extiction[M]. New York: Ballantine. 1981.
    [5]任海,刘庆,李凌浩,等.恢复生态学导论(第二版)[M].北京:科学出版社.2008.
    [6]陈灵芝.中国生物多样性的现状及其保护对策[M].北京:科学出版社.1993.
    [7] Marsh , G. P. 1864 (1965) . Man and Nature[M]. New York : Charles Scribner.
    [8] Study of Critical Environmental Problems[J]. Man’s Impact on the Global Environment. Berlin: Springer-Verlag.1970.
    [9] Gordon Irene M.. Nature Function[J]. Springer-verlag, New York. 1992.
    [10]谢高地,鲁春霞,成升魁.全球生态系统服务价值评估研究进展[J].资源科学.2001,23(6):5~9.
    [11]杨光梅,李文华,闵庆文,等.对我国生态系统服务研究局限性的思考及建议[J].中国人口·资源与环境,2007,17(1):85~91.
    [12] De Groot R S, Wilson M A, Boumans R MJ. A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics,2002,41:393~408.
    [13] Mark Sagoff. On the Relation between Preference and Choice[J]. Journal of Socio-Economics, 2003 (31):587~598.
    [14] Howard T. Odum, Eugene P. Odum.. The Energetic Basis for Valuation of Ecosystem Services[J]. Ecosystems , 2000 ,3 :21~23.
    [15] Salah El Serafy. Pricing the invaluable: the value of the world’s ecosystem services and natural capital[J]. Ecological Economics. 1998,25:25~27.
    [16] Mark Sagoff. Can we put a price on Nature’s Services? Report from the institute for Philosophy and Public Policy. 1997.
    [17] Pearce D. Auditing the earth:The value of the world’s Ecosystem Services and Natural Capital[J]. Environment. 1998, 40(2): 23~25.
    [18] Daly, H.E.,Cobb,J.B.. For the common Good[M]. Beacon Press,Boston. 1989.
    [19] Anne M Alexander.John A. List. Michael Margolis et al. A method for valuing global ecosystem services[J]. Ecoligical Economics. 1998,27, 161~170.
    [20] Costanza R. et al. The value of the world’s ecosystem services and natural capital[J]. Nature,1997,386:253~260
    [21] Holder, J and Ehrlich, P. R. Human population and global environment[J]. American Sciensist. 1974, 62: 282~297.
    [22] Westman, W. E.. How much are nature’s services worth? [J]. Science, 1977: 960~964.
    [23] Bolund P., Hunhammar S. Ecosystem services in urban areas[J]. Ecological Economics. 1999, 29:293~301.
    [24] Bjorklund J., Limburg, K. and Rydberg T. Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: an example from Sweden[J]. Ecological Economics. 1999, 29:269~291.
    [25] Holmund C., Hammer M.. Ecosystem services generated by fish populations[J]. Ecological Economics. 1999, 29:253~268.
    [26] Tobias D., Mendelsohn R.. Valuing ecotourism in a tropical rain-forest reserve[J]. Ambio.1991, 20(2): 91~93.
    [27] Chopra, K.. The value of non-timber forest products; an estimation for tropical deciduous forests in India. Economic Botany. 1993,47:251~257.
    [28] Pearce D.W., Moran D.. The Economic Value of Biodiversity[J]. Cambridge,1994.
    [29] Pimental D., Wilson C., McCullum C., et al. Economic and environrnental benefits of biodiversity[J]. BioScience. 1997, 47(11): 747~757.
    [30]赵士洞,张永民.生态系统与人类福祉——千年生态系统评估的成就、贡献和展望[J].地球科学进展. 2006,21(9):895~902.
    [31] Ole Mertz, Helle Munk Ravnborg, Gabor L. L.vei. Ecosystem services and biodiversity in developing countries[J]. Biodivers Conserv.2007,16:2729–2737.
    [32] Ken J. Wallace. Classification of ecosystem services: Problems and solutions[J]. Biological Conservation. 2007,139:235~246.
    [33]王华.亚热带区域集中典型人工林生态系统服务功能研究[D].湖南农业大学博士论文,2007.
    [34]许中旗.人为干扰对典型草原生态系统服务功能的影响[D].中国科学院地理科学与资源研究所博士论文,2005.
    [35]侯元兆等.中国森林资源核算研究[M].北京:中国林业出版社,1995.
    [36]欧阳志云,王如松,等.中国生物多样性间接价值评估初步研究[J].现代生态学的热点问题研究.北京:中国科学技术出版社,1996.409~421.
    [37]薛达元.自然保护区生物多样性经济价值类型及其评估方法[J].农村生态环境,1999,15(2):54~59.
    [38]周晓峰,张洪军.森林生态系统服务功能[J].生态系统服务功能研究.气象出版社.北京:2002,34~66.
    [39]李少宁,王兵,赵广东,等.森林生态系统服务功能研究进展——理论与方法[J].世界林业研究. 2004,17(4):14~18.
