秦岭典型林地土壤生物化学性质及其对人为干扰的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工纯林的长期经营会引发诸多生态问题,如地力衰退、林地生产力下降,森林的抗逆性差,抗御自然灾害的能力低下等问题,这不仅影响森林物质生产和多种服务功能的发挥,而且严重威胁着森林生态系统的可持续发展。本项研究以位于秦岭山脉中段的黑河上游安沟小流域境内的四种典型森林(日本落叶松、油松、灰楸和锐齿栎)为研究对象,通过对林地进行外源增施C、N、枯落物客置和客土改造等人为干扰的定位试验,研究不同森林的土壤生物化学性质及其对各种干扰的响应,进一步探讨不同树种的种间关系,为指导当地人工纯林的管理和更新改造提供理论科学依据。所取得的主要结论如下:
     (1)不同林地的土壤生物化学性质比较结果表明:灰楸和锐齿栎林地的土壤有机C和全氮含量均高于日本落叶松和油松林地。日本落叶松、灰楸、锐齿栎和油松等四种林地土壤酶活性随土层的增加逐渐减小,0-10cm土壤酶活性是10-20cm层的1.18~2.83倍,是20-30cm的1.37~6.55倍。灰楸林地土壤酶活性动态变化为增大。土壤微生物量C(MB-C)和微生物量N(MB-N)随土层深度的增加而逐渐减小,灰楸和锐齿栎林地土壤MB-C高,而MB-N则比落叶松和油松的低。四林地凋落物分解速率表现为灰楸>锐齿栎>日本落叶松>油松。
     (2)外源增施C、N干扰表明:外源性C干扰使四种林地0-10cm土壤酶活性增大,使灰楸林地20-30cm土壤过氧化氢酶降低了26.9%,使林地0-10cm土层土壤MB-C上升。N干扰对日本落叶松林地土壤酶有抑制,降低了林地MB-C。C、N同时干扰使四林地林地0-10cm土壤脲酶和蔗糖酶增加,使油松林地土壤MB-C上升。日本落叶松林地不宜施N。不同林地对C、N复合干扰的响应不同。凋落物在外源性C、N干扰的作用下,失重率随分解年限的延长而增大,分解50%和95%所需要的时间分别缩短。
     (3)枯落物客置是将针叶(油松、日本落叶松)林与阔叶(灰楸、锐齿栎)林枯落叶置换。研究结果表明:该措施使灰楸和锐齿栎枯落叶放置在落叶松林地后的土壤酶活性和土壤MB-C降低,其他客置处理的土壤酶活性升高。枯落物客置干扰后,除落叶松和油松枯落叶客置于灰楸林地处理外,枯落物的分解率增大,分解50%需要的时间缩短了2~19个月,分解95%需要的时间缩短了3~7年。日本落叶松和灰楸的混交还有得进一步研究。
     (4)土壤客置改造干扰是将针叶(油松、日本落叶松)与阔叶(灰楸、锐齿栎)林地的腐殖质按不同比例混合后客置。试验结果表明:0-10cm土层酶活性实测结果都要比预测值大1.03~2.01倍。方差分析表明,土壤酶活性预测值和实测值之间差异极显著,说明客土改造对土壤酶活性的影响较大。日本落叶松林地土壤与灰楸和锐齿栎林地的土壤以1/3或1/1的比例混合对土壤MB-C有一定的抑制。土壤客置改造使林地枯落物的分解率增大,分解50%的时间缩短了6~24个月,分解95%的时间缩短了2~8年。结合枯落物客置的结果,说明日本落叶松不宜与灰楸混交。楸树与油松、油松与锐齿栎、落叶松与锐齿栎有一定的混交可行性,但混交比例还需进一步的研究。
Long term management of pure plantation may cause a series of ecological problems, such as fertility degradation, decrease of land productivity, deterioration of forest resistance to natural disasters. This may not only affect production and service function of forest, but also seriously threaten the sustainable development of forest ecosystem. This study took four kinds of typical forestlands with different tree species (Larix kaempferi,Pinus tabulaeformis,Catalpa fargesii,Q. aliena var. acuteserrata) in Angou watershed , upper reaches of Heihe river, middle of Qinling Mountain as subjects, carried out experiments about human disturbance including extra C and N application, litter exchange and soil exchange, analyzed the biochemical characteristic of soil and its response to human disturbance in different forestlands. The interspecific relationship between tree species was investigated in order to offer theoretical direction for pure plantation management and forest renewal in that area. The main results includes :
     (1) Comparation of biochemical characteristic of soil in different forestlands
     The amount of organic C and total N in Catalpa fargesii and Q.aliena var.acuteserrata lands was higher than in Larix kaempferi and Pinus tabulaeformis lands, but soil bulk density was lower. Soil enzyme activity of four kinds of forestlands decreased with soil depth. The soil enzyme activity in 0-10 layer was 1.18-2.83 times and 1.37-6.55 times higher than 10-20 layer and 20-30 layer, respectively. The soil enzyme activity in Catalpa fargesiiland was increasing. The soil microbial biomass C(MB-C) and soil microbial biomass N(MB-N) decreased with soil depth. Catalpa fargesii and Q.aliena var.acuteserrata lands had higher MB-C but lower MB-N than Larix kaempferi and Pinus tabulaeformis lands. The litter decomposition rates in four kinds of forest lands follow this sequence: Catalpa fargesii>Q.aliena var.acuteserrata>Larix kaempferi>Pinus tabulaeformis.
