集约经营板栗林土壤生物学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板栗是中国南方重要的经济林种,近年来,随着板栗林栽培集约化程度的不断提高,出现了严重的土壤退化现象。为研究板栗集约化栽培对土壤生物化学性质产生的影响,开展了不同集约栽培历史板栗林土壤生物学性质;同时布置了不同除草方式对板栗林土壤生物学性质的影响,不同施肥对板栗林土壤生物学性质的影响和不同绿肥修复对板栗林土壤生物学性质的影响的研究。通过研究得出如下结果:
     1、板栗集约化栽培对土壤生物学性质产生的影响,采集了不同栽培历史的板栗林土壤样品,采用氯仿熏蒸法和Biolog法分析了土壤微生物量碳和微生物多样性,同时与天然灌木林进行了比较,结果表明:板栗林集约化栽培5、10、20年后,土壤微生物量碳含量比天然灌木林下降了15.89%、49.16%和55.13%,并达到显著差异。板栗林集约栽培初期,土壤微生物量碳占总有机碳比率与天然灌木林无显著差异,到集约经营10年时,比率明显下降,但集约经营10年后,比率又趋于稳定。灌木林改为集约栽培板栗林后,土壤微生物群落功能多样性呈下降趋势,反映土壤微生物碳源利用能力的AWCD值,板栗集约经营5年、10年、20年后分别只是灌木林的79.26%、63.20%和68.50%,并差异达显著水平。反映土壤微生物多样性的Shannox指数和McIntosh指数,集约栽培板栗林也显著低于天然灌木林。综合AWCD值和多样性指数,可以看出,板栗林集约栽培头10年,土壤微生物群落功能多样性下降趋势明显,10年后则变化不大。总之,随着板栗林集约栽培时间的延长,土壤质量明显下降,但到10年后趋于稳定。
     2、板栗林不同除草方式对土壤生物学性质的影响,布置了不同除草方式试验。研究结果表明:传统的翻耕除草方式不仅可以改善土壤养分状况,而且可显著增强土壤磷酸酶、蔗糖酶及过氧化氢酶的活性,明显增加土壤微生物量碳和水溶性有机碳含量;而除草剂除杂草处理,土壤3类酶活性和土壤微生物量碳、水溶性有机碳含量明显下降,对土壤的健康质量和生物学肥力有严重影响。兼顾土壤保持和土壤质量,采用刈割除杂草方式对林地土壤质量维持和板栗生长均较有利。
     3、施用不同肥料对板栗林土壤性质的影响,布置了肥料试验。研究结果表明:无论施用有机肥还是施用化肥处理,与不施肥比较,土壤水解氮、有效磷及速效钾的含量都有显著提高,并随着化肥施肥量的增加,土壤有效养分含量明显上升。施用有机肥显著提高了土壤磷酸酶和蔗糖酶活性,并随着有机肥用量的增加,土壤磷酸酶和蔗糖酶活性明显上升。有机肥也明显增加了土壤水溶性有机碳和微生物量碳的含量。
     4、不同绿肥种植对板栗林土壤性质的影响,布置了绿肥种植田间试验。试验结果表明:黑麦草、白三叶、大绿豆及黑麦草、白三叶、大绿豆3种混播4个绿肥处理的土壤全氮和有机质含量均明显高于不播绿肥的空白处理;种植绿肥也显著增加了土壤酶活性和土壤水溶性有机碳及微生物量碳的含量。比较4个播种绿肥处理发现,种大绿豆对提高土壤全氮、有机质含量和土壤酶活性效果最好。但种绿肥在当年对土壤水解氮、有效磷和速效钾含量无显著影响。
Chinese chestnut (castnea mollissima) forest is an important economic forests that has been intensively managed in southern China recently. Consequently, soil quality was getting worse and worse with the intensive management (IM). In order to clarity the effects of intensive management of Chinese chestnut on soil biological properties by studing soil biological properties of Chinese chestnut stands with different history. Three site-specific experiments were conducted to study the influences of different ways of cleaning weeds, different types and various rate of fertilizer, different green manures on the biological properties of soil. The results obtained were summarized as follows:
     1.Soil biological properties of Chinese chestnut stands with different history were tested using chloroform fumigation and Biolog .Three soil samples from natural shrubbery were collected as control. It was shown that compared with shrubbery, microbial biomass carbon(MBC) of soil under Chinese chestnut stand with 5,10 and 20- year’s IM decreased by 15.89%,49.16% and 55.13% respectively, and significant difference(P<0.05) among one to another has been observed. The proportion of MBC out of total organic carbon (TOC) of soil under Chinese chestnut stand was measured no significant difference with soil under natural shrubbery during first 5-year of IM, however, it decreased apparently until 10-year’s IM and then kept constant afterward. Soil microbial functional diversity measured by average well color density (AWCD) declined greatly by conversion natural shrubbery into IM Chinese chestnut stands. Compared with shrubbery, AWCD value of soil under Chinese chestnut forest decreased by 79.26%, 63.20% and 68.50% respectively after 5, 10 and 20-year’s IM, with significant difference(p<0.05). Index of Shannox and McIntosh reflecting soil microorganism diversity were lower in IM Chinese chestnut stands than that under natural shrubbery. Combining AWCD value with diversity indexes, it can be concluded that soil microbial functional diversity of IM Chinese chestnut stands had decreased noticeably during the first-10 year’s IM, but no change has been observed afterward, suggesting that a new and special soil microbial communities has been formed after 10-year’s IM of Chinese chestnut stands. Soil quality closely related to soil organic and biological properties may decline with intensive management being conducted.
