琼东南盆地泄压带特征及其与天然气成藏耦合关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
琼东南盆地是南海北部陆缘的富油气盆地,同时也是一个典型的高温高压盆地。早期多幕的裂陷活动叠加晚期的快速沉积和沉降,造成了该盆地独特的温压环境和埋藏条件,油气的运移聚集过程非常复杂。该盆地自从在环崖南凹陷地区发现YC13-1、YC13-4和YC13-6气田以来,虽然陆续在其周缘和盆地东部地区发现了一些气藏和含气构造,但至今尚未有新的重大突破,其根本原因可能在于对该盆地超压环境下的油气富集规律,尤其是超压系统分布与油气聚集的关系还了解得不够。异常超压的发育不仅会造成盖层的水力破裂,致使早期聚集的油气发生散失,还会引起天然气运移相态和动力的改变,主要表现为天然气以水溶相运移致使盖层水力封闭失效而无法成藏,因此水溶气只有析出为游离气才能聚集成藏。
     由此可见,超压系统边缘或内部地层压力释放带,即泄压带,是油气聚集的有利场所。本文即是从泄压带发育的微观与宏观地质特征入手,根据泄压带的微观成岩响应特征和宏观测井响应特征来识别和划分泄压带,并综合运用地震速度超压预测和盆地模拟技术,研究泄压带的宏观分布和演化特征,在此基础上进一步探讨泄压带发育与天然气成藏的耦合关系,建立一个考虑了水溶气离溶聚集成藏的天然气成藏模式。本文的主要研究内容和取得的认识有以下几点:
     (1)根据储层砂岩中成岩作用所揭示的微观流体活动信息来识别泄压带。通过薄片观察和阴极发光观察,发现崖城地区硅质胶结现象非常普遍,可能发生多期胶结,主要为裂纹充填胶结和石英加大,且石英加大更加明显,在YC13-1部位主要分布于陵水组和崖城组内,在YC35-1部位则主要位于黄流组二段底部,且发育石英加大段的储层厚度基本在200m以上。沿2号断裂分布的钻井中虽然也发现了大量石英加大现象,但相对于西部而言,石英加大发育的层段都比较薄,主要位于陵水组和三亚组内。石英加大发育的层段,储层物性(孔隙度和渗透率)普遍很好,并且西部地区要优于东部地区,镜下观察到该现象主要是由碎屑颗粒发生溶蚀造成的。大量的石英加大和溶蚀孔隙发育,反映该部位曾发生过大规模的酸性热流体运移,同时也指示了泄压带的所在,即水溶气大量离溶的区带。另外,在西部地区较深部位的石英加大发育层段,常见有钾长石的钠长石化现象,交代的钠长石呈加大边状分布,可以指示有关高温流体运移的信息。粘土矿物异常转变的深度与泄压带的流体排放作用有着密切联系,也可指示泄压带的存在。应用有机质成熟度指标还可以识别泄压带附近的短期热异常。
     (2)琼东南盆地的压力系统结构可划分为三种类型:常压,传导型超压和复合型超压,相应地可识别出四种泄压带类型。常压型压力系统又可分为正常压实常压段和速度稳定常压段,后者又主要分布于3号断裂以南陆架区的莺黄组底部~梅山组,其厚度向陆坡方向呈减薄趋势。传导型超压系统在盆地西部主要沿1号断裂带分布,在中央坳陷区主要分布在超压系统边缘;复合型超压系统在中央坳陷广泛存在。Ⅰ型泄压带仅在盆地西部边缘沿1号断裂带分布,一般位于莺黄组底部,非有利油气聚集部位。Ⅱ型泄压带也是沿1号断裂带分布,是环崖南地区最为发育的类型,储层砂岩中发育大量的硅质胶结,指示其为有利的油气聚集部位。Ⅲ型泄压带处在深部复合型超压系统顶面,而Ⅳ型泄压带则处于深部超压系统的内部,发育大量石英次生加大说明其也是有利的油气运移部位。
     (3)应用地震层速度资料预测了全区超压系统的分布,该方法需考虑崖南地区普遍存在的速度稳定段对压力预测结果的影响,研究中采取分区分段建立正常压实趋势的方法对其进行了校正。预测结果显示,中央坳陷带深部沿陆坡带发育有多个成“串珠状”分布的超压中心,但相互之间并不孤立,而是逐渐过渡并连成一片,反映中央坳陷带地区整体发育一个超压系统。超压发育具有陆坡区强陆架区弱、西部强东部弱和向东传递趋势,反映盆地晚期加速沉降阶段陆坡体系快速向南推进和莺歌海盆地的超压传递对该盆地的压力分布格局有重要影响。超压顶面埋深在乐东—陵水凹陷主要位于2250~2500m(莺歌海组内)以下,在松南凹陷位于2500m(黄流组内)以下,在宝岛凹陷位于3500m(梅山—三亚组)以下,在长昌凹陷主要位于4500m(三亚组)以下。
     (4)应用盆地模拟方法研究了全区古压力场的演化特征,该方法需进行大量的模型调研和参数统计,数值模拟结果可用现今超压预测结果进行约束。模拟结果表明,中央坳陷带在崖城组晚期就已形成了乐东、陵水、宝岛和长吕四个强超压中心,且各具一定的孤立性,裂陷期内可大致分为东部和西部西个超压系统;陵二段至陵一段末期超压整体发育较强,之后经历了儿轮增压~泄压旋回,大约10.5Ma以来逐渐演变为西部一个超压系统,形成以乐东凹陷为最强超压中心并呈自西向东传递的趋势。盆地西部地区大致经历了三个半压力旋回,现今超压是地质历史时期最强的且仍呈增压趋势:盆地东部地区大致经历了三个压力旋回,现今整体仍呈泄压趋势。盆地经历的最早泄压发生在崖城组末期至陵三段末期,且西部更明显;第二次泄压发生在陵一段末期至三亚二段末期,泄压较强;第三次泄压发生在梅山组末期,为大幅泄压:第四次泄压发生在黄流组时期,为小幅泄压,并且盆地东部的泄压趋势一直维持至今。
     (5)根据现今超压预测和压力场演化模拟的结果,分析了泄压带的时空分布特征。现今中央坳陷带的超压顶面总体向南北斜坡带不断加深,且向北坡(陆坡带)方向发生偏移,说明北坡发育的断裂-砂体输导系统的泄压性能更好,因而北坡的油气聚集条件更优,是天然气运移的优势方向。模拟结果显示,在超压系统演化的过程中,松涛凸起的南坡、陵水低凸起、松南低凸起、陵南低凸起东部和北碓凸起等部位始终位于超压系统边缘或内部相对低势区,即要泄压带分布地区,且松涛凸起的南坡、陵水低凸起和松南低凸起的成藏条件更优。
     (6)根据中央坳陷带主力烃源岩的成熟史和生排烃史模拟,结合流体包裹体充注史分析,确定大然气的主成藏期。由于10.5Ma处在中央坳陷带斜坡区陵水组烃源岩大量生烃时期,此时崖城组烃源岩仍在大量生烃,深部的地层水在高温环境下可溶解大量的大然气;又该时期处在晚期泄压阶段,超压系统能量的释放必然伴随大量的物质迁移和温度降低,深部的水溶气沿泄压带运移到浅部并发生析离,从而在有利部位聚集成藏。所以10.5Ma以来应该是天然气的主成藏期,该时期比流体包裹体方法确定的充注时期稍早,是比较可信的。
     (7)分析泄压带演化与天然气成藏的耦合关系。泄压带内的天然气离溶成藏主要取决于压力、温度和溶解气量,必须满足两个条件:溶解气量足够多,溶解度变化量足够大。有利的泄压带应该是既能沟通深部水溶气和浅部储层,又能造成温压条件显著变化的区带。相对而言,Ⅱ型泄压带成藏条件最优,既有断裂沟通深部水溶气和浅部储层,又有温压条件的显著变化,因而流体运移最活跃。Ⅲ型泄压带次之,但分布最广。由于盆地西部10.5Ma以来处于不断增压的环境,泄压带在平面上变化比较宽缓,相同深度处甲烷溶解度变化很小,不利于水溶气离溶成藏,并且压力不断增强还会导致水溶气析出深度变浅。相对而言,盆地东部10.5Ma以来处于持续泄压的环境,在凸起边缘的断裂和砂体连通部位,压力梯度变化较大,相同深度处甲烷溶解度保持一定差值或差值不断增大,这对水溶气析出比较有利。
Qiongdongnan basin is rich in petroleum resources which located in northern South China Sea and typically characterized by high temperature and high pressure. The Superposition of the multi-episodic rifting events occured in the early stage and the rapid deposition and structural subsidence took place at the later stage led to a unique environment of temperature and pressure, and so the burial history. The processes of petroleum migration and accumulation are quite complicated. There has been no breakthroughs for a long time in the exploration of Qiongdongnan basin since the findings of YC13-1gas feild, YC13-4and YC13-6gas reservoir around the Yanan depression, although some gas beddings and gas-bearing structures were found around the Yanan depression or in the eastern basin. The primary cause may be the less understanding of the law of petroleum accumulation under overpressureed environment, especially the relationship between the distribution of hydrocarbon and the overpressure system. The development of overpressure would not only cause hydraulic ruptures in the cap rocks which leading to the loss of oil and gas accumulated in the early stage, but also change the migration phases and dynamics of the natural gas. Under high pressure and high temperature conditions, the gas would migrate in water-soluble phase and come to the failure of hydraulic sealing in caprocks. Thus, only by degasification can the water-soluble gas accumulate.
     Thus it can be seen, the zones with rapid pressure decreasing which is also called pressure discharging zones, locating at the edge or inside of the overpressure system, were the favourable sites for hydrocarbon accumulation. This study began with the microcosmic and macroscopic geology characteristics of the pressure discharging zone, distinguished and divided the discharging zone based on the diagenetic features and logging response, studied the macroscopic distribution and evolution by integrated application of overpressure prediction and basin modeling technology, furtherly discussed the coupling relationship between pressure discharging zone and hydrocarbon accumulation, then established a petroleum accumulation model which considered the degassing and accumulation of water-soluble gas and with a certain predictive feature. The main research contents and realizations achieved in this article are as follows:
     (1) Identify the pressure discharging zone according to the microscope information of fluid activities revealed by the diagenesis occured in the sandstone reservoir. By observation of thin sections and cathdoluminescence, it was found that the siliceous cementation phenomenon were very common in the Yacheng area and there may exist two stage of cementation, the first stage was mainly the cementation fillings in cracks, the second stage was mainly the quartz overgrowth which was more obvious than the first stage. The observed quartz overgrowth at the YC13-1structure was mainly in the Lingshui and Yacheng formations while at the YC35-1structure it mainly located at the bottom of the second member of Huangliu formation, the thickness of reservoir sections with quartz overgrowth were usually more than200m. Though the phenomenon of quartz overgrowth were also found in the wells distributed along the No.2fault, the setions were much thinner than that in west areas and mainly situated in the Lingshui and Sanya formation. The sections with quartz overgrowth phenomenon usually had good reservoir physical property (porosity and permeability) and were more common in western areas. By observation under microscope, we can see that the high porosity was mainly caused by the dissolution of detrital grains. Massive development of the quartz overgrowth and the dissolution pore usually means massive hot acid fluid flow and indicates the pressure discharging zone where the gas degassing occurred and large amount of water-soluble gas accumulated.