     (2) Disturbance of extra C and N application
     Extra C increased soil enzyme activity and MB-C in 0-10 layer in four kinds of lands, but decreased the soil catalase activity in 20-30 layer by 26.9% in Catalpa fargesiiland. Extra N had inhibitory effect on soil enzyme and decreased MB-C in Larix kaempferi land. Application of C and N jointly increased urase and sucrase activity in 0-10 layer in four kinds of lands, and increased MB-C in Pinus tabulaeformis land. It was not suitable to applied N in Larix kaempferi land. The response to C and N joint disturbance was different for different lands. Under extra C and N disturbance, the litter weight loss rate increased as decomposition continued. Time for 50% and 95% decomposition decreased both.
     (3)Llitter exchange: exchange the litter of conifer(Pinus tabulaeformis,Larix kaempferi) and broadleaf tree(Catalpa fargesii,Q.aliena var.acuteserrata)
     After putting litter of Catalpa fargesii and Q.aliena var.acuteserrata into Larix kaempferi land, soil enzyme activity and MB-C decreased. Enzyme activity under other exchange treatments all increased. After litter exchange, decomposition rate all increased except putting litter of Larix kaempferi and Pinus tabulaeformis into Catalpa fargesii land. Time for 50% and 95% decomposition shortened by 2-19 months and 3-7 years respectively. Mixed plantation of Larix kaempferi and Catalpa fargesii was not feasible.
     (4) Soil exchange: exchange the humus layer soil of conifer(Pinus tabulaeformis,Larix kaempferi) and broadleaf tree(Catalpa fargesii,Q.aliena var.acuteserrata) lands after mixed the soil with different ratios
     The measured value of soil enzyme activity in 0-10 layer was 1.03-2.01 times higher than predicted value. Analysis of variance showed that the difference between predicted value and measured value of soil enzyme activity was significant, which implied soil exchange had a considerable effect on soil enzyme activity. The mixing of soil in Larix kaempferi land with soil in Catalpa fargesii and Q.aliena var.acuteserrata land with ratio of 1/3 or 1/1 had an inhibitory effect on MB-C to a certain extent. Soil exchange improved litter decomposition. Time for 50% and 95% decomposition shortened by 6-24 months and 2-8 years respectively. Combined with results of litter exchange, this study showed that Larix kaempferi was not suitable to be planted with Catalpa fargesii。Mixing plantation of Catalpa fargesii and Pinus tabulaeformis,Pinus tabulaeformis and Q.aliena var.acuteserrata, Larix kaempferi and Q.aliena var.acuteserrata is feasible to a certain extent, but mixing ratio needs to be more studies.
引文
[1] 孙勃,张金屯.天龙山木本群落种间关系的研究.西北植物学报,2004,24 (8):1457~1461.
    [2] Dilly, O. &J. C. Munch.1996.Microbial biomass content,basal respiration and enzyme cativities during the course of decomposition of litter in a black alder forest. Soil Biology and Biochemistry, 28:1073-1081.
    [3] Sinsabaugh, R. L. K., Antibus, A. E.Linkins, C. A. McClaugherty, L. Rayburn, E. Rrpert T. Weiland. 1992. Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biology and Biochemistry, 24:743- 749.
    [4] Berg, M. P. J. P. Kniese &H. A. Verhoef. 1998. Dynamic and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biology and Fertility of Soils, 26:313-322.
    [5] 邹莉,李国江,郑国强.水曲柳落叶松纯林与混交林土壤微生物主要生理类群[J].东北林业大学学报. 2000.28(2):49-51.
    [6]胡延杰,翟明普,贾黎明.2002.杨树刺槐混交林及纯林土壤微生物数量及活性与土壤养分转化关系的研究[J].土壤.1:42-50.
    [7] Berg, M. P. J. P. Kniese &H. A. Verhoef.1998.Dynamic and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biology and Fertility of Soils, 26:313-322.
    [8] 曹慧,孙辉等.土壤酶活性及其对土壤质量的指示研究进展.应用环境生物学报,2003,9 (1):105~109.
    [9] Bollag J M. Soil Biochemistry [M]. New York:Marcel Dekker, 1990:357~396.
    [10] Paul EA. Soil biochem [M]. New York: Marcel Dekker, 1981.415~471.
    [11] 曹潘荣,骆世明.茶园的他感作用.华南农业大学学报,1994,15(2):129~133.
    [12] Keeves A. Some evidence of loss of productivity with successive rotations of Pinus radiata in southeast of S. Australia. Australian Forestry,1996,30(6):51~63.
    [13] Julian Evans. Long term productivity of forest plantation status in 1990. IUFRO, 19th Word Congress, 1990 (1) :165~180.
    [14] Webb L J, Tracey J G, Haydock K P. A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest tree. Grevillea robusta. J. apple. Ecol., 1967, (4):13~25.
    [15] Keeves. A Some evidence of loss of productivity with successive rotations of Pinus radiata in southeast of Australia. Australian Forestry ,1966 , (30) :51~63.
    [16] Boardman R. Productivity under successive rotations pine. Australian Forestry, 1978, 41 (3) : 177~179.
    [17] Chu-Chou D S. Effects of root residues on growth on Pi nus radiate seedlings and a mycorrhizal fungus. am. appl. Biol, 1978,(90):407~416.
    [18] 盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化.林业科学研究2003,16 (4):377~385.
    [19] 中国林学会森林生态学会.人工林地力衰退研究.北京:中国科学技术出版社,1992.1~326.
    [20] 胡亚林,汪思龙,颜绍馗,等.杉木人工林取代天然次生阔叶林对土壤生物活性的影响.应用生态学报,2005,16(8):1411~1416.
    [21] 杨承栋,焦如珍.不同代数人工林跟际非根际土壤微生物数量及种类的变化.林业科学研究,1999,12(1):13~18.
    [22] 盛炜彤.杉木人工林地力衰退及其防治技术.人工林地力衰退研究.北京:中国科学技术出版社.1992.
    [23] 杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8 (5) :564~570.
    [24] 江明喜,邓红兵,唐涛等.香溪河流域河流中树叶分解速率的比较研究[J].应用生态学报,2002,13(1):27-30.
    [25] 刘广全,王浩,秦大庸等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55-62.
    [26] 俞元春,阮宏华,费世民.苏南丘陵森林凋落物量及养分归还量[A].见:恙志林主编,下蜀森林生态系统定位研究论文集[C],1992:50-55.
    [27] 何敦煌,林鹏.苏门答腊金合欢群落生物量和凋落物量的研究[J].植物生态学与地植物学报,1991,15(1):1-8.
    [28] 林鹏,卢昌义,王恭礼等.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学报,1990,14(1):69-73.
    [29] 梁宏温,黄承标,胡承彪.广西宜山县不同林型人工林凋落物与土壤肥力的研究[J].生态学报,1993,13(3):233-242.
    [30] 刘文耀,荆桂芬,和爱军.滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态[J].植物学报,1990,32(8):637-646.
    [31] Dilly O, Bartsch S, Rosenbrock P,et al. 2002.Shifts in physiological capabilities of the microbial during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.)L.) forest [J].Soil Biology &Biochemistry. 33:921-930.
    [32] Williams BL.1972.Nitrogen mineralization and organic matter decomposition in Scots pine humus [J].Forestry.,46(2):177-188.
    [33] 廖利平,高洪,汪思龙等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报.2000,24(1):34-39.