     2. Intensive management on Chinese chestnut (castnea mollissima) forest with weeds being cleared away is popular, however, it can be predict that soil qualities must have changed as a result. The objective of this study is to test the effects of weeds clearing way on soil properties by conducting a field trial under Chinese chestnut forest. The soil under Chinese chestnut with weeds being plowed into deep soil showed stronger activities of Phosphatase, Sucrase and Hydrogen peroxidase, and so did the soil microbial biomass carbon (MBC) and water-soluble organic carbon (WSOC)comparing with control which having received no any attention. The converse situation has been observed under Chinese chestnut with weeds being cleared away by using herbicide. Considering the fact that soil plowing must result in soil erosion at some extent, the way of weeds being cut but not plowed into deep soil was recommended when farmer managed Chinese chestnut in subtropical zone where precipitation is high.
     3. Fertilization has become useful way to improve the yield. The objective of this study is to find out the effects of different types and various rate of fertilizer on soil available nutrients and biochemical properties by one year field fertilizer trial. It was found that soil available N,P and K positively response to the increase of fertilizer rate. Organic fertilizer had a positive influence on activities of soil phosphatase and sucrase, and still positive improvement was observed for soil water-soluble organic carbon(WSOC) and microbial biomass carbon (MBC). It was concluded from this trial that the practice of fertilization enriched the soil available nutrients and organic fertilizer has better effect on soil biochemical and biological properties than mineral fertilizer.
     4.The objective of this study is to test the effects of green manure on soil nutrient and bio-properties under chestnut plantation. A manure trial with planting rye grass, white clover, green gram, the mixture of three of them, and control with no any vegetation (CK). It was found that soil total organic carbon (TOC) and total nitrogen (TN) were much higher (P<0.05)in Chinese chestnut plantation planted with green manure compared with control and the similar tendency was true for soil microbial biomass carbon (MBC) and water-soluble organic carbon (WSOC). Comparing the treatments with different types of green manure, green gram was among the best to improve soil TOC, TN and enzymatic activities, however, there was no improvement to observed respect to soil available N, P, and K after one year manure trial.
引文
1. 包维楷,陈庆恒.生态系统退化的过程与特点[J].生态学杂志,1999,18(2):36-42.
    2. 陈国潮.土壤微生物量测定方法现状及其在红壤上的应用[J].土壤通报,1999,30(6):284-287.
    3. 陈立新.施肥对落叶松人工林根际土壤生化活性的影响[J].水土保持学报,2003,17(3):133-136.
    4. 陈伟祥,胡伯智,吴黎明,等.不同立地条件和施肥对板栗生长地影响[J].经济林研究,2000,18(3):17-20.
    5. 陈欣,王新,唐建军,等.新垦红壤坡地杂草多样性保护途径及土壤保持效应[J].杂草科学,1999,(4):5-8.
    6. 程东娟,刘树庆,王殿武,等.长期定位培肥对土壤酶活性及土壤养分动态变化影响[J].河北农业大学学报,2003,26(3):33-36.
    7. 樊军,郝明德.长期施用化肥对黑垆土酶活性影响[J].土壤肥料,2003,5:34-37.
    8. 范明华,李相玺,姚毅臣.花岗岩侵蚀区幼龄果树与绿肥优化配置模式研究[J].南昌农学专报,1998,17(3):21-27.
    9. 高瑞,吕家珑.长期定位施肥土壤酶活性及其肥力变化研究[J].中国生态农业学报,2005,13(1):143-145.
    10. 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    11. 何振立.土壤微生物量的测定方法:现状和展望[J].土壤学进展,1994,22(4): 36-44.
    12. 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    13. 胡亚林,汪思龙,颜绍馗,等.杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J].应用生态学报,2005,16(8):1411-1416.
    14. 胡著邦,汪海珍,吴建军,等.镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应[J].浙江大学学报(农业与生命科学版),2005,31(2):151-156.
    15. 黄顶成,尤民生,侯有明,等.化学除草剂对农田生物群落的影响[J].生态学报,2005,25(6):1451-1452.
    16. 黄宏文,张力田,卢瑛,等.磷对板栗结实性能及产量的影响[J].园艺学报,1991,18(1):21-26.
    17. 姜培坤,徐秋芳.雷竹早产高效栽培过程中土壤养分质量分数的变化[J].浙江林学院学报,2006,23(3):242-247.
    18. 姜培坤,徐秋芳.毛竹竹根区土壤微生物数量与酶活性研究[J].林业科学研究,2001,14(6):648-652.
    19. 姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学,2002,38(6):6-11.
    20. 姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11.
    21. 姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响[J].应用生态学报,2005,16(2):253-256.
    22. 姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    23. 孔维栋,刘可星,廖宗文.有机物料种类及腐熟水平对土壤微生物群落的影响[J].应用生态学报,2004,15(3):487-492.
    24. 黎章矩.名特优经济树种栽培技术[M].北京:中国林业出版社,1994.
    25. 李彩华,靳学慧,台莲梅.不同农业措施对土壤微生物的影响[J].黑龙江八一农垦大学学报,2005,7(4):31-34.
    26. 李昌华.杉木人工林和阔叶杂木林土壤养分平衡因素差异的初步研究[J].土壤学报,1981,18(3):255-261.
    27. 李东坡,武志杰,陈利军,等.长期定位培肥黑土土壤蔗糖酶活性动态变化及其影响因素[J].中国生态农业学报,2005,13(2):102-105.
    28. 李发林,黄炎和,刘长全,等.土壤管理模式对幼龄果园根际土壤养分和酶活性影响初探[J].福建农业学报,2002,17(2):112-115.
    29. 李志辉,李跃林,杨民胜,等.桉树林地土壤酶分布特点及其活性变化研究[J].中南林学院学报,2000,20(3):29-33.
    30. 刘爱琴,马祥庆,何智英.炼山后间种绿肥对杉木林退化地的改良效果[J].浙江林学院学报,1999,16(4):369-374.
    31. 刘满强,胡锋,何园球,等.退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义[J].土壤学报,2003,40(6):937-944.
    32. 刘小虎,许艳华,杨劲峰,等.不同施肥处理对棕壤几个肥力指标的影响[J].土壤通报,2005,36(4):474-478.
    33. 陆发利,申学勤,阎德会,等.板栗低产园成因及增产途径[J].果树科学,1997,14(2):139-140.
    34. 吕镇梅,闵航,叶央芳.除草剂二氯喹啉酸对水稻田土壤中微生物种群的影响[J].应用生态学报,2004,15(4):605-609.
    35. 孟丽君,吴凤芝.土壤酶研究进展[J].东北农业大学学报,2004,35(5):622-626.
    36. 倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56-63.
    37. 倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003a,12(1):71-75.
    38. 倪进治,徐建民,谢正苗,等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报,2003b,40(5):724-730.
    39. 潘维旺,李景英,周启水,等.土壤微生物与森林环境因子关系初探[J].南昌水专学报,1998,17(4):38-41.
    40. 攀卫国,姬武兴,唐成万,等.台江红油大板栗产量与栗园土壤养分研究[J].山地农业生物学报,2001,20(3):186-190.
    41. 秦新生,刘苑秋,邢福武.低丘人工林林下植被物种多样性初步研究[J].热带亚热带植物学报,2003,11(3):223-228.
    42. 邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280.
    43. 任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    44. 沈宏,曹志洪,徐本生,等.施肥对不同农田土壤微生物活性的影响[J].农村生态环境,1997,13(4):29-35,54.
    45. 沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    46. 沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态意义[J].生态学杂志,1999,18(3):32-38.
    47. 沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    48. 石爱平,刘克锋,王红利,等.施肥后土壤养分变化对板栗生长的影响[J].北京农学院学报,2001,16(4):46-50.
    49. 孙波, 赵其国,张桃林,等.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    50. 孙鲁平,王数,张凤荣.燕山板栗品质与土壤特性的相关研究[J].土壤通报,1998,29(6):267-269.
    51. 孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406-410.
    52. 唐启义,冯明光.实用统计分析及其计算机处理平台[M].北京:中国农业出版社,1997.
    53. 汪海珍,徐建民,谢正苗.甲磺隆结合态残留物对土壤微生物的影响[J].农药学学报,2003,5(2):69-78.
    54. 王艮梅,周立祥,占新华,等.水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响:田间微区试验[J].环境科学学报,2004,24(5):858-864.
    55. 王红,周大迈.土壤肥力分级的酶活性指标研究进展[J].河北农业大学学报,2002,25:60-62.
    56. 王继红,刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报.2004,18(1):35-38.
    57. 王健,刘作新,蔡崇光.施肥对油松刺槐混交林土壤微生物种群和酶活性的影响[J].生态学杂志,2004,23(5):89-92.
    58. 王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    59. 王晶,解宏图,张旭东,等.施肥对黑土土壤微生物生物量碳的作用研究[J].中国生态农业学报,2004,12(2):118-120.
    60. 文亦芾,艾有群.南方红壤磷素化学研究进展和展望[J].云南农业大学学报,2005,20(4):534-538.
    61. 吴黎明,陈伟祥,胡伯智,等.板栗生长与土壤养分相关的研究[J].浙江林业科技,2000,20(5):25-29.
    62. 谢晓梅,廖敏,黄昌勇,等.除草剂苄嘧磺隆对稻田土壤微生物活性和生物化学特性的影响[J].中国水稻科学,2004,18(1):67-72.
    63. 徐建明,黄昌勇,安曼,等.磺酰脲类除草剂对土壤质量生物学指标的影响[J].中国环境科学学报,2000,20(6):491-494.
    64. 徐秋芳,钱新标,桂祖云.不同林木凋落物分解对土壤性质的影响[J].浙江林学院学报,1998,15(1):27-31.
    65. 徐秋芳,姜培坤.有机肥对毛竹林间及根区土壤生物化学性质的影响[J].浙江林学院学报,2000,17(4):364-368.
    66. 徐秋芳,俞益武,姜培坤.商品林地土壤养分贫瘠化评价[J].水土保持学报,2002,16(2):99-102.
    67. 徐秋芳,朱志建,俞益斌.不同森林植被下土壤酶活性研究[J].浙江林业科技,2003a,23(4):9-11.
    68. 徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003b,17(4):15-21.
    69. 徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报,2004,15(6):84-87.
    70. 薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285.
    71. 阎德仁,刘永军,任延琴.落叶松人工林土壤微生物活性的研究[J].内蒙古林业科技,1996(3、4):89-92.
    72. 杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志,2005,24(8):887-892.
    73. 杨芳,徐秋芳.不同栽培历史雷竹林土壤养分与重金属含量的变化[J].浙江林学院学报,2003,20(2):111-114.
    74. 杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159
    75. 杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25,47.
    76. 姚斌,钱晓刚,于成志,等.土壤微生物多样性的表征方法[J].贵州农业科学,2005,33(3):91-92.
    77. 于群英.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报,2001,15(4):5-8.
    78. 俞益武,徐秋芳.天然林变为经济林后土壤微生物量碳氮的变化[J].水土保持学报,2003,17(5):110-113.
    79. 袁玲,杨邦俊,郑兰君,等.长期施肥对土壤酶活性和氮磷养分的影响[J].植物营养与肥料学报,1997,3(4):300-306.
    80. 张长青,吴移生,李广平,等.南京老山区板栗低产原因及增产措施初探[J].南京农专学报,2001,17(1)22-24.
    81. 张成娥,陈小丽.植被破坏前后土壤微生物分布与肥力的关系[J].土壤侵蚀与水土保持学报,1996,2(4):77-83.
    82. 张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其商值[J].生态学杂志,2003,22(2):28-31.
    83. 张鼎华,叶章发,李宝福.杉木、马尾松轮作对林地土壤肥力和林木生长的影响[J].林业科学,2001a,37(5):10-15.
    84. 张鼎华,叶章发,范必有,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学报,2001b,12(5):672-676.
    85. 张甲珅,陶澍,曹军.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报,2000,31(4):173-175.
    86. 张甲坤,陶澍,曹军.中国东部土壤水溶性有机物含量与地域分异[J].土壤学报, 2001,38(3):308-313.
    87. 张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J].生态学报,2004,24(12):2818-2824.
    88. 张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报,2005,42(1):116-121.
    89. 张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    90. 张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,36(4):598-604.
    91. 章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    92. 章家恩.论土壤微生物的多样性保护[J].土壤,1995,27(4):169-172.
    93. 赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,18(2):76-80.
    94. 赵之重.土壤酶与土壤肥力关系的研究[J].青海大学学报(自然科学版),1998,16(3):24-29.
    95. 浙江省林业局.浙江林业自然资源(森林卷)[M].北京:中国农业科学技术出版社,2002.
    96. 郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024.
    97. 中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:193-194.
    98. 钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456-465.
    99. 周国模,姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报,2004,18(6):68-70,83.
    100.周开芳,何炎.豆科冬绿肥翻压对土壤肥力和杂交玉米产量及品质的影响[J].贵州农业科学,2003,31(增刊):42-45.
    101.周庆,刘有美,黄锦龙.桉树林地酶活性研究初报[J].华南农业大学学报,1997,2:46-50.
    102.Anderson J E,Domsch K H.A physiological method for measurement of microbial biomass in soils[J].Soil Biol.Biochem.,1978,10:215-221.
    103.Anderson T,Domsch K H.Ratios of microbial biomass carbon to total organic carbon in arable soils[J].Soil Biol.Biochem.,1989,21:471-479.
    104.Andersson S, Nilsson S I,Saetre P.Leaching of dissolved organic carbon(DOC)and dissolved organic nitrogen(DON)in mor humus as affected by temperature and pH[J].Soil Boil.Biochem.,2000,32(1):1-10.
    105.Badiane N N Y,Chotte J L,Pate E,et al.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J].ApplSoil Ecol.2001,18(3):229-238.
    106.Christ M J,David M B.Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J].Soil Biol.Biochem.,1996,28(9):1191-1199.
    107.Clay K. Tungal endophyte symbiosis and plant diversity in successional fields[J].Science,1999,285(5434):1742-1744.
    108.Coleman D C,Rcid C P P,Colo C.Biological strategies of nutrient cycling in soil systems[J].Advances in Ecological Research,1983,13:1-55.
    109.Cupta V V S R,Germida J J.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J] . Soil Biol.Biochem.,1988,20:777-786.
    110.Degens B P,Schipper L A,Sparling G P,et al.Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance[J].Soil Biology and Biochemistry,2001,(33):1143-1153.
    111.EL-Ghamry A M,Xu J M,Huang C Y,et al.Microbial response to bensulfuron-methyl treatment in soil[J] . Journal of Agriculture and Food Chemistry,2002,50:136-139.
    112.Franzluebbers A J,Hons F M,Zuberer D A.Soil organic C,microbial biomass and mineralizable C and nitrogen in sorghum[J].Soil Sci.Soc.Am.J.,1995,59:460-466.
    113.Garica F O,Rice C W.Microbial biomass dynamics in tall grass prairie[J].Soil Sci.Soc.Am.J.,1994,58:816-823.
    114.Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,1991,57:2351-2359.
    115.Heiden M G,Klironomos J H,Urisic M,et al.Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity[J].Nature,1998,396:69-72.
    116.Hoop D U,Vitouser P M.The effects of plant composition and diversity on ecosystem process[J].Science,1997,277:1302-1305.
    117.Jandl R,Sollins P.Water extractable soil carbon in relation to the belowground carbon cycle[J].Biol.Fertil.Soils.,1997,25:196-201.
    118.Jenkison D S,Oades J M.A method for measuring adenosine triphosphate in soil[J].Soil Biol.Biochem.,1979,11:193-199.
    119.Jòzefaciuk G,Sokolowska Z,Hajnos M,et al.Large effect of leaching of DOC on water adsorption propertied of a sandy soil[J].Geoderma,1996,74(1-2):125-137.
    120.Kaiser K,Kaupenjohann M,Zech W.Sorption of dissolved organic carbon in soils : effects of soil sample storage , soil-to-solution ratio , and temperature[J].Geoderma,2001,99(3-4):317-328.
    121.Kennedy A C,Smith K L.Soil microbial diversity and the sustainability of agricultural soil[J].Plant and Soil,1995,170:78-86.
    122.Lal R,Reddy M V.Soil management and soil biotic processes[M].Management of tropical agroecosystems and the beneficial soil biota.1999:67-81.
    123.Lefroy R D B,Blair G J,Strong W M.Changes in soil organic matter with cropping as measured by organic C fractions and 13C natural isotope abundance[J].Plant and Soil,1993,156:399-402.
    124.Liang B C,Mackenzie A F,Schnitzer M,et al.Management-induced change in labile soil organic matter continuous corn in eastern canadian soils[J].Biol.Feril.Soils.,1998,26:88-94.
    125.Lluang L W . Evaluation of Chinese chestnut cultivars for resistance to Cryphonectria parasitica[J].PlantDisease,1996,(1):45-47.
    126.MacArthur R.Fluctuations of animal populations and a measure of community stability[J].Ecolog,1955,36:533-537.
    127.McGill W B,Cannon K R,Robertson J A,et al.Dynamics of soil microbial biomass and water-soluble organic C in Berton L after 50 years of cropping to two rotations[J].Can.J.Soil Sci.,1986,66:1-19.
    128.Michalcewicz W.Effects of selected herbicides on biomass and abundance of soil microorganisms[J].Rozprawy Akademia Rolniczaw Szczecinie,2001,200(92):150-159.
    129.Powlson D S.Measurement of soil microbial biomass provides an early indication of changes in total organic matter due to straw incorporation[J].Soil Biol Bichem,1987,19:159-164.
    130.Pereira-Lorenzo S,Ramos-Cabrer A M,Diaz-Hernandez M B,et al.Chemical composition of chestnut cultivars from Spain[J].Scientia Horticulturae,2006,(107):306-314.
    131.Schnurer J,clarholm M,Rosswall T.Microbial biomass and activity in agricultural soil with different organic matter contents[J].Soil Biol.Biochem.,1985,17:611-618.
    132.Sorensen L H.Organic matter and microbial biomass in a soil incubated in the field for 20 years with 14C-labelled barley straw[J].Soil Biol.Biochem.,1987,19:39-42.
    133.Sparling G P.Soil microbial biomass activity and nutrient cycling an indicator of soil health[J].CABI,1997,97-119.
    134.Vance E D,Brookes P C,Jenkinson D C.An extraction method for measuring soil microbial biomass C[J].Soil Biol.Biochern.,1987,19:703-707.
    135.Wandet M M,Traina S J,Stinner B R,et al.The effects of organic and conventional management on biologically active soil organic matter fraction[J].Soil Sci.Am.J.,1994,58:1130-1139.
    136.Wardle D A,Nicholson K S.Synergetic effects of grassland species on soil microbial and activity:implications for ecosystem - level effects of enriched plant diversity Funco[M].Ecol,1996,10:410-416.
    137.Woods L E,Schuman G E.Influence of soil organic matter concentration on carbon and nitrogen activity[J].Soil Sci.Am.j.,1986,50:1241-1245.
    138.Xu Q F,Jiang P K.Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands[J].Pedosphere,2005,15(1):33-40.
    139.Xu Q F,Xu J M.Changes in soil carbon pool by plantation substituted for native forest[J].Pedosphere,2003,13(3):271-278.
    140.You S J,Yin Y J,Allen H E.Partitioniong of organic matter in soils:effects of pH and water ratio[J].The Science of the Total environment,1999,227(2-3):155-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700