    [40]蒋延玲,周广胜.中国主要森林生态系统公益的评估[J].植物生态学报.1999,23(5):426~432.
    [41]余新晓,鲁绍伟,靳芳,等.中国森林生态系统服务功能价值评估[J].生态学报.2005, 25(8):2096~2102.
    [42]靳芳,鲁绍伟,余新晓,等.中国森林生态系统服务功能及其价值评价[J].应用生态学报.2005,16 (8):1531~1536.
    [43]吴钢,肖寒,李静.东北亚典型森林生态系统服务功能研究——以长白山森林生态系统为例[J].生态系统服务功能研究.气象出版社.北京:2002, 204~221.
    [44]薛达元,包浩生,李文华.长白山自然保护区森林生态系统间接经济价值评估[J].中国环境科学.1999,19(3):247~252.
    [45]余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报.2002,22(5):783~786.
    [46]王景升,李文华,任青山,等.西藏森林生态系统服务价值.自然资源学报[J].2007,22(5):831~841.
    [47]李少宁,王兵,郭浩,等.大岗山森林生态系统服务功能及其价值评估[J].中国水土保持科学.2007,5(6):58~64.
    [48]靳芳,张振明,余新晓,等.甘肃祁连山森林生态系统服务功能及价值评估[J].中国水土保持科学.2005,3(1):53~57.
    [49]关文彬,王自力,陈建成,等.贡嘎山地区森林生态系统服务功能价值评估[J].北京林业大学学报.2002,24(4):80~84.
    [50]王雪军,付晓.辽宁省森林生态系统服务功能及其价值初步研究.林业资源管理[J].2007,4:79~83,92.
    [51]饶良懿,朱金兆.重庆四面山森林生态系统服务功能价值的初步评估[J].水土保持学报.2003,17(5):5~6,44.
    [52]熊黑钢,秦珊.新疆森林生态系统服务功能经济价值估算[J].干旱区资源与环境.2006,20(6):146~151.
    [53]张永利,杨峰伟,鲁绍伟.青海省森林生态系统服务功能价值评估[J].东北林业大学学报.2007,35(11):74~76,88.
    [54]高琼,李月辉,肖笃宁,等.沈阳市域森林生态系统服务功能价值评估[J].东北林业大学学报.2008,63(2):69~72.
    [55]郑允文,薛达元,张更生.我国自然保护区生态评价指标和评价标准[J].农村生态环境学报.1994,10(3):22~25.
    [56]薛达元,包浩生,李文华.长白山自然保护区生物多样性旅游价值评估研究[J].自然资源学报.1999,14(2):141~145.
    [57]薛达元.自然保护区生物多样性经济价值类型及其评估方法[J].农村生态环境.1999,15(2):54~59.
    [58]胡海胜.庐山自然保护区森林生态系统服务价值评估[J].资源科学. 2007,29(5):28~36.
    [59]许纪泉,钟全林.武夷山自然保护区森林生态系统服务功能价值评估[J].林业资源管理.2007,3:77~81.
    [60]宫照红.西藏林芝工布保护区森林生态系统服务功能浅析[J].防护林科技.2004,3:43~44,56.
    [61]李长荣.武陵源自然保护区森林生态系统服务功能及价值评估[J].林业科学.2004,40(2):16~20.
    [62]景跃波,陈隽.菜阳河自然保护区森林生态系统服务功能价值评[J].估林业资源管理.2007,5:87~91.)
    [63]谢高地,张忆锂,鲁春霞,等.中国草地生态系统服务价值评估研究[J].自然资源学报.2001,16(1):47~53.
    [64]于格,鲁春霞,谢高地.草地生态系统服务功能的研究进展[J].资源科学.2005,27(6):172~179.
    [65]于格,鲁春霞,谢高地.青藏高原草地生态系统服务功能的季节动态变化[J].应用生态学报.2007, 18(1):47~51.
    [66]赵同谦,欧阳志云,郑华.草地生态系统服务功能分析及其评价指标体系[J].生态学杂志.2004,23 (6):155~160.
    [67]何池.湿地生态系统服务功能与效益评价[J].生态系统服务功能研究.气象出版社.北京:2002,67~87
    [68]莫明浩,任宪友,王学雷,等.洪湖湿地生态系统服务功能价值及经济损益评估[J].武汉大学学报.2008,54(6):725~731.
    [69]袁正科,旷建军.洞庭湖天然湿地退化及成因分析[J].人民长江.2009,40(14):32~34.
    [70]鲁春霞,谢高地,成升魁,等.水利工程对河流生态系统服务功能的影响评价方法初探[J].应用生态学报.2003,14(5):803~807
    [71]鲁春霞,谢高地,成升魁.河流生态系统的休闲娱乐功能及其价值评估[J].资源科学.2001,23(5):77~81.
    [72]张大鹏,栗晓玲,马孝义,等.基于CVM的石羊河流域生态系统修复价值评估[J].中国水土保持.2009,8:39~42.
    [73]赵景柱,肖寒,吴钢.生态系统服务的物质量评价与价值量评价两类方法的比较研究[J].生态系统服务功能研究.气象出版社.北京:2002,28~33.
    [74]杨光梅,李文华,闵庆文,等.对我国生态系统服务研究局限性的思考及建议[J].中国人口·资源与环境,2007,17(1):85~91.
    [75]李文华,李芬,李世东,等.森林生态效益补偿的研究现状与展望[J].自然资源学报.2006,21(5):677~688.
    [76]孙新章,周海林,谢高地.中国农田生态系统的服务功能及其经济价值[J].中国人口·资源与环境.2007,17(4):55~60.
    [77]兰竹虹,廖岩,陈桂珠.热带海洋景观的生态系统服务替代和恢复[J].海洋环境科学.2009,28(2):218~222.
    [78]欧阳志云,徐卫华,王学志,等.汶川大地震对生态系统的影响[J].生态学报.2008,28(12):5801~5809.
    [79]虞依娜,彭少麟,杨柳春,等.广东小良生态恢复服务价值动态评估[J].北京林业大学学报.2009,31(4):19~25.
    [80]李文华,张彪,谢高地.中国生态系统服务研究的回顾与展望[J].自然资源学报.2009,24(1):1~10.
    [81]牟长城,万书成,苏平,等.长白山毛赤杨和白桦-沼泽生态交错带群落生物量分布格局[J].应用生态学报,2004,15(12):2211~2216.
    [82]罗大庆,郑维列,王景生,等.西藏米拉山白桦种群生物量和生长量研究[J].应用生态学报,2004,15(8):1229-1333.
    [83]马长明,张艳华,赵国华,等.燕山山地华北落叶松人工林乔木生物量空间分布格局[J].河北农业大学学报,2010,33(2):37-41,51.
    [84]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [85]方晰.杉木人工林生态系统碳贮量与碳平衡的研究[D].湖南:中南林学院,2004.
    [86]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [87]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究一含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [88]方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的碳循环[J].中国科学D辑地球科学,2006,36(6):533-543.
    [89]李少宁.江西省暨大岗山森林生态系统服务功能研究[D],北京:中国林业科学院,2007.
    [90]李金昌.生态价值论[M].重庆:重庆大学出版社,1999.
    [91]靳芳,余新晓,鲁绍伟.中国森林生态系统服务功能及价值[J].中国林业,2007,4A:40-41.
    [92]黄忠良,孔国辉,余清发,等.南亚热带季风常绿阔叶林水文功能及其养分动态的研究[J].植物生态学报,2000,24(2):157-161.
    [93]周晓峰.中国森林与生态环境[M].北京:中国林业出版社,1999.
    [94]刘向东,吴钦孝,赵鸿雁.黄土高原油松人工林枯枝落叶层水文生态功能研究[J].水土保持学报,1991,5(4):87-92.
    [95]郭立群,王庆华,周洪昌,等.滇中高原区主要森林类型森林植物的降雨截留功能[J].云南林业部科技,1999,(1):22-25.
    [96]武立磊.生态系统服务功能经济价值评估研究综述[J].林业经济,2007,3:42-46.
    [97]王治国.林业生态工程学:林草群落建设的理论与实践[M].北京:中国林业出版社, 2000.
    [98]薛立,何跃君,屈明,等.华南典型人工林凋落物的持水特性[J] .植物生态学报,2005, 29(3):415-421.
    [99]王佑民.中国林地枯落物持水保土作用研究概况[J] .水土保持学报,2000,14(4): 110-115.
    [100]郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究[J].应用生态学报,1998,9(3):237-241.
    [101]张远东,刘世荣,罗传文,等.川西亚高山林区不同土地利用与土地覆盖的地被物及土壤持水特征[J].生态学报,2009,29(2):627-635.
    [102]巍强,张秋良,代海燕,等.大青山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2008,22(2):111-115.
    [103]余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-296.
    [104]孙艳红,张洪江,程金花.缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106-109.
    [105]王棣,吕皎.油松混交林的水土保持及水源涵养功能研究[J].水土保持学报,2001,15(4):44-46.
    [106] Jenny.The soil resource: Origin and behavior Springer–Verlag , New York. 1980, 28(7):89-101.
    [107]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [108]李惠卓,张丽娟.土壤学[M].河北:河北农业大学出版社,2004.
    [109]白尚斌,张彦东,王政权.落叶松根际pH值与供磷水平及土壤磷有效性的关系[J].林业科学,2001, 37(4):129-133.
    [110]张明如,德永军,李玉灵,等.森林生态学[M].河北:内蒙古大学出版社,2006.
    [111]王威,郑小贤,宁杨翠.北京山区水源涵养林典型森林类型结构特征研究[J].北京林业大学学报,2011,33(1):60-63.
    [112]吕婧娴.小陇山林区油松林生态系统健康评价研究[D].陕西:西北农林科技大学,2010.
    [113]耿丽君,许中旗,张兴锐,等.燕山北部山地华北落叶松人工林生物碳贮量[J].东北林业大学学报,2010,38(6):43-45,52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700