    [34] 周礼恺.土壤酶学[M].科学技术出版社.1980.246.
    [35] 闫德仁.人工林土壤腐殖质特性和土壤酶活性的研究.林业科技.1997,9,22(5):10~12.
    [36] 曹群根 , 罗 佩 韬 . 毛 竹 林 凋 落 叶 分 解 过 程 中 土 壤 微 生 物 学 特 性 的 研 究 . 竹 子 研究汇刊,1996.7,15(3):58-66.
    [37] 钟哲科,高智慧.杨树、水杉林带枯落物对土壤微生物C、N的影响.林业科学,2003.3,39(2):153-157.
    [38] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤 1997,29(2):61~69.
    [39] 李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报,2002,39(1):97~104.
    [40] Paul EA. Soil biochem [M]. New York: Marcel Dekker, 1981.415~471.
    [41] 樊军,郝明德.长期轮作施肥对土壤微生物量碳、氮的影响[J].水土保持研究,2003,10(1):85~87.
    [42] 中国农业百科全书编辑部.中国农业百科全书(林业卷)[M].北京:农业出版社,1989.547~548.
    [43] Brookes P C, Andrea Landman, Pruden QJenkinson D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. SoilBiol Biochem. 1985.12(6):837-842.
    [44] Marumoto, T, Anderson,J.P. and Domsch, K.H. 1982. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem.14: 469-475.
    [45] SmolanderA., Kurks,A., KitrnerV et al. 1994 Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N and P fertilized Norway spruce stands. Soil Biol. Biochem.26:957-962.
    [46] Landgraf D, Klose S. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 2002. 165:9-16.
    [47] Johanssom, T. 1996.Estimation of canopy density and irradiantce in 20-to 40-year-old birch and slash pine uplands in North-Central Florida.Journal of Hydrology,20732-41.
    [48] Wardle ,D.A.1992.A compareative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews.67:321-358.
    [49] Hassink J, 1994. Effects of soil texture on size of soil microbial biomass and on the amount of C and N mineralization per unit of microbial biomass in Dutch grassland soils. Soil Bio. Biochem.26:1377-1581.
    [50]Anderson T H, K H Domsch, 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Bio. Biochem. 21:471-479.
    [51] 徐阳春,沈其荣,冉炜.长期免耕与施用化肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报.2002.39(1):89-96.
    [52] 王 岩 , 沈 其 荣 , 史 瑞 和 , 等 . 土 壤 微 生 物 量 及 其 生 态 效 应 [ J ]. 南 京 农 业 大 学 学报.1996.19(4):45-51.
    [53] 周存宇、蚁伟民和丁明懋.不同凋落叶分解的土壤微生物效应. 湖北民族学院学报(自然科学版),2005,23(3)303~305.
    [54] Dick R P,Breakwill D, Turco R. Soil enzyme activities and biodiversity measurements as integrating biological indicators. In:Doran et al eds. Handbook of Methods for Assessment of Soil Quality. Madison: SSSA Special Pub. 49. Soil Sci Soc Am Spec Publ.1996.247-272.
    [55] Doran J W, Parkin T B. DefiningSoil Quality for Sustainable Environment. Madison. Wisconsin: Soil Sci Soc Am Spec Publ.1994.35:3-324.
    [56] 陈文新.土壤与环境微生物学[M].北京:北京农业大学出版社.1990.
    [57] 廖 瑞 章 , 高 金 兰 . 酸 化 土 壤 对 森 林 土 壤 微 生 物 及 土 壤 酶 的 影 响 [J]. 农 业 环 境 保护.1990.9(3):21-24.
    [58] 杨万勤,钟章成,韩玉萍.缙云山森林土壤酶活性的分布特征、季节动态及其与四川大头茶的关系研究[J].西南师范大学学报(自).1999.24(3):318-324.
    [59] 孙翠玲,郭玉文,佟超然等.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学.1997.33(6):489-497.
    [60] 张其水,杉木连栽林地土壤酶分布特征研究.福建林学院学报.1990.10(4):377-381.
    [61] 胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报.2001.23(5):23-26.
    [62] 关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.1-327.
    [63] 王成秋,王树良,杨剑虹,等.紫色土柑橘园土壤酶活性及其影响因素研究[J].中国南方果树.1999.28(5):7-10.
    [64] 唐 艳 , 杨 林 林 , 叶 家 颖 . 银 杏 园 土 壤 酶 活 性 与 土 壤 肥 力 的 关 系 研 究 [J]. 广 西 植物.1999.19(3):277-281.
    [65] 赵 林 森 , 王 九 龄 . 杨 槐 混 交 林 生 长 及 土 壤 酶 与 肥 力 的 相 互 关 系 . 北 京 林 业 大 学 学报.1995.17(4):1-7.
    [66] 林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂.1999. 18(2):63-66.
    [67] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社. 1978. 60-126.
    [68] 北京林业大学.土壤土壤学.2001,130.
    [69] 刘文利,罗广军.不同林型下土壤理化性质的差异研究.吉林林业科技.2006,35(1):25~29.
    [70] 王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994.
    [71] 徐佩,王玉宽,邓玉林. 岷江流域不同土地利用方式下紫色土有机碳储量特征. 应用与环境生物学报 2007, 13 (2) : 205~208.
    [72] 张万儒.卧龙山自然保护区森林土壤养分状况.森林土壤生态管理.北京:中国科学出版社,1993.
    [73] 朱兆良. 土壤氮素[A] . 中国土壤[ C] . 北京: 科学出版社,1988.464-486.
    [74] 王改兰,段建南等.黄土丘陵区土壤—作物系统氮素特征与管理.植物营养与肥料学报2005,11(5):578–583.
    [75] 田茂洁.土壤氮素矿化模型研究进展. 四川环境2004,23(4):37-42 .
    [76] 姚胜蕊,束怀瑞.有机物料对苹果根际营养元素动态及土壤酶活性的影响.土壤学报.1999,36 (3):428~432.
    [77] 於忠祥,汪维云,沙宗珩.合肥郊区菜园土土壤酶活性研究.土壤通报,1996,27 (4): 179~181.
    [78] 靳素英,崔明学,蔺继尚. 天津东郊盐碱土微生物分布及土壤酶活性. 应用生态学报,1996,7:139~141.
    [79] 薛立,陈红跃,徐英宝,等.混交林地土壤物理性质与微生物数量及酶活性的研究.土壤通报,2004,35(2):154~158.
    [80] 刘梦云,常庆瑞,齐雁冰.宁南山区不同土地利用方式土壤酶活性特征研究. 中国生态农业学报,2006,14(3).
    [81] 李海燕,贾国梅等.裸地休闲和春小麦生长条件下土壤微生物和土壤有机质动态研究.兰州大学学报,2006,42(4):34~36 .
    [82] Zak D R, Pregitzer K S. Spatial and savanna [J]. Nature, 1989, 338:449~500.
    [83] Sikora L J, Yakovchenko V, Cambardella C A, et al. Assessing soil quality by testing organic matter [C]. Magdoff F R, Tabattabal M A, Hanlon E A. Soil Organic matter analysis and interpretation. Madison :SSSA Special Publication,1996:41~50.
    [84] 刘增文,高文俊,潘开文.枯落物分解研究方法和模型讨论.生态学报,2006,26 (6):1993~2000.
    [85] Olson J S. Energy storage and the balance of producers and decomposition in ecological systems. Ecology, 1963, 44: 332-341
    [86] 孙波,赵其国,张桃林.土壤质量与持续环境Ⅱ.土壤质量评价的碳氮指标.土壤. 1997.4:169-176.
    [87] 陈立新,杨承栋.人工林土壤质量演变与调控[M].2004.
    [88] 徐晶,陈婉华,孙瑞莲等.不同施肥处理对湖南红壤中微生物数量及酶活性的影响.土壤肥料,2003(5):8~11.
    [89] 林波,刘庆,吴彦,何海.森林凋落物研究进展生态学杂志.2004.23(1):60-64.
    [90] 李萍,徐雅梅.不同培肥措施对藏东南酶活性的影响[J].土壤肥料,2002,33~35.
    [91] 王继红,刘景双,于君宝等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,2004.18(1):35-38.
    [92] 杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8 (5) :564~570
    [93] 李勇.试论土壤酶活性与土壤肥力[J].土壤通报,1989,26(4):190~192.
    [94] 张鼎华,陈由强.森林土壤酶与土壤肥力.林业科技通讯.1985.(3):1-3.
    [95] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤.1997. (2):61-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700