     In addition, the albitization of K-feldspar were also observed to frequently happen in the quartz overgrowth sections in the deeper layers, and the albite formed by metasomatism usually take a shape of thick overgrowth around the K-feldspar. Because this phenomenon was suggested only appear in the late stage of diagenesis, it may indicate the migration of high temperature fluid. The abnormal changes of clay minerals can also indicate the pressure discharging zone, it was usually caused by fluid flow near the pressure discharging zone. The maturity indictors of organic mater can also be used to identify the short-term thermal anomaly near the pressure discharging zone.
     (2) The structure of pressure system in Qiongdongnan basin can be divided into three types: normal pressure, transmission overpressure and compound overpressure, accordingly, four types of pressure discharging zones were indentified. The normal pressure system can be subdivided into a normal compaction section and a stable velocity section, the latter one mainly distributed from the bottom of Yinggehai-huangliu formation to the Meishan formation in the shelf area from the northen of No.3fault, thinning in the direction of continental slope. The transmission overpressure system distributed along the No.1fault zone in the western area and around the overpressure system in the central depression zone. The compound overpressure system exists widely in the central depression. The type I pressure discharging zone distributed only along the No.1fault zone and generally located in the bottom of the Ying-huang formaion, this type was not suitable for hydrocarbon accumulation for its bad conditions. The type Ⅱ pressure discharging zone also distributed along the No.1fault zone, and acted as the most important one among the four types around the Yanan area. Large amount of siliceous cementation were found in the reservoir sandstone, indicating that type Ⅱ was more favorable for petroleum accumulation. The type Ⅲ pressure discharging zone which located on top of the deep compound overpressure system was very common in the central depression. The type Ⅳ pressure discharging zone was located inside the deep overpressure system, great amount of quartz overgrowth developed locally in some sections inside the overpressure system, indicating that this type was also favorable for petroleum accumulation but not a primary type.
     (3) The distribution of the overpressure system in Qiongdongnan basin was predicted by integrated application of the seismic velocity data and pressure measurements, on the basis of logging analysis. The influence of the stable velocity section which widely developed in the Yanan area should first be calibrated. According to the calculation, many beaded overpressure centers along the continental slope had developed in the deep Central depression, they were not isolated but gradually transited into a huge overpressure system. The overpressure system were stronger along the continental slope and weaker on the continental shelf, and were stronger in the west than in the east, this may suggest that the quickly southward movement of the continental slope during the late accelerated deposition stage and the overpressure transmitting from the Yinggehai basin had significant influence on the present overpressure pattern and its evolution. The top of overpressure system in the Ledong-Lingshui sags were mainly below the depth of2250~2500m (within Yinggehai formation), while in the Songnan sag it was mainly below2500m (within Huangliu formation), in the Baodao sag it was mainly below2500m (within Meishan and Sanya formation), and in the Changchang sag it was mainly below4500m (within Sanya formation).
     (4) The evolution characteristics of the paleo-pressure field were studied by the application of numerical simulation methods. A lot of work referring to the model research and parametric statistics should be taken first. According to modeled results, the overpressre system in the central depression zone had already formed at the late stage of Yacheng formation, there were four overpressure centers located in the Ledong, Lingshui, Baodao and Changchang sags, with a certain isolation from each other. The overpressure systems got much strong during the stage of the second member and the first member of Lingshui Formation, then after several cycles of pressure evolution, a huge overpressure system much stronger than ever gradually formed in the west basin, with a strongest overpressure center in the Ledong sag and a trend transmitting from the west to the east. The earliest pressure discharging event occurred during the late stage of Yacheng formation and the late stage of the third member of Lingshui formation, and it's more obvious in west. The second pressure discharging event, which was much stronger, happened during the late stage of the first member of Lingshui formation and the late stage of the second member of Sanya formation. The third pressure discharging event, much stronger than ever, took place in late stage of Meishan formation. The fourth pressure discharging event, which was much weaker, happened during the stage of Huangliu formation, and continued to the current time in the eastern.
     (5) The spatial and temporal distribution of the pressure discharging zones were analyzed based on the prediction of current overpressure system and the modeled evolution of paleao geopressure field. According to the prediction results, the top surface of current overpressure system in the central depression just deepens toward both the northern and southern slopes, and the overpressure changes much faster in northern slope, indicating that pressure discharging condition in the north slope was much better, as well as the petroleum accumulation condition. This should be related to the contribution of fault-sand transmitting systems developed on the northern slop. According to the modeling results, several sites remained at the edge of the overpressure system during the evolution of overpressure system, they were Songnan low uplift, Beidiao uplift, the easterm of Lingnan low uplift, the southern of Yabei area and the southern slope of Songtao uplift, these sites should be the potential pressure discharging zones.
     (6) The primary stage of natural gas accumulation could be synthetically determined by modeling of the maturation history of organic matter, the hydrocarbon generation and expulsion histories of main source rocks, combined with the charging events revealed by fluid inclusion, it's concluded that the primary gas accumulation stage should since from10.5Ma. On the one hand,10.5Ma was during the peak gas generation stage of the source rocks in Lingshui formation on the slops of the Central Depression Zone, while the source rocks in Yacheng formation still generated massive hydrocarbon, thus massive gas could dissolved in the deep formation water in the high temperatures and high pressure environment. On the other hand,10.5Ma was at the beginning of the forth pressure discharging event, energy release of the overpressure system should cause a large number of mass transfer and temperature decreases, this was propitious to the segregations of deep water soluble gas migrating along the pressure discharging zone. In addition,10.5Ma was a little earlier than the hydrocarbon charging period determined by the fluid inclusion, which seems reasonable.
     (7) Analyze the coupling realationship between the evolution of pressure discharging zones and the gas accumulation. Accumulation of water soluble gas in the pressure discharging zones was totally determined by pressure, temperature and the amount of dissolved gas, whether enough amount of dissolved gas and enough changes in solubility were very important. The favorable discharging zones should be those not only link the deep water soluble gas and the shallow reservoir, but also cause significant changes in the temperature and pressure conditions. Relatively, the accumulation conditions of type II discharging zone was optimal, thus had more active fluid activity. The favorable sites of type III discharging zone were those near the Lingshui low uplift and the northern slop of Baodao sag, along the boundary faults and close to the normal pressure zone.
引文
[1]张功成,米立军,吴时国,等.深水区——南海北部大陆边缘盆地油气勘探新领域[J].石油学报,2007,28(2):15-21.
    [2]Zhu W L, Huang B J, Mi L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea[J]. AAPG Bulletin,2009,93(6):741-761.
    [3]王振峰,李绪深,孙志鹏,等.琼东南盆地深水区油气成藏条件和勘探潜力[J].中国海上油气,2011,23(1):7-13.
    [4]张迎朝,李绪深,陈志宏,等.琼东南盆地滨岸天然气成藏有利条件及勘探方向[J].石油天然气学报,2011,33(1):26-30.
    [5]朱伟林,张功成,高乐.南海北部大陆边缘盆地油气地质特征与勘探方向[J].石油学报,2008,29(1):1-9.
    [6]龚再升,李思田,杨甲明.南海北部大陆边缘盆地油气成藏动力学研究[M].北京:科学出版社,2004:339.
    [7]朱伟林,张功成,杨少坤.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007:391.
    [8]叶加仁,王连进,邵荣.油气成藏动力学中的流体动力场[J].石油与天然气地质,1999,20(2):86-89.
    [9]解习农,李思田,刘晓峰.异常压力盆地流体动力学[M].武汉:中国地质大学出版社,2006:206.
    [10]朱芳冰.莺—琼盆地独特的流体动力场及其成烃模式[J].地质科技情报,2003,22(1):75-78.
    [11]康永尚,张一伟.油气成藏流体动力学[M].北京:地质出版社,1999:120.
    [12]Hubbert M K. Entrapment of petroleum under hydrodynamic conditions [J]. AAPG Bulletin,1953,37(8):1954-2026.
    [13]罗晓容.油气运聚动力学研究进展及存在问题[J].天然气地球科学,2003,14(5):337-346.
    [14]孙明亮,柳广弟,李剑.超压盆地内剩余压力梯度与天然气成藏的关系[J].中国石油大学学报(自然科学版),2008,32(3):19-22.
    [15]柳广弟,孙明亮.剩余压力差在超压盆地天然气高效成藏中的意义[J].石油与天然气地质,2007,28(2):203-208.
    [16]Fertl W H, Chapman R E, Hotz R F. Studies in Abnormal Pressures[G]. Netherlands: Elsevier Science,1994:454.
    [17]Law B E, Ulmishek G F, Slavin V I. Abnormal Pressures in Hydrocarbon Environments[G]. Tulsa, Oklahoma, U.S.A.:American Association of Petroleum Geologists,1998:258.
    [18]Roberts W H, Cordell R J. Problems of Petroleum Migration[G]. Oklahoma:American Association of Petroleum Geologists,1980:270.
    [19]张启明,董伟良.中国含油气盆地中的超压体系[J].石油学报,2000,21(6):1-11.
    [20]张凤奇.库车前陆盆地流体动力特征、演化及在油气成藏中的作用[D].西北大学,2011.
    [21]Coustau H. Formation waters and hydrodynamics[J]. Journal of Geochemical Exploration, 1977,63(7):213-241.
    [22]Powley D E. Pressures and hydrogeology in petroleum basins[J]. Earth-Science Reviews, 1990,29(1):215-226.
    [23]Bethke C M, Reed J D, Oltz D F. Long-range petroleum migration in the Illinois basin[J]. AAPG Bulletin,1991,75(5):925-945.
    [24]Leonard R C. Distribution of sub-surface pressure in the Norwegian Central Graben and applications for exploration [A]. In:Parker J R, eds. Petroleum Geology Conference series Fluids:migration, overpressure and diagenesis[C]. London:Geological Society of London,1993,1295-1303.
    [25]Hanor J S, Sacsen R. Evidence for large-scale vertical and lateral migration of formation waters, dissolved salt, and crude oil in the Louisiana Gulf Coast[A]. In:Schumacher D, Perkins B F, eds. Gulf Coast oils and gases:Their characteristics, origin, distribution, and exploration and production significance[C]. Texas:Earth Enterprises Inc,1990,283-296.
    [26]刘震,曾宪斌,张万选.沉积盆地地温与地层压力关系研究[J].地质学报,1997,71(2):180-185.
    [27]Barker C. Aquathermal pressuring-Role of temperature in development of abnormal-pressure zones[J]. AAPG Bulletin,1972,56(10):2068-2071.
    [28]Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990,74(1):1-12.
    [29]陈红汉,董伟良,张树林,等.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质,2002,23(3):207-211.
    [30]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力——以鄂尔多斯盆地上古生界深盆气藏为例[J].中国科学(D辑:地球科学),2003,33(7):679-685.
    [31]王金志,杨少武,蒋森堡,等.流体包裹体热动力学模拟技术的古压力恢复方法及应注意的问题[J].中国石油勘探,2008,13(1):44-47.
    [32]李善鹏,邱楠生,曾溅辉.利用流体包裹体分析东营凹陷古压力[J].东华理工学院学报(自然科学版),2004,27(3):209-212.
    [33]Dubessy J, Buschaert S, Lamb W, et al. Methane-bearing aqueous fluid inclusions:Raman analysis, thermodynamic modelling and application to petroleum basins[J]. Chemical Geology,2001,173(1-3):193-205.
    [34]Teinturier S, Pironon J, Walgenwitz F. Fluid inclusions and PVTX modelling:examples from the Garn Formation in well 6507/2-2, Haltenbanken, Mid-Norway [J]. Marine and Petroleum Geology,2002,19(6):755-765.
    [35]Thiery R, Pironon J, Walgenwitz F, et al. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthemometry and confocal laser scanning microscopy:Inferences from applied thermodynamic of oils[J]. Marine and Petroleum Geology,2002,19(7):847-859.
    [36]Pironon J. Fluid inclusions in petroleum environments:analytical procedure for PTX reconstruction[J]. Acta Petrologica Sinica,2004,20(6):1333-1342.
    [37]Liu D H, Xiao X M, Mi J K, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software--a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003,20(1):29-43.
    [38]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:290.
    [39]刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,31(18):1432-1436.
    [40]Bekele E B, Dodds K. Basin-scale modeling:Concepts and examples of analyzing mechanisms of overpressure generation[A]. In:SEG EAGE Summer Research Workshop, eds. Geopressure:Conceptual Advances, Applications, and Future Challenges[C]. Galveston, Texas:Society of Exploration Geophysicists' Research Committee, the European Association of Geoscientists & Engineeers,2002.
    [41]Hantschel T, Kauerauf A I. Fundamentals of Basin and Petroleum Systems Modeling [M]. Berlin Heidelberg, Germany:Springer Verlag,2009:476.
    [42]解习农,王明君,李思田.盆地流体模拟在石油勘探中的应用——以莺-琼盆地为例[J].地学前缘,1999,6(S1):8.
    [43]邱楠生.古压力恢复与天然气成藏关系——以昌潍坳陷潍北凹陷为例[J].天然气工业,2006,26(10):12-14.
    [44]肖军,王华,郭齐军,等.南堡凹陷温度场、压力场及流体势模拟研究——基于Basin2盆地模拟软件[J].地质科技情报,2003,22(1):67-74.
    [45]Bitzer K, Ayora C. Modeling episodic dewatering and evolution of fluid pressure/total load ratio (lambda) in a sedimentary basin[J]. Journal of Geochemical Exploration,2000,69-70: 569-573.
    [46]李善鹏,邱楠生.利用盆地模拟方法分析昌潍坳陷古压力[J].新疆石油学院学报,2003,15(4):5-8.
    [47]陈荷立,真柄钦次.压实与流体运移(实用石油地质学)[M].北京:石油工业出版社,1981:223.
    [48]刘福宁.异常高压区的古沉积厚度和古地层压力恢复方法探讨[J].石油与天然气地质,1994,15(2):180-185.
    [49]邹海峰.大港探区前第三系古流体和古温压特征及演化[D].长春:吉林大学,2000.
    [50]刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-24.
    [51]Pennebaker E S. Seismic data indicate depth, magnitude of abnormal pressure[J]. World Oil,1968,166(7):73-78.
    [52]Magara K. Compaction and migration of fluids in miocene mudstone, nagaoka plain, Japan[J]. AAPG Bulletin,1968,52(12):2466-2501.
    [53]Eaton B A. Graphical method predicts geopressures worldwide[J]. World Oil,1976,183(1): 100-104.
    [54]Eaton B A. The effect of overburden stress on geopressure prediction from well logs [J]. Journal of Petroleum Technology,1972,24(8):929-934.
    [55]Fillippone W R. Estimation of formation parameters and the prediction of overpressures from seismic data[J]. Geophysics,1983,48(4):482-483.
    [56]Fillippone W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[A]. In:OTC, eds. Offshore Technology Conference[C]. Houston, Texas:OTC,1979, 2667-2676.
    [57]Hottmann C E, Johnson R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology,1965,17(6):717-722.
    [58]刘福宁,杨计海,温伟明.琼东南盆地地压场与油气运移[J].中国海上油气(地质),1994,8(6):3-16.
    [59]Carcione J M, Gangi A F. Non-equilibrium compaction and abnormal pore-fluid pressures: effects on rock properties 1[J]. Geophysical Prospecting,2001,48(3):521-537.
    [60]Zahid K M, Uddin A. Influence of overpressure on formation velocity evaluation of Neogene strata from the eastern Bengal Basin, Bangladesh[J]. Journal of Asian Earth Sciences,2005,25(3):419-429.
    [61]刘斌,段光贤.NaCl-H20溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [62]Zhang Y, Frantz J D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions[J]. Chemical Geology,1987,70(1):2659-2668.
    [63]柳少波,顾家裕.包裹体在石油地质研究中的应用与问题讨论[J].石油与天然气地质,1997,18(4):68-73.
    [64]Fabre D, Oksengorn B. Pressure and Density Dependence of the CH4 and N2 Raman Lines in an Equimolar CH4/N2 Gas Mixture[J]. Applied Spectroscopy,1992,46(3):468-471.
    [65]Seitz J C, Pasteris J D, Chou I M. Raman spectroscopic characterization of gas mixtures; I. Quantitative composition and pressure determination of CH4, N2 and their mixtures[J]. American Journal of Science,1993,293(4):297-321.
    [66]Seitz J C, Pasteris J D, Chou I M. Raman spectroscopic characterization of gas mixtures; II. Quantitative composition and pressure determination of the CO2-CH4 system[J]. American Journal of Science,1996,296(6):577-600.
    [67]陈勇,周瑶琪,倪培.一种获取包裹体内压的新方法——二氧化碳拉曼光谱法[J].岩矿测试,2006,25(3):211-214.
    [68]陈勇,周瑶琪,颜世永,等.激光拉曼光谱技术在获取流体包裹体内压中的应用及讨论[J].地球学报,2006,27(1):69-73.
    [69]陈勇,Ernst A J B.流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向[J].地质论评,2009,55(6):851-861.
    [70]郑海飞,乔二伟,杨玉萍,等.拉曼光谱方法测量流体包裹体的内压及其应用[J].地学前缘,2009,16(1):39-44.
    [71]Chen H H, Wang J H, Xie Y H, et al. Geothermometry and geobarometry of overpressured environments in Qiongdongnan basin, South China Sea[J]. Geofluids,2003,3(3):177-187.
    [72]潘立银,倪培,欧光习,等.油气包裹体在油气地质研究中的应用——概念,分类,形成机制及研究意义[J].矿物岩石地球化学通报,2006,25(1):19-28.
    [73]单秀琴,李剑,胡国艺,等.利用流体包裹体分析和计算油气的充注史和古流体势——以鄂尔多斯盆地榆林地区上古生界为例[J].石油与天然气地质,2007,28(2):159-165.
    [74]陶士振.包裹体应用于油气地质研究的前提条件和关键问题[J].地质科学,2004,39(1):77-91.
    [75]葛云锦,陈勇,周瑶琪.流体包裹体成分测定的低温相变和显微拉曼光谱分析技术研究进展[J].岩矿测试,2008,27(3):207-210.
    [76]张厚福,徐兆辉,王露.油气藏研究的发展趋势预测[J].石油学报,2010,31(1):165-172.
    [77]Allwardt J R, Michael G E, Shearer C R, et al.2D modeling of overpressure in a salt withdrawal basin, Gulf of Mexico, USA[J]. Marine and Petroleum Geology,2009,26(4): 464-473.
    [78]Schegg R, Cornford C, Leu W. Migration and accumulation of hydrocarbons in the Swiss Molasse Basin:Implications of a 2D basin modeling study [J]. Marine and Petroleum Geology,1999,16(6):511-531.
    [79]米石云.盆地模拟技术研究现状及发展方向[J].中国石油勘探,2009,14(2):55-58.
    [80]孙永传,陈红汉,李蕙生,等.莺—琼盆地YA13-1气田热流体活动与有机/无机成岩响应[J].地球科学——中国地质大学学报,1995,20(3):276-282.
    [81]解习农,成建梅,孟元林.沉积盆地流体活动及其成岩响应[J].沉积学报,2009,27(5):863-871.
    [82]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11- 21.
    [83]郝石生,张振英.天然气在地层水中的溶解度变化特征及地质意义[J].石油学报,1993,14(2):12-22.
    [84]邹才能,陶士振,朱如凯,等.“连续型”气藏及其大气区形成机制与分布——以四川盆地上三叠统须家河组煤系大气区为例[J].石油勘探与开发,2009,36(3):307-319.
    [85]马启富,陈斯忠,张启明.超压盆地与油气分布[M].北京:地质出版社,2000:254.
    [86]徐思煌,李松峰,袁彩萍.珠江口盆地惠州凹陷古近系水溶气资源潜力[J].石油勘探与开发,2012,39(2):181-188.
    [87]维索茨基и B,戴金星等译.天然气地质学[Z].北京:石油工业出版社,1986:238.
    [88]高军,郑大庆,郭天民.高温高压下甲烷在碳酸氢钠溶液中溶解度测定及模型计算[J].高校化学工程学报,1996,10(4):345-350.
    [89]高军,郑大庆,郭天民.CO2在碳酸氢钠水溶液中溶解度的研究[J].天然气化工,1998,23(4):54-57.
    [90]Dhima A, de Hemptinne J C, Moracchini G. Solubility of light hydrocarbons and their mixtures in pure water under high pressure[J]. Fluid Phase Equilibria,1998,145(1):129-150.
    [91]Siqueira Campos C E P, Penello J R, Pellegrini Pessoa F L, et al. Experimental measurement and thermodynamic modeling for the solubility of methane in water and hexadecane[J]. Journal of Chemical & Engineering Data,2010,55(7):2576-2580.
    [92]范泓澈,黄志龙,袁剑,等.富甲烷天然气溶解实验及水溶气析离成藏特征[J].吉林大学学报(地球科学版),2011,41(4):1033-1039.
    [93]Duan Z, Mao S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar[J]. Geochimica Et Cosmochimica Acta,2006,70(13):3369-3386.
    [94]谢玉洪,刘平,黄志龙.莺歌海盆地高温超压天然气成藏地质条件及成藏过程[J].天然气工业,2012,32(4):1-5.
    [95]Price L C. Aqueous solubility of petroleum as applied to its origin and primary migration[J]. AAPG Bulletin,1976,60(2):213-244.
    [96]刘朝露,李剑,方家虎,等.水溶气运移成藏物理模拟实验技术[J].天然气地球科学,2004,15(1):32-36.
    [97]李伟,秦胜飞,胡国艺,等.水溶气脱溶成藏——四川盆地须家河组天然气大面积成藏的重要机理之一[J].石油勘探与开发,2011,38(6):662-670.
    [98]张占国,卞从胜.水溶气的类型特征及成藏的主控因素探讨[J].天然气地球科学,2008,19(6):876-881.
    [99]王青,张枝焕,钟宁宁,等.水溶—释放作用对气藏形成的影响——以克拉2气田为例[J].天然气工业,2004,24(6):18-21.
    [100]Ru K, Pigott J D. Episodic rifting and subsidence in the South China Sea[J]. AAPG Bulletin,1986,70(9):1136-1155.
    [101]周蒂,陈汉宗,吴世敏,等.南海的右行陆缘裂解成因[J].地质学报,2002,76(2):180—190.
    [102]Xia B, Zhang Y, Cui X J, et al. Understanding of the geological and geodynamic controls on the formation of the South China Sea:A numerical modelling approach[J]. Journal of Geodynamics,2006,42(1-3):63-84.
    [103]袁玉松,杨树春,胡圣标,等.琼东南盆地构造沉降史及其主控因素[J].地球物理学报,2008,51(2):376-383.
    [104]Zhu M Z, Graham S, Mchargue T. The Red River Fault zone in the Yinggehai basin, South China Sea[J]. Tectonophysics,2009,476(3-4):397-417.
    [105]龙根元,吴世敏,刘兵,等.琼东南盆地半地堑特征及其动力学探讨[J].大地构造与成矿学,2010,34(1):48-54.
    [106]任建业,雷超.莺歌海—琼东南盆地构造-地层格架及南海动力变形分区[J].地球物理学报,2011,54(12):3303-3314.
    [107]张中杰,刘一峰,张素芳,等.琼东南盆地地壳伸展深度依赖性及其动力学意义[J].地球物理学报,2010,53(1):57-66.
    [108]李亚敏,施小斌,徐辉龙,等.琼东南盆地古近纪基底断裂的活动特征分析[J].热带海洋学报,2011,30(6):74-83.
    [109]朱继田,裴健翔,孙志鹏,等.琼东南盆地新构造运动及其对晚期油气成藏的控制[J].天然气地球科学,2011,22(4):649-656.
    [110]赵民,张晓宝,吉利明,等.琼东南盆地构造演化特征及其对油气藏的控制浅析[J].天然气地球科学,2010,21(3):494-502.
    [111]李亚敏,施小斌,徐辉龙,等.琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J].吉林大学学报(地球科学版),2012,42(1):47-57.
    [112]贺超,龙根元,吴世敏.琼东南盆地地壳伸展因子计算及其伸展模式探讨[J].大地构造与成矿学,2012,36(2):204-208.
    [113]雷超,任建业,裴健翔,等.琼东南盆地深水区构造格局和幕式演化过程[J].地球科学(中国地质大学学报),2011,36(1):151-162.
    [114]源能,吴景富.琼东南-珠江口盆地深水区构造样式及其分布特征[J].天然气工业,2011,31(8):32-37.
    [115]宋洋,赵长煜,张功成,等.南海北部珠江口与琼东南盆地构造-热模拟研究[J].地球物理学报,2011,54(12):3057-3069.
    [116]何云龙,解习农,李俊良,等.琼东南盆地陆坡体系发育特征及其控制因素[J].地质科技情报,2010,29(2):118-122.
    [117]林海涛,任建业,雷超,等.琼东南盆地2号断层构造转换带及其对砂体分布的控制[J].大地构造与成矿学,2010,34(3):308-316.
    [118]张功成,刘震,米立军,等.珠江口盆地—琼东南盆地深水区古近系沉积演化[J].沉积学报,2009,27(4):632-641.
    [119]Yin X Y, Ren J Y, Lei C, et al. Postrift rapid subsidence characters in Qiongdongnan basin, South China Sea[J]. Journal of Earth Science,2011,22(2):273-279.
    [120]Su L, Zheng J J, Chen G J, et al. The upper limit of maturity of natural gas generation and its implication for the Yacheng formation in the Qiongdongnan Basin, China[J]. Journal of Asian Earth Sciences,2012,54-55:203-213.
    [121]张启明,胡忠良.莺-琼盆地高温高压环境及油气运移机制[J].中国海上油气(地质),1992,6(1):1-9.
    [122]陈红汉,付新明,杨甲明.莺-琼盆地YA13-1气田成藏过程分析[J].石油学报,1997,18(4):32-37.
    [123]Chen H H, Li S T, Sun Y C, et al. Two petroleum systems charge the YA13-1 gas field in Yinggehai and Qiongdongnan basins, South China Sea[J]. AAPG Bulletin,1998,82(5A): 757-772.
    [124]谢玉洪,童传新.崖城13-1气田天然气富集条件及成藏模式[J].天然气工业,2011,31(8):1-5.
    [125]Xie Y H, Wang Z F, Tong C X. Petroleum geology of Yacheng 13-1, the largest gas field in China's offshore region[J]. Marine and Petroleum Geology,2008,25(4-5):433-444.
    [126]Tissot B P, Welte D H, Schwartz W. Petroleum Formation and Occurrence[M].2nd ed. Berlin Heidelberg:Springer-Verlag,1984:699.
    [127]Cai X Y. Overpressure development and oil charging in the central Junggar Basin, northwest China:Implication for petroleum exploration[J]. Science in China Series D-Earth Sciences,2009,52(11):1791-1802.
    [128]郝芳,金之钧,邹华耀.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005:406.
    [129]朱光辉,陈刚,刁应护.琼东南盆地温压场特征及其与油气运聚的关系[J].中国海上油气(地质),2000,14(1):30-37.
    [130]李绪深,欧本田,李强,等.莺-琼盆地三维压力场和油气运移[J].地质科技情报,2005,24(3):70-74.
    [131]朱芳冰.莺歌海盆地地层压力特征及其石油地质意义[J].中国海上油气(地质),2000,14(4):248-252.
    [132]孔敏.琼东南盆地油气运移动力特征分析[D].武汉:中国地质大学,2010.
    [133]Casabianca D, Cosgrove J. A new method for top seals predictions in high-pressure hydrocarbon plays[J]. Petroleum Geoscience,2012,18(1):43-57.
    [134]龚再升.中国近海大油气田[M].北京:石油工业出版社,1997:223.
    [135]茹克.南海北部边缘叠合式盆地的发育及其大地构造意义[J].石油与天然气地质,1988,9(1):22-31.
    [136]姚伯初.南海海盆新生代的构造演化史[J].海洋地质与第四纪地质,1996,16(2):1-13.
    [137]张启明,郝芳.莺—琼盆地演化与含油气系统[J].中国科学:D辑,1997,27(2):149- 154.
    [138]李思田,林畅松,张启明,等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J].科学通报,1998,43(8):797-810.
    [139]李绪宣,钟志洪,董伟良,等.琼东南盆地古近纪裂陷构造特征及其动力学机制[J].石油勘探与开发,2006,33(6):713-721.
    [140]谢文彦,张一伟,孙珍,等.琼东南盆地新生代发育机制的模拟研究[J].地学前缘,2008,15(2):232-241.
    [141]蔡周荣,刘维亮,万志峰,等.南海北部新生代构造运动厘定及与油气成藏关系探讨[J].海洋通报,2010,29(2):161-165.
    [142]于俊峰,孙志鹏,朱继田.琼东南盆地松南凹陷新生代重要构造幕及表现形式[J].天然气地球科学,2010,21(2):281-288.
    [143]张启明.莺—琼盆地的演化与构造一热体制[J].天然气工业,1999,19(1):12-18.
    [144]帅燕华,张水昌,陈建平,等.海相成熟干酪根生气潜力评价方法研究[J].地质学报,2008,82(8):1129-1134.
    [145]李友川,张功成,傅宁.南海北部深水区油气生成特性研究[J].中国海上油气,2010,22(6):375-381.
    [146]Ramseyer K, Boles J R, Lichtner P C. Mechanism of plagioclase albitization[J]. Journal of Sedimentary Petrology,1992,62(3):349-356.
    [147]金博,刘震,李绪深,等.莺歌海盆地泥岩稳定压实带成因及石油地质意义[J].西安石油大学学报(自然科学版),2007,22(3):9-13.
    [148]Shi W, Xie Y, Wang Z, et al. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin[J]. Journal of Asian Earth Sciences,2013,66(8):150-165.
    [149]陈欢庆,朱筱敏,张功成,等.琼东南盆地深水区古近系陵水组输导体系特征[J].地质学报,2010,84(1):138-148.
    [150]卢骏,刘震,张功成,等.南海北部小型海陆过渡相断陷地震相分析及沉积充填演化史研究——以琼东南盆地崖南凹陷崖城组为例[J].海洋地质前沿,2011,27(7):13-22.
    [151]郝诒纯,陈平富,万晓樵,等.南海北部莺歌海—琼东南盆地晚第三纪层序地层与海平面变化[J].现代地质,2000,14(3):237-245.
    [152]Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the triassic[J]. Science,1987,235(4793):1156-1167.
    [153]薛万俊,霍春兰,司桂贤.南海中北部晚第四纪古气候及古海洋学[C].武汉:中国地质大学出版社,1991.141.
    [154]He L J, Wang K L, Xiong L P, et al. Heat flow and thermal history of the South China Sea[J]. Physics of the Earth and Planetary Interiors,2001,126(3-4):211-220.
    [155]袁玉松.南海北部陆缘深水区构造—热演化与烃源岩成熟度史研究[D].北京:中国科学院地质与地球物理研究所,2007.
    [156]Shi X B, Qiu X L, Xia K Y, et al. Characteristics of surface heat flow in the South China Sea[J]. Journal of Asian Earth Sciences,2003,22(3):265-277.
    [157]Yuan Y S, Zhu W L, Mi L J, et al. "Uniform geothermal gradient" and heat flow in the Qiongdongnan and Pearl River Mouth basins of the South China Sea[J]. Marine and Petroleum Geology,2009,26(7):1152-1162.
    [158]Hu S B, He L J, Wang J Y. Heat flow in the continental area of China:a new data set[J]. Earth and Planetary Science Letters,2000,179(2):407-419.
    [159]White N, Thompson M, Barwise T. Understanding the thermal evolution of deep-water continental margins[J]. Nature,2003,426(6964):334-343.
    [160]陈发景,汪新文,陈昭年,等.伸展断陷盆地分析[G].北京:地质出版社,2004:282.
    [161]傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报,2007,28(3):32-38.
    [162]何家雄,陈胜红,崔莎莎,等.南海北部大陆边缘深水盆地烃源岩早期预测与评价[J].中国地质,2009,26(2):404-416.
    [163]秦建中,郑伦举,腾格尔.海相高演化烃源岩总有机碳恢复系数研究[J].地球科学(中国地质大学学报),2007,32(6):853-860.
    [164]周总瑛.烃源岩演化中有机碳质量与含量变化定量分析[J].石油勘探与开发,2009,36(4):463-468.
    [165]Burnham A K, Sweeