中北亚热带3种人工林生态系统碳蓄积特征及土壤有机碳稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林植被碳库是陆地生态系统碳库的重要组成部分,森林生态系统土壤碳库是森林植物碳库的2~3倍,是森林生态系统碳库的主要组成部分。人工林生态系统的碳蓄积对减缓全球气候变暖具有重要作用。本研究选择中亚热带地区四种典型树种:杉木林、湿地松、毛竹林人工林和次生阔叶林生态系统为研究对象,通过研究树种和恢复时间对植物碳库和土壤碳库的大小、土壤团聚体及其有机碳分布特征的影响,揭示中亚热带四种典型树种碳密度的时空动态,探讨了林地土壤有机碳的稳定性及其机理,估算了浙江省人工林生态系统的碳储量。主要结果如下:
     (1)有机碳含量在不同树种和恢复时间下各土壤层之间的差异主要表现在0~10cm和10~30cm土层。不同树种主要表现为次生林>杉木林30a>毛竹林>湿地松30a(p<0.05);不同恢复时间下,杉木林土壤有机碳含量随恢复时间增加而增加,而湿地松林则表现为降低的趋势,杉木/湿地松10年林龄和30年林龄差异达显著水平(P<0.05)。
     除毛竹林外,有机碳密度在杉木、湿地松和次生林不同树种和不同恢复时间的土壤剖面层次上基本表现为随土层深度增加而下降的趋势,且土壤碳密度主要集中在土壤表层(0~30cm)。除湿地松20a和毛竹林土壤外,杉木不同恢复时间、湿地松不同恢复时间和次生林0~30cm土壤有机碳密度占土壤总贮量的50%以上。0~100cm土层有机碳密度大小表现为:湿地松10a>杉木30a>次生林>湿地松20a>毛竹林10a>杉木20a>杉木10a>湿地松30a。
     (2)不同树种土壤水稳性团聚体分布差异主要集中在>5mm和2-5mm,在其他粒径级别差异不明显;1~2mm土壤团聚体和0.25~0.5mm土壤团聚体有机碳的增加对土壤总有机碳积累的影响最为突出。>0.25mm土壤水稳性团聚体含量和MWD值大小依次是次生林>杉木林>湿地松、毛竹林,说明土壤团聚体稳定性人工林比次生林低,人工林经营强度越大,土壤团聚体稳定性越差。不同树种和恢复时间下土壤水稳性团聚体有机碳含量都随粒径减小而增加。土壤团聚体有机碳的差异主要集中在0~10cm,不同树种各粒级团聚体有机碳从大到小依次是次生林>杉木林30a>湿地松30a>毛竹林;杉木不同恢复时间下表现为杉木30a>杉木10a>杉木20a;湿地松不同恢复时间下表现为湿地松20a>湿地松10a>湿地松30a。
     微生物量碳和易氧化有机碳在不同树种下分布大小与总有机碳的规律相似,在0-30cm土层,表现为次生林>杉木林30a>湿地松30a>毛竹林,但各树种之间并无显著差异。各活性碳组分分配比例大小为毛竹林>湿地松30a>次生林>杉木林30a,表明土壤活跃有机碳库稳定性由强到弱依次为:杉木林30a>次生林>湿地松30a>毛竹林。轻组有机碳含量0-30cm土层表现为,毛竹林>杉木林30a>湿地松30a>次生林,两两之间差异不显著。从土壤轻组有机碳分配比例来看,次生林和杉木林土壤轻组有机碳对土壤总有机碳的贡献较大,湿地松和毛竹林较小;不同树种土壤颗粒有机碳及分配比例都表现为次生林>杉木林>湿地松>毛竹林。土壤颗粒有机碳占总有机碳的比例人工林约为23.4-37.0%,次生林则高达72.75%,表明人工林转变为人工经济林后,将会导致土壤颗粒有机碳含量急剧下降,土壤有机碳稳定性降低。研究表明,颗粒有机碳比轻组有机碳更能代表森林土壤碳库的中慢变库。
     (3)对土壤有机碳与其他化学质量指标的分析表明,杉木、湿地松人工林生态系统土壤有机碳与全量氮、磷,以及速效态氮、磷、钾都具有显著的相关关系。毛竹林生态系统中有机碳与全氮、全磷的相关性为显著水平,但由于毛竹人工经营强度大,施肥,翻耕等管理措施,直接改变土壤速效态养分构成,使得毛竹林土壤有机碳与速效态氮、磷、钾的相关性不显著。相比杉木、湿地松和毛竹林生态系统而言,次生林受外界的干扰最小,为自然恢复演替过程,土壤养分主要来源于自生生态系统的循环次生林土壤有机碳与全氮、速氮、速磷和速钾的相关系数在所有林分类型中最高,相关性也最好。
     (4)对不同树种和恢复时间下植物碳密度的研究表明,杉木林和湿地松林乔木层碳密度显著大于毛竹林和次生林,在各器官中,湿地松林树干、树枝和树根均显著大于毛竹林和次生林,杉木林树干也显著大于毛竹林和次生林;次生林各器官中除地下树根碳密度显著大于毛竹林地下部分外,其他差异均不显著。同时发现,湿地松林和次生林乔木层地下碳密度相对较大,均在25%以上,而杉木林和毛竹林则相对较低,均在15%以下。在杉木林和湿地松林中发现,随着恢复时间的增加,林下灌草层、枯落物层的生物量及碳密度逐渐增加。
     对有机碳的不同分库而言,枯落层有机碳密度最低,为1.95~8.82t·hm-2。植物层和lm土层土壤有机碳密度分别为40.78~120.43t·hm-2和53.0~138.4t·hm-2,其碳密度要明显高于枯落物层。土壤碳库具有更大的固碳潜力,1m土层有机碳密度总体高于植物层和枯落层碳密度之总和。对不同林分而言,地上层碳密度(植物层+枯落物层)从高到低分别为湿地松30a,湿地松20a,杉木30a,杉木20a,次生林,湿地松10a,毛竹林和杉木10a。1m土层有机碳密度表现为湿地松10a>杉木30a>次生林>湿地松20a>毛竹林>杉木20a>杉木10a>湿地松30a。林分总碳密度(地上部分+1m土层)表现为:杉木30a>湿地松20a>次生林>湿地松10a>杉木20a>湿地松30a>毛竹林>杉木10a。
     杉木各土层碳密度与植物层和枯落物层碳密度呈正相关关系,且1m土层碳密度与植物层和枯落物层碳密度相关关系达到显著性水平;而湿地松林则表现为相反的趋势。毛竹林1m土层有机碳密度与植物层和枯落层碳密度呈负相关关系,但都没有达到显著性水平。次生林各土层有机碳密度与植物碳密度的关系则更为复杂。
     (5)根据浙江省森林资源清查资料,估计了浙江省杉木、毛竹、湿地松林3种人工林生态系统和对照次生林的总碳储量。结果表明,不同类型生态系统总碳储量大小表现为,次生林>杉木林>毛竹林>湿地松林,不同恢复时间杉木林碳储量表现为成熟林>中龄林>幼龄林。4种生态系统总碳储量1.0457Pg C,各层碳储量大小排序为土壤层>乔木层>枯落层>灌草层,分别占总碳储量的60.7%、35.5%、3.43%、0.36%。进一步讨论分析也表明,浙江省人工林土壤固碳潜力巨大。如浙江省由于人工林中以幼、中龄林为主,随着幼龄林、中龄林碳的增长,碳储量将进一步扩大,人工林碳汇功能将显著增强。同时,通过植树造林等活动可增加人工林面积,极大地促进土壤碳储量的提高。此外,通过加强人工林的经营和管理,也可以进一步提高人工林生产力水平,增强其系统的碳储存能力。
The carbon pools of forest vegetation are an important component of carbon storage in terrestrial ecosystems. Soil carbon pools of forest ecosystems is the major component of forest ecosystems and is2to3times the carbon pools of forest vegetation. The carbon storage of artificial ecosystem have an important role in slowing down global warming. The soil samples under four forest types such as Chinese Fir, Slash Pine, Bamboo plantation and secondary forest in mid-subtropics were studied. The purpose of this research was to assess impact of forest types on the distributions of soil organic carbon(SOC)、active soil carbon fractions(MBC、WSOC、ROC)、slow carbon fractions(LFOC and POC) and water-stable aggregates, and understanding how these SOC fractions behave in response to changes in land use will aid in discussing the mechanism of stability of SOC under different forest vegetation types.At last, the carbon storage of artificial ecosystem in Zhejiang provinces was evaluated. Major conclusions were summarized as follows:
     (1) The content of profile SOC decreased as the soil depths increased under four forest soils. The SOC was significant difference in0-30cm layers among the four forest soils (p<0.05), which were in the following order:secondary forest> Chinese Fir> Bamboo plantation> Slash Pine, but no difference in30-100cm layers. Soc in soil increased with increasing ages of Chinese Fir, while decreased with increasing ages of Slash Pine. Significant difference (p<0.05) was detected between10years and30years in Chinese Fir and Slash Pine.
     The vertical distribution of SOC densities showed the same trend as the SOC content in soils of different forest types and ages except Bamboo plantation. And the SOC densities were mainly stored in the0-30cm soil layers, which accounted50%of the total SOC densities except20a old Slash Pine and Moso bamboo. The SOC densities in0~100cm layers from the highest to the lowest were ranked as follows:Slash Pine10a> Chinese Fir30a>Secondary forest> Slash Pine20a> Moso bamboo> Chinese Fir20a> Chinese Fir10a> Slash Pine30a.
     (2) The effects on soil aggregates were focused on the size groups of>5mm and2-5mm under different forest types. As the percentage of water-stable aggregates of the size groups of>5mm and2-5mm were significant differences among different forest in all layers (p<0.05). The total content of SOC showed a positively linear relationship with the content of aggregates SOC of the size groups of0.25-2mm, while>2mm groups didn't. The SOC of>2mm groups were instable carbon, liable to participate in soil carbon cycle.
     The results of R0.25and the content of MWD all were in the following order: Secondary forest>Chinese Fir>Slash Pine、Bamboo plantation, which showed that the stability of forest soil aggregate of Secondary forest was the highest, Chinese Fir took the second place, Slash Pine and Bamboo plantation were the lowest.
     Results show that the content of SOC in aggregates of the same layer in different foresnt types and times increased as the soil depths decreased. The different of content of SOC in aggregates had significant differences only in0~10cm layer, showing a sequence of Secondary forest>Chinese Fir30a>Slash Pine30a>Bamboo plantation. And the sequence for different ages of Chinese Fir and Slash Pine were Chinese Fir30a>Chinese Fir10a>Chinese Fir20a, Slash Pine20a>Slash Pine10a> Slash Pine30a, respectively.
     The active SOC content such as MBC and ROC showed the same trend as the SOC content in soils of different forest types and ages, and content from the highest to the lowest were ranked as follows:Secondary forest>Chinese Fir>Bamboo plantation>Slash Pine, but there was no difference among the three forest soils. ASOC/SOC ratio represents the stability of SOC; from the results we can see that the stability of SOC in top soil from the highest to the lowest was ranked as follows:Chinese Fir> Secondary forest> Slash Pine> Bamboo plantation.
     The result of slow Carbon showed that:The LFOC was no significant difference in0-30cm layers among the four forest soils, which were in the following order:Bamboo plantation> Chinese Fir> Slash Pine> secondary forest. In0-30cm layers, the LFOC/SOC ratio of secondary forest was higher than other three forest types, especially was significantly higher than Bamboo plantation and Slash Pine (p<0.01). The content of POC in the same soil layers under different forest were in the following order:Secondary forest> Chinese Fir> Slash Pine> Bamboo plantation. There were significant differences among different forest in0-10cm soil layer (p<0.01), while no difference in10-30cm layer. In0~30cm layer, the POC/SOC ratio of secondary forest was significantly higher than other three forest (p<0.01), Chinese Fir took the second place. Bamboo plantation and Slash Pine were the lowest. The results of relationships among LFOC、POC and soil nutrients showed that POC is more suitable for representing the slow carbon pool in forest soil.
     (3) The analysis on soil organic carbon and other chemical quality indicators showed that, the soil organic carbon have a significant correlation on nitrogen, phosphorus, as well as quick nitrogen, phosphorus and potassium in Chinese Fir plantation and slash Pine forest. The correlation of organic carbon with total nitrogen and total phosphorus is significant in bamboo ecosystem, but because of the strong Human activity strength, fertilization, tillage and other management measures, the state of soil available nutrient composition of soil organic carbon are changed.So the correlation Phyllostachys pubescens with quick-nitrogen, phosphorus and potassium is not significant. Compared with Chinese Fir plantation, slash pine forest and bamboo eco-systems, the secondary forest have a smaller interference by external. It is a natural recovery process of succession. Soil nutrients mainly come from circulation of the self-loop secondary forest ecosystems. The correlation coefficient of the soil organic carbon with total nitrogen, nitrogen-speed, speed phosphorus and potassium-speed is highest in all forest types, as well as the relevance.
     (4) The study of plant carbon density of different species and recovery time has show that the carbon density of chinese fir and slash pine plantation tree layer was significantly greater than bamboo forest and secondary forests. In various organs, slash pine plantation tree trunks, branches and roots were significantly higher than bamboo forest and secondary forests, chinese fir forest trunks were significantly higher than bamboo forest and secondary forests. In various organs of secondary forests, in addition to the carbon density of underground root was significantly greater than the underground sections of bamboo, the rest were not significantly different, also found that the carbon density of slash pine plantation and secondary forests tree tree layer layer underground is relatively large, were more than25%, while the chinese fir forest and bamboo forest is relatively low, both at15%or less.
     For the organic carbon in terms of the different sub-libraries, the organic carbon density of litter layer is the lowest. The organic carbon density of plant soil organic and1m soil layer is40.78~120.43t·hm-2and53.0~138.4t·hm-2. Its reserves are much higher than the litter layer. Soil carbon pool has a greater potential of carbon sequestration, the organic carbon density of lm soil layer is higher than the sum of Plant floor and plant litter layer. In terms of different stands, the carbon density of over-ground floor from high to low is pine30a>pine20a>fir30a>fir20a>secondary forest>pine10a>Bbamboo> fir10a. The organic carbon density of1m soil layer show that pine10a>fir30a>secondary forest> pine20a> Bbamboo>fir20a>fir10a>pine30a. Stand total carbon density (aboveground+1m soil layer) were as follows:fir30a>pine20a>secondary forest>pine10a>fir20a>pine30a> Bbamboo>fir10a.
     The carbon intensity of fir the soil and plant litter layer is a positive correlation, and the the carbon intensity of1m soil carbon density and plant litter layer is a significant correlation, while slash pine plantation is in the opposite trend. The correlation between organic carbon density of lm soil and plant litter layer carbon layer is a negative in bamboo forest, but have not reached the significant level.
     (5) According to forest resources inventory data of Zhejiang Province, we estimated the total carbon storage of the secondary forest, as well as fir plantation and bamboo forest which are two kinds of plantation eco-system.The results showed that ordering of the total carbon storage in different types of ecosystem is:secondary forest>fir plantation> bamboo forest., and the ordering of carbon storage in different fir forest age is:mature forest>middle-aged forest>young forest. The total carbon storage of the three kinds of ecosystems is1.0457Pg C. The ordering of the carbon storage in different soil layer is:soil layer>tree layer> litter layer>shrub and herb layers. The respective percentage is60.7%,35.5%,3.43%and0.36%to total. Further discussion and analysis also showed that soil carbon sequestration plantations have great potential in Zhejiang Province. If plantation in Zhejiang Province dominated by the young and middle-aged forest, as the growth of the carbon storage in the young forest and middle-aged forest, carbon storage will be further expanded, plantation carbon sinks feature will be enhanced markedly.At the same time, reforestation and other activities can increase the plantation areas and contribute significantly to the improvement of soil carbon storage. In addition, strengthening the operation and management on plantations can also further enhance the level of productivity, enhance carbon storage capacity of the systems.
引文
Alvarez R., Alvarez C.R., Daniel P.E., et al. Nitrogen distribution in soil density fractions and its relation to nitrogen mineralization under different tillage systems. Soil aggregate stability:a review [J]. Journal of Sustainable Agriculture,1999,14:83-151.
    Andrade G., Mihara K.L., Linderman, R.G., et al. Soil aggregation status and rhizobacteria in the mycorrhizosphere [J]. Plant and Soil,1998.202:89-96.
    Aoyama M., Angers D.A., N 'Dayegam iye A. Particulate and mineral associated organic matter in stable aggregates as affected by fertilizer and manure applications [J]. Canadian Journal of Soil Science, 1999,79:295-302.
    Balesdent J. The significance of organic separates to carbon dynamics and its modeling in some cultivated soils [J]. European Journal of Soil Science,1996,47:485-493.
    Barrios E., Buresh R.J., Sprent J.I. Nitrogen mineralization in density fractions of soil organic matter from maize and legume cropping systems [J]. Soil Biology and Biochemistry,1996,28:185-193.
    Bass S, Dubois O, Moura C P, et al. Rural livelihood and carbon management. IIED Natural Resources Issues Paper No.1. London, IIED,2000
    Batjes N H. Total carbon and nitrogen in the soils of the world [J]. Eur Soil Sci,1996,47:151-163
    Bearden B.N., Petersen L.N.2000. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol [J]. Plant and Soil,218:173-183.
    Bethlenfalvay G.J., Cantrell I.C., Mihara K.L. et al.1999. Relationship between soil aggregation and mycorrhizae as influenced by soil biota and nutrition [J]. Biology and Fertility of Soils,28: 356-363.
    Biederbeck B O, Zentner R P. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biol-ogy Biochem,1994,26(12):1647-1656.
    Blair G J, Lefroy R D B, Lise L. Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research,1995,46:1456-1466.
    Bremer E., Janzen H.H., Johnston A.M. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a Lethbridge soil [J]. Canadian Journal of Soil Science,1994,74: 131-138.
    Brookes P C, Landman A., Pruden G., et al. Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology and Biochemistry,1985,17:837-842.
    Brown S, Masem O, Sathaye J, et al. Project based activities. In Watson R T, Noble I R, Bolin B et al. (eds), Land use, land·use change, and forestry. A Special Report of the IPCC. Published for IPCC by the world Meteorolo cal Society and UNEP. Cambridge:Cambridge University Press,2000
    Cambardella. C A and Elliott E T. Particulate organic matter in Vertisols under pasture and cropping[J]. Soil Sci. Soc.Am.J.,1992,61:1376-1382
    Camber, Della et al,Carbon and nitrogen dynamics of some fraction from cultivated grass land soils[J]. Soil Science Society of America Journal,1994,58:123-130
    Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbon dating method of ana/ysls to soil humus studies[J]. Soil Science.1967,104:217-224.
    Christensen B.T. Physical fraction of soil and organic matter in primary particle size and density separates [J]. Advances in Soil Science. Springer Verlag, New York, Ine,1992,20:1-90.
    Christensen. Physical fraction of soil and organic matter in primary particle size and density separates [J]. Advances in Soil Science,1992,20:1-90
    Conant R T., Six J., Paustian K. Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing [J]. Biology and Fertility of Soils,2003, 38:386-392
    Dalal R.C., Mayer R.J.. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IV Loss of organic carbon from different density functions [J]. Australian Journal of Agricultural Research,1986,24:301-309.
    Degens B.P., Harris J.A.1997. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities [J]. Soil Biology and Biochemistry,29:1309-1320.
    Detwiler R P, Hall C S. Tropical forest and the global carbon cycle[J]. Science,1988,239:42-47.
    Dexter A.R.Advances in characterization of soil structure [J]. Soil and Tillage Research,1988,11: 199-238.
    Dilly O., Blume H.P., Sehy U., et al.2003. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices [J]. Chemosphere,52:557-569.
    Dilly O., Blume H.P., Sehy U., et al.2003. Variation of stabilized, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices [J]. Chemosphere,52:557-569.
    Dilustro J J, Day E P, Drake B G, et al. Abundance, production and mortality of fine roots under elevated atmospheric CO2 in an oak0scrub ecosystem [J]. Environmental and Experimental Botany,2002,48: 149-159
    Dixon R K, Andrasko K J, Sussman F G, et al. Forest sector carbon offset projects:near-term opportunities to mitigate greenhouse gas emission. Water, Air, and Soil Pollution,1993,70: 561-577
    Dixon R.K., Brown S., Houghton R.A., et al. Carbon pools and flux of global forest ecosystem [J]. Science,1994,263:185-190.
    Fang J Y, Chen A P, Peng C H et al. Changes in Forest Biomass Carbon Storage in Cina Between 1949 and 1998 [J]. Science,2001,292:2320-2322
    FAO. Global Forest Resources Assessment 2000:Main Report. FAO Forestry Paper 140, ISSN 0258-6150,2001a.
    FAO. State oftheW orld's Forests 2001. Rome, ISBN 1020-5705,2001b
    Foley J A. An Equilibrium model of the terestrial carbonbudge [J]. Tellus,1995,47:310-319
    Franzluebbers A.J., Stuedemann J.A.2002. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA [J]. Environmental Pollution,116:S53-S62.
    Garten C T, Wullschleger S D. Soil carbon inventories under a bioenergy crop (Switchgrass): measurement limitations [J]. Journal of Environmental Quality,1999,28(4):1359-1365
    Gomez C, Rossel R A V, McBratney A B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy:an Australian case study [J]. Geoderma,2008, 146(3/4):403-411
    Goodwin R H, Gooddard D R. The oxygen consumption of isolated woody tissues [J]. American Journal ofBotany,1940,27:234-237.
    Greenland D.J., Ford G.W. Separation of partially humified organic materials by ultrasonic dispersion [J]. Eighth International Congress of Soil Science. Transaction,1964,3:137-148.
    Gregorich E.G., Carter M.R, Angers D.A., et al.1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils [J]. Canadian Journal of Soil Science,74:376-385.
    Guo J F, Yang Y S, Chen G S, et al. Soil C and N Pools in Chinese Fir and Evergreen Broadleaf Forests and their Changes with Slash Burning in Mid-Subtropical China [J]. Pedosphere,2006,16(1): 56-63
    Harrison R B, Henry C L, Cole D W. Long-term changes in organic matter in soils receiving application of municipal biosolids. In:McFee W, Kelly J M eds. Carbon Forms and Functions in Forest Soils. Soil Science Society American, Madison, WI,1995:139-153
    Hassink J.,1995. Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization [J]. Soil Biology and Biochemistry,27:1099-1108.
    Haynes R.J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand [J]. Soil Biology and Biochemistry,2001,32(2):211-219.
    He Y. Song H Y, Pereira A G,et al. Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques [J]. Journal of Zhejiang University SCIENCE,2005, 6B(11):1081-1086
    Houghton J T, Meira Filho L G, CAlander B A, et al. Technical summary In Climate Change. Cambridge University Press,1995, pp.12-49
    Houghton R A, Skole D L, Nobre C A. Annual fluxes of carbon from deforestation and regrowth in the Brazlian Amazon [J]. Nature,2000,403:301-304
    Houghton R A. Land-use change and carbon cycle [J]. Global Change Bio,1995,1:275-287
    Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools [J]. Soil Science Society of America Journal,1993,57:1020-1022
    Janzen H.H., Campbell C.A., Brandt S.A., et al.1992. Light-fraction organic matter in soils from long-term crop rotations [J]. Soil Science Society of America Journal,56:1799-1806.
    Joanne C H, Kevin R T, Ross E M, et al. Mechanisms for changes in soil carbon storage with pasture to
    Pinus radiate landuse change[J]. Global Change Biol,2003,4:1294-1308
    Kennedy A.C., Papendick R.L. Microbial characteristics of soil quality [J]. Soil Water Conserve,1995, 50 (5/6):243-248.
    Krankina O N, Harmon M E, Winjum J K. Carbon storage and sequestration in Russian forest sector [J]. Ambio,1996,25(4):284
    Kurpick P, Kurpick U, Huth A. The influence of lossing on a malaysian dipterearp rain forest:a study using a forest gap model. Journal of Theoretical Biology,1997,185:47-54
    Kurz W A, Webb T M, McNamee P J, et al.The carbon budget of the Canadian forest sector:Phase 1 [J]. Simulation,1993,61:139-144
    Lai R. Forest soils and carbon sequestration [J]. Forest Ecology and Management,2005,220:242-258
    Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science,2004, 304:1623-1627
    Lal R. Soil organic dynamics in cropland and rangeland [J]. Env Iron Pollut,2002,116(supp):353-362
    Lehmann J., Cravo, M.d.S., Zech, W.,2001.Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees:chemical characterization of density, aggregate, and particle size fractions [J]. Geoderma,99:147-168.
    Lenton T M, Huntingford C. Global terrestrial carbon storage and uncertainties sensitivity examined with simple model [J]. Global Change Biology,2003,9:1333-1352
    Li Y Y, Shao M A, Zheng J Y, et al. Spatial-Temporal Changes of Soil Organic Carbon During Vegetation Recovery at Ziwuling, China [J]. Pedosphere,2005,15(5):601-610
    Lin G, Ehleringer J R, Rygiewicz P T, et al. Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terraces [J]. Global Change Biology,1999,5: 157-168
    Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall gass prairie [J]. Nature,2001,413:622-625.
    Meijboom F.W., Hassink J., Van Noordwijk M. Density fractionation of soil macroorganic matter using silica suspensions [J]. Soil Biology and Biochemistry,1995,27,1109-1111.
    Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon cycle feedbacks to the climate system [J]. Science,2002,298:2173-2176
    Mendhama D.S., Heagneyb E.C., Corbeelsc M. et al. Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globules [J]. Soil Biology and Biochemistry,2004, 36:1067-1074.
    Mo J.M, Brown S., Peng S.L. Nitrogen availability in disturbed rehabilitated and mature forests of tropical China [J]. Forest Ecology and Management,2003,175:573-583.
    Motavalli et al, The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guamaquifer [J]. Agriculture Ecosystems and Environment, 2000,79:17-27
    Murillo J C R. Temporal variations in the carbon budget of forest ecosystems in Spain [J]. Ecological Applications,1997,7(2):461-469
    Nylafld R D. Silviculture:concepts and Applications(2nd). McGraw Hill, Boston,2001:1-682
    O'Brien B J. Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements[J]. Soil Biology & Biochemistry.1978,10:309-317.
    Parker J L, Fernandez I J, Rustad L E. Effects of nitrogen enrichment,wildfire,and harvesting on forest soil carbon and nitrogen. Soil Sci Soc Am,2001,65:1248-1255
    Parton W.J, Schimel D.S., Cole C.V., et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands [J]. Soil Science Society of America Journal,1987,51:1173-1179.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones [J]. Nature,1982,298: 156-159
    Post W M, Izaurraled R C, Mann L K, et al. Monitoring and verifying changes of organic carbon in soil [J]. Climatic Change,2001,51(1):73-99
    Prentice I C. The carbon cycle and the atmospheric carbon dioxide. Climate Change 2001:The Scientific Basis. International Panel on Climate Change. Cambridge:Cambridge University Press, UK,2001: 183-237
    Raich J W et al, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus,1992,44:81-89
    Reed D, Berling D, Canner M, et al. The role of land carbon sinks in mitigating global climate change. The Royal Society,2001
    Reeves J, McCarty G,.Mimmo T. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils [J]. Environmental Pollution,2002,116(1):277-284
    Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochemistry Cycles,1994,8:279-293
    Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2 [J]. Nature,411,466-468.
    Sedjo R A. The carbon cycle and global forest ecosystem [J]. Water Air Soil Pollut,1993,70:295-307
    Selige T, Bohner J, Schmidhalter U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures [J]. Geoderma,2006,136(1/2):235-244
    Six J,Paustian K, Elliott E.T,et al. Soil structure and organic matter. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal,2000,64: 681-689.
    Sollins P., Spycher G., Glassman C.A. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter [J]. Soil Biology and Biochemistry,1984,16:31-37.
    Solomon et al. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania:carbon, nitrogen, lignin and carbohydrates [J]. Agriculture Ecosystems and Environment, 2000,78:203-213
    Spycher G., Sollins P., Roses S.1983. Carbon and nitrogen in the light fraction of a forest soil:Verticle distribution and seasonal patterns [J]. Soil Science,135:79-87.
    Stevens A, van Wesemael B, Bartholomeus H. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils [J]. Geoderma,2008,144(1/2):395-404
    Stokstad, et al. Defrosting the carbonfreezerofthe north [J]. Scienee,2004,304:1618-1620
    Trumbore S, Chadwick O, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J]. Science,1996,272:393-396.
    Valentini R, Matteucci G, Dohn an A J, et al. Respiration asthe main determinant of carbo n ha lance in European forests. Nature,2000,404:861-86
    Vance E.D., Brookes P.C., Jenkinson D.S.1987. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry,19(6):703-707.
    Wang et al.The impacts of landuse change on C turnover in soils [J]. Global Biogeochemical Cycles, 13(1):47-57
    Whalen J.K., Bottomley P.J., Myrold D.D.2000. Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil [J]. Soil Biology and Biochemistry,32:1345-1352.
    William H, et al, Soil respiration and the global carbon cycle [J]. Biogeochemistry,2000,48:7-20
    Woodwell G M, Whittaker R H, Reiners W A. The biota and the world carbon budget [J]. Science,1978, 199,141-146
    Xu Q F, Xu J M. Changes in soil carbon pools induced by substitution of plantation for native forest [J]. Pedosphere,2003,133:271-278
    Yakovchenko V.P., Sikora L.J., Millner P.D.,1998. Carbon and nitrogen mineralization of added particulate and macroorganic matter [J]. Soil Biology and Biochemistry,30:2139-2146.
    Zech W., Senesi N., Guggenberger G., et al.1997. Factors controlling humification and mineralization of soil organic matter in the tropics [J]. Geoderma,79:117-161.
    Zhang M.K., He Z.L., Chen G.C., et al. Formation and water stability of aggregates in red soil as affected by organic matter [J]. Pedosphere,1996,6(1):39-45.
    Zhang X Q, Kirschbanm M U F, Hou Z, et al. Carbon stack changes in successive rotations of Chinese Fir (Cunninghamia lanceolata(Lamb.) Hook.) plantations [J]. Forest Ecology and Management, 2004,202(1-3):131-147
    Zhao Q G, Li Z. Nutrient Cycling in Agroecosystems[M]. Nethedand:Kluwer Academic Publishers, 1997:1-6
    Zhong L., Yagi K., Sakai H., et al.2004. Influence of elevated CO2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4 [J]. Plant and Soil, 258:81-90.
    Zogg G.P., Zak D.R., Pregitzer K.S., et al.2000. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest [J]. Ecology,81:1858-1866.
    Zou C Effect of soil air-filled porosity,soil organic matter and soil strength on primary root growth of radiate pine seed-lings [J]. Plant soil,2001,236:105-115
    蔡祖聪.土壤痕量气体研究展望[J].土壤学报,1993,30(2):117-124.
    陈翠玲,蒋爱凤,介元芬,等.土壤微团聚体与土壤有机质及有效氮、磷、钾的关系研究[J].河南职业技术师范学院学报,2003,31(4):7-9.
    陈光水,杨玉盛,吕萍萍,等.中国森林土壤呼吸模式[J].生态学报,2008,28(4):1748-1761
    陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学.中国优秀博士论文数据库,2002
    陈增文,陈光水,钟羡芳,等.基于高光谱遥感的土壤有机碳含量估算研究进展[J].亚热带资源与环境学报,2009,4(1):78-87
    段文霞,朱波,卢静惠,等.人工柳杉林碳蓄积量及土壤性质的动态变化[J].应用于环境生物学报,2007,13(6):777-781
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973
    方精云,王效科,刘国华.北京地区辽东栎呼吸量的测定[J].生态学报,1995,15(3):235-24
    方精云.北纬中高纬度的森林碳库可能远小于目前的估算植物[J].生态学报,2000,24(5):635-638
    方精云.森林群落呼吸量的研究方法及其应用的探讨[J].植物学报,1999,41(1):88-94
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19
    方运霆,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52.
    方运霆,莫江明,Snadra Borwn,等.鼎湖山自然保护区土壤有机碳储量和分配特征[J].生态学报,2004,24(1):135-142.
    冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877
    高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报,2006,20(1):76-79.
    龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化[J].生态学报,2008,28(6):2536-2545
    顾伟,李志安,邹碧,等.华南热带人工林土壤有机碳含量及其稳定性特征[J].热带热带植物学报,2007,15(5):369-376
    郭瑞红,叶功富,卢昌义,等.木麻黄与湿地松混交林的土壤碳贮量动态.海峡科学,2008,10:29-31
    何志斌,赵文智,刘鸽,等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J].生态学报,2006,26(8):2572-2577
    胡会峰,王志恒,刘国华,等.中国主要灌丛植被碳储量[J].植物生态学报,2006,30(4):539-544.
    黄承才,等.浙江省马尾松(Pinus massoniana)林凋落物及土壤碳库的初步研究[J].绍兴文理学院学报,2000,20(6):60-64.
    黄承才.浙江省毛竹Phyllostuchys pubescens林和茶Camellia siner园土壤碳库的研究[J].绍兴文理学院学报,2001,21(1):55-57
    黄从德,张国庆.人工林碳储量影响因素.世界林业研究,2009,22(2):34-38
    姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    姜培坤.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002.19(1):17-19
    蒋桂雄,蒋卫民.全球第一个清洁发展机制林业碳汇项目落户广西[J].广西林业,2006,5:42
    李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704
    李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学D辑,2003,33(01):72-80.
    李强,马明东,陈暮初.中亚热带4种森林类型土壤碳密度和碳贮量研究[J].浙江林业科技,2007,27(4):8-12
    李新宇,唐海萍.陆地植被的固碳功能与适用于碳贸易的生物固碳方式[J].植物生态学报,2006,30(2):200-209
    李延茂,胡江春,张晶等.杉木连栽土壤微生物多样性的比较研究[J].应用生态学报,2005,16(7):1275-1278.
    李阳兵,谢德体.不同土地利用方式对岩溶土壤团粒结构的形响[J].水土保持学报,2001,15(4):122-125.
    李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落呼吸量初步测定[J].林业科学研究,1997.10(4):348-355
    李正才,等.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1-6.
    李正才,徐德应,傅懋毅等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究,2007,20(06):744-749.
    林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(02):63-66.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    刘梦云,常庆瑞,齐雁冰.不同土地利用方式的土壤团粒及微团粒的分形特征[J].中国水土保持科学,2006.4(4):47-51.
    刘瑞刚,李娜,苏宏新,等.北京山区3种暖温带森林生态系统未来碳平衡的模拟与分析.植物生态学报,2009,33(3):516-534
    刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476
    刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响.中国科学D辑(地球科学),2004(34),(增Ⅰ):109-117
    罗云建,张小全.多代连载人工林碳贮量的变化[J].林业科学研究,2006,19(6):791-798
    马秀枝,王艳芬,汪诗平等.放牧对内蒙古锡林河流域草原土壤碳组分的影响[J].植物生态学报,2005,29(4):569-576.
    毛于军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报,2002,26(6):731-738
    潘根兴,周萍,李恋卿,等.固碳土壤学的核心科学问题与研究进展.2007,44(2):327-337
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2177-2183.
    阮宏华,姜志林,苏高铭.苏南丘陵主要森林类型的碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    沈宏,曹志宏,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    沈宏,曹志洪.不同农田生态系统土壤碳库管理指数的研究[J].生态学报,2000,20(4):663-668
    沈宏.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173
    苏宏钧,赵杰,尢德康,等.我国森林病虫害灾害经济损失[J].中国森林病虫,2004,23(5):1-5.
    孙波,赵其国,等.土壤质量与持续环境.Ⅰ.土壤质量的定义及评价方法[J].土壤,1997,29(4):169-168
    孙丽英,李惠民,董文娟,等.在我国开展林业碳汇项目的利弊分析[J].生态科学,2005,24:42-45
    陶贞,沈承德,易惟熙,等.土壤碳动力学同位素示踪研究进展[J].地球科学进展,2004,19(5):793-801
    王晶,张旭东,解宏图,等.现代土壤有机质研究中新的量化指标概述[J].应用生态学报,2003,14(10):1809-1812
    王清奎,等.杉木人工林土壤活性有机质变化特征[J].应用生态学报,2005,16(7):1270-1274.
    王清奎,汪思龙,冯宗炜等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005a,25(3):513-519.
    王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238—244
    王淑平,周广胜,高素华等.中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J].植物生态学报,2003,27(6):780-785.
    王效科,冯宗炜,庄亚辉.中国森林火灾释放CO2、CO和CH4研究[J].林业科学,2001,37(1):90-95.
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(3):13-16
    王岩,沈其荣,史瑞和,等.有机无机肥料施用后土壤微生物量C、N、P的变化及N素转化[J].土壤学报,1998,35(2):227-234.
    尉海东,马祥庆,刘爱琴,等.森林生态系统碳循环研究进展[J].中国生态农业学报,2007,15(2):188-192
    魏朝富,谢德体.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报,1996,33(1):70-77.
    魏殿生.造林绿化与气候变化:碳汇问题研究[M].中国林业出版社,北京:2003
    吴建国,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002.38(4):19-29
    吴庆标,王效科,段晓男,等.中国森林生态系统植被固碳现状和潜力[J].生态学报,2008,28(2):517-524
    肖复明,汪思龙,杜天真,等.湖南会同林区杉木人工林呼吸量测定[J].生态学报,2005,25(10):2514-2519
    谢锦升,杨玉盛,解明曙等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报,2008,45(01):170-175.
    徐德应,郭泉水,阎洪.气候变化对中国森林影响研究.北京:中国科学技术出版社,1997
    徐化成.森林地力的动态特性和人工林的地力下降问题:人工林地力衰退研究[M].科学出版社,1992,3-8
    徐秋芳,等.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,27(2):18-22.
    徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-10
    杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报,2005,25(11):2875-2882
    杨万勤.森林土壤生态学[M].四川科学技术出版社,成都:2006
    杨玉盛,陈光水,王小国,等.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报,2005,42(4):584-590
    杨玉盛,刘艳丽,陈光水,等.格氏拷天然林与人工林土壤非保护性有机碳含量及分配[J].生态学报.2004b,24(1):1-8.
    叶建仁.中国森林病虫害防治现状与展望[J].南京林业大学学报,2000,24(6):1-5
    尹瑞玲.微生物与土壤团聚体[J].土壤学进展,1985,13(4):24-29.
    于贵瑞,主编.全球变化与陆地生态系统碳循环和碳蓄积.气象出版社,北京:2003
    俞慎,何振立,张荣光,等.红壤茶树根层土壤基础呼吸作用和酶活性[J].应用生态学报,2003,14(2):179-183
    曾小平,彭少麟,赵平.广东南亚热带马占相思林呼吸量的测定.植物生态学报,2000,24(4):420-424
    张城,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,(28)2:97-103.
    张君,宫渊波,王巧红,等.土壤碳现状及其对全球气候变化的响应.四川林业科技,2005,26(5):56-61
    张小全,侯振宏.森林退化、森林管理、植被破坏和恢复的定义与碳计量问题[J].林业科学,2003,39(4):140-144
    张小全,李怒云,武曙红.中国实施清洁发展机制造林和再造林项目的可行性和潜力[J].林业科学,2005a,41(5):139-143.
    张小全,武曙红,何英,等.森林、林业活动与温室气体的减排增汇[J].林业科学,2005b,41(6):150-156
    张志华,彭道黎.森林管理对森林碳汇的作用和影响分析[J].安徽农业科学,2008,36(9):3654-3656
    章明奎,何振立,陈国潮,等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366.
    张治军,张小全,王彦辉,等.重庆铁山坪马尾松林生态系统碳贮量及其分配特征.林业科学,2009,45(5):49-53
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述.西北林学院学报,2008,23(1):59-63
    赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54
    周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24
    周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216
    周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].浙江大学博士论文,2006
    周国逸,周存宇,Liu S G,等.季风常绿阔叶林恢复演替系列地下部分碳平衡及累积速率[J].中国科学D辑.地球科学,2005,35(6):502-510.
    周涛,史培军,罗巾英,等.基于遥感与碳循环过程模型估算土壤有机碳储量.遥感学报,2007,11(1):127-136
    周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳的影响[J].地理学报,2003,58(5):727-734
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522
    Cambardella C A, Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence [J]. Soil Science Society of America Journal,1992,56:777-783
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial C. Soil Biology and Biochemistry,1987,19:703-707
    Wu T Y, Jeff J, Schoenau, et al. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China [J]. Soil & Tillage Research,2004,77: 59-68
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    杨长明,欧阳竹,杨林章,等.农业土地利用方式对华北半原土壤有机碳组分和团聚体稳定性的影响.生态学报,2006,26(12):4148-4155
    于建光,李辉信,陈小云,等.秸秆施用及蚯蚓活动对土壤活性有机碳的影响[J].2007,18(4):818-824
    于荣,徐明岗,王伯仁.土壤活性有机质测定方法的比较[J].土壤肥料,2005,(02):49-51
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978
    Ma XQ, Liu CJ, Hannu L, et al. Biomass, litterfall and the nutrient fluxes in Chinese fir stands of different age in subtropical China [J]. Journal of Forestry Research,2002,13:165-170
    Jobbagy E G and Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications,2000,10:423-436
    焦如珍,杨承栋,孙启武,等.杉木人工林不同发育阶段土壤微生物数量及其生物量的变化[J].林业科学,2005,41(6):163-165
    马祥庆,叶世坚,陈绍栓.轮伐期对杉木人工林地力维护的影响[J].林业科学,2000,36(6):47-52
    盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化[J].林业科学研究,2003,16(4):377-385
    孙启武,杨承栋,焦如珍.江西大岗山连栽杉木人工林土壤性质的变化[J].林业科学,2003,39(3):1-5
    尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报,2007,35(1):17-174
    徐秋芳,姜培坤.不同森林下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):84-87
    杨承栋,焦如珍,盛炜彤等.江西省大岗山湿地松林土壤性质的变化[J].林业科学研究,1999,12(4):392-397
    杨承栋.杉木人工林地力衰退的原因机制及其防治措施[J].世界林业研究,1997,(4):34-39.
    杨玉盛,邱仁辉.影响杉木人工林可持续经营因素探讨[J].自然资源学报,1998,13(1):34-39.
    赵萌,方晰,田大伦.第2代杉木人工林地土壤微生物数量与土壤因子的关系[J].林业科学,2008,(01):7-12.
    Dixon R.K., Brown S., Houghton R.A., et al. Carbon pools and flux of global forest ecosystem [J]. Science,1994,263:185-190.
    Evrendilek F, Celik I, Kilic S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey [J]. Journal of Arid Environments,2004,59:743-752.
    Johnson D W, Todd Jr. D E, Trettin C F, et al. Sedinger.Soil Carbon and Nitrogen Changes in Forest of Walker Branch Watershed,1972 to 2004 Soil Sci. Soc. Am. J, August 27,2007:71(5):1639-1646.
    Lal R.2004. Soil carbon sequestration to mitigate climate change [J]. Geoderma,123:1-22.
    Murtv D., Kirschhaum M.L.F., Mcmurtrie R.E., et al. Dose conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature [J]. Global Change Biology,2002,8: 105-123.
    Sedjo RA. The carbon cycle and global forest ecosystem[J]. Water, Air, and Soil Pollution,1993,70, 295-307.
    戴慧,王希华,阎恩荣.2007.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志,26(7):1021-1026.
    解宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,(05).
    李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学D辑,2003,33(01):72-80.
    李正才,徐德应,傅懋毅等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究,2007,20(06):744-749.
    尉海东.中亚热带三种人工林生态系统碳储量及土壤呼吸研究[D].福建农林大学,2005.
    魏文俊.江西省暨大岗山林区森林碳密度与碳储量的研究[D].内蒙古农业大学,2007.
    David M.B, Driscoll C.T. Alumunium speciation and equilibria in soil solutions of a Haporthod in the Adirondack Mountains (New York, USA) [J]. Geoderma,1984,33:297-318.
    Dexter A.R.Advances in characterization of soil structure [J]. Soil and Tillage Research,1988,11: 199-238.
    Franzluebbers A.J., Stuedemann J.A.2002. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA [J]. Environmental Pollution,116:S53-S62.
    Greenland D.J., Ford G.W. Separation of partially humified organic materials by ultrasonic dispersion [J]. Eighth International Congress of Soil Science. Transaction,1964,3:137-148.
    Hassink J, Density fractions of soil macroorganic matter and microbial biomass as predictors of C and N mineralization [J]. Soil Biology and Biochemistry,1995,27:1099-1108.
    Jastrow J.D., Boutton T.W., Miller R.M. Carbon dynamic of aggregate-associated organic matter estimated by carbon-13 natural abundance [J]. Soil Science Society of America Journal,1996,60: 801-807.
    Kemper W.D., Rosemau R.C.1986. Aggregate stability and size distribution. Methods of soil analysis. Part I. Physical and mineralogical methods [J]. A. Klute. Soil Science Society of America. Madison, WI, Agronomy Monograph No.9:425-442.
    Liang B.C,Mackenzie A.F,Schnitzer M. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biology and Fertility of Soils,1998,26:88-94.
    Lutz J.F. The physicochemical properties of soil affecting erosion [J]. Missouri Agr Exp Sta Research Bull,1934,212.
    Maysoon M.M.,Charles W.R.2004. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen [J]. Soil Science Society of America Journal,68:809-816.
    McLauchlan K.K., Hobbie E.S. Comparison of labile soil organic matter fractionation techniques [J]. Soil Science Society of America Journal,2004,68:1616-1625.
    Nimmo J R, Perkins K S. Aggregates stability and size distribution. In:Methods of Soil Analysis, Part 4-Physical Methods [M]. Soil Science Society of America, Inc. Madison, Wisconsin, USA,2002: 317-328.
    Qualls R.G., Haines B. L., Swank W.T.1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest [J]. Ecology,72:254-266.
    Rovira P,Ramdn VallejoV. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil:an acid hydrolysis approach [J]. Geoderma,2002,107: 109-141.
    Sarah M.W,Paul V.D.The impact of land use on soil carbon in Miombo Woodlands of Malawi [J]. Forest Ecology and Management,2004,203:345-360.
    Shrestha M., Singh B.R., Sitaula B.K., et al.2007. Soil Aggregate and particle associated organic carbon under different land uses in Nepal [J]. Soil Science Society of America Journal,71:1194-1203.
    Six J,Paustian K, Elliott E.T,et al. Soil structure and organic matter. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal,2000,64: 681-689.
    Six J., Callewaert P., Lenders S. Measuring and understanding carbon soils by physical fractionation [J]. Soil Science Society of America Journal,2002a.,66:1981-1987.
    Smolander A., Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species [J]. Soil Biology and Biochemistry,2002,34(5) 651-660.
    Swanston C.W., Caldwell B.A., Homann P.S. et al.Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils [J]. Soil Biology and Biochemistry,2002,34(8):1121-1130.
    Unger P.W. Aggregate and organic carbon concentration interrelationships of a Trrertic Paleustoll [J]. Soil & Tillage Research,1997,42:95-113.
    Van Bavel C.H.M.. Mean weight-diameter of soil aggregates as a statistical index of Aggregation [J]. Soil Science Society of America Journal,1949,14,20-23.
    Xu Q.F., XIA J.M. Changes in soil carbon pool by Plantation substituted for native forest [J]. Pedosphere, 2003,13(3):271-278.
    安韶山,张玄,张扬等.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J].水土保持学报.2007(06):109-113.
    高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报,2006,20(1):76-79.
    郭菊花,陈小云,刘满强等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J].土壤,2007,39(5):787-793.
    胡亚林,汪思龙,颜绍馗等.杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J].应用生态学报,2005,16(08):1411-1416.
    姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].生态学报,2006,43(3):421-429.
    李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化[J].土壤通报,2000,31(5):193-195.
    李玉武.次生植被下土壤活性有机碳组分季节动态研究[D].中国科学院研究生院(成都生物研究所),2006.
    刘长怀,罗汝英.宁镇丘陵区森林土壤腐殖质的化学特征[J].南京林业大学学报,1990,14(1):1-5.
    栾军伟.宽坝林区三种森林类型土壤碳形态比较研究[D].四川农业大学,2007.
    毛艳玲,杨玉盛,形世和,等.土地利用方式对土壤水稳性团聚体有机碳的影响[J].水土保持学报,2008,22(4):132-137.
    毛艳玲,杨玉盛,邹双全,等.土地利用变化对亚热带山地红壤团聚体有机碳的影响[J].山地学报,2007,25(6):706-713.
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2177-2183.
    苏静.宁南地区植被恢复对土壤团聚体稳定性及碳库的影响[D].陕西杨陵:西北农林科技大学,2006.
    孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化Ⅱ.化学和生物学肥力的演化[J].土壤学报,1999,2:203-217.
    陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996,16: 410-414.
    王清奎,汪思龙,高洪,等.杉木人工林土壤活性有机质变化特征[J].应用生态学报,2005,16(7):1270-1274.
    王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421.
    王岩,沈其荣,史瑞和,等.有机无机肥料施用后土壤微生物量C、N、P的变化及N素转化[J].土壤学报,1998,35(2):227-234.
    吴建国,徐德应.土地利用变化对土壤有机碳的影响[M].北京:中国林业出版社,2004.
    谢锦升,杨玉盛,解明曙等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报,2008,45(01):170-175.
    谢锦升,杨玉盛,解明曙,等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报,2008,45(01):170-175.
    徐秋芳,姜培坤.不同森林下土壤水溶性有机碳研究[J].水土保持学报,2004,18(6):84-87.
    闫俊华,周国逸.鼎湖山三种演替群落与其土壤结构及某些水文效应耦合研究[J].资源生态环境网络研究动态,2000,11(1):6-115.
    杨玉盛,刘艳丽,陈光水,等.格氏拷天然林与人工林土壤非保护性有机碳含量及分配[J].生态学报.2004b,24(1):1-8.
    宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化[J].生态学杂志,2007,26(12):2013-2016.
    章明奎,何振立,陈国潮.土地利用方式对红壤水稳定性团聚体形成的形响[J].土壤学报,1997,34(4):359-366.
    陈进宁,汪思龙.杉木人工林土壤碳库动态研究现状及展望[J].广西林业科学,2007,36(03):147-163.
    黄昌勇,主编.土壤学.北京:中国农业出版社.2000.
    齐雁冰,黄标,顾志权,等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义.矿物岩石地球化学通报.2008,27(1):50-56.
    任书杰,曹明奎,陶波,等.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地力科学进展,2006,25(4):58-67.
    王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
    徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,12(4):15-21.
    Bi H Q, Wan G H, Turvey N D. Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier [J]. Ecology,2000,81:1477-1483.
    Dixon R.K., Brown S., Houghton R.A., et al. Carbon pools and flux of global forest ecosystem [J]. Science,1994,263:185-190.
    Sedjo R A. The carbon cycle and global forest ecosystem [J]. Water Air Soil Pollut,1993,70:295-307
    Xu XJ, Timmer VR. Biomass and nutrient dynamics of Chinese Fir seedlings under conventional and exponential fertilization regimes [J]. Plant and Soil,2004,203:313-322
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19
    李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学D辑,2003.33(01):72-80.
    林开敏,马祥庆,范少辉,等.杉木人工林林下植物的消长规律[J].福建林学院学报,2000,20(3):231-234
    刘玉宝.29年生杉木林下植物多样性与密度的关系[J].福建林学院学报,2005,25(1):27-30
    马泽清,刘琪璟,徐雯佳,等.江西千烟洲人工林生态系统的碳蓄积特征[J].2007,43(11):1-7
    肖复明,范少辉,汪思龙,等.毛竹、杉木人工林生态系统碳贮量及其分配特征[J].生态学报,2007,27(7):2794-2801
    周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24
    周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].浙江大学博士论文,2006
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    Brown S, Sathaye J, Cannell M, et al.1996. Management of forests for mitigation of greenhouse gas emissions. In:W atson I, Zinyowera MC, Moss RH. Eds. Climate Change 1995:Impacts, Adaptations and Mitigation of Climate Change, Scientific Analyses. Contribution of Working Group II to the Second Assessment Report of the Inter.governmental Panel on Climate Change. Cambridge:Cambridge University Press,773-798
    Cannell MGR. Carbon sequestration and biomass energy off set:theoretical, potential and achievable capacities globally, in Eu·rope and the UK [J]. Biiom Bioenergy,2003,24:97-116
    Fang J Y, Chen A P, Peng C H et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998 [J]. Science,2001,292:2320-2322
    FAO. Production Yearbook. Rome, Italy,2006:1-348
    Grunzweig J M, Lin T, Rotenberg E, et al. Carbon sequestration in arid land forest [J]. Global Change Biol,2003,9:791-799
    Guo L B, Gifford R M. Soil carbon stocks and land use change:A meta analysis [J]. Global Change Biol, 2002,8:345-360
    Hamilton C, Vellen L. Land use change in Australia and the Kyoto Protocol [J]. Environ Sci Policy, 1999,2:145-152
    Lai R. Forest soils and carbon sequestration [J]. Forest Ecology and Management,2005,220:242-258
    Liski J, Perruchoud D, Karialainen T. Increasing carbon stocks in the forest soils of Western Europe. For Ecol Manage,2002,169:159-175
    Luman A, Navrud S R, Rstad P K, et al. Forestry and forest production in Norway as a measure against CO2-accumulation in the atmosphere. Aktuelt fra Skogforsk nr 6-1991. Institute for skogfag, NLH, Norway,1991
    Makipaa R, Karjalainen T, Pussinen A, et al. Effects of nitrogen fertilization on carbon accumulation in boreal forests:Model computations compared with the results of long term fertilization experiments [J]. Chemosphere,1998,36:1155-1160
    Nabuurs G J, Dolman A J, Verkaik E, et al. Resolving the Issues on Terrestrial Biospheric Sinks in the Kyoto Protocol. Report no.410 200 030. Bilthoven, the Netherlands:Dutch National Research Programme on Global Air Pollution and Climate Change,1999,100
    Nabuurs G J, Dolman A J, Verkaik E, et al. Article 3.3 and 3.4 of the Kyoto Protocol:Consequences for industrialized countries'commitment, the monitoring needs, and possible side effects [J]. Environ Sci Policy,2000,3:123-134
    Pandey D N. Carbon sequestration in agroforestry systems [J]. Clim Policy,2002,2:367-377
    Skog K E, Marcin T C, Heath L S. Opportunities to reduce carbon emissions and increase storage by wood substitution, recycling, and improved utilization [J]. In:Sampson R N, Hair D, eds. Forests and Global Change Forest Management Oppo rtunities. Vol.2. Washington DC:American Forests, 1996
    Zhou G Y, Liu S G, Li Z, et al. Old-growth forests can accumulate carbon in soils [J]. Science,2006,314: 1417
    冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877
    胡会峰,刘国华.中国天然林保护工程的固碳能力估算[J].生态学报,2006a,26(1):291-296
    胡会峰,刘国华.森林管理在全球C02减排中的作用[J].应用生态学报,2006b,17(4):709-714
    黄从德,张键,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650
    黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005,25(12):3146-3154
    李意德,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378
    李跃林,彭少麟,赵平.鹤山几种不同土地利用方式下土壤碳动态研究[J].山地学报,2002,20(5):548-552
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(3):13-16
    徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-10
    杨万勤.森林土壤生态学[M].四川科学技术出版社,成都:2006
    张茂震,王广兴.浙江省森林生物量动态[J].生态学报,2008,28(11):5665-5674
    周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006,28(6):51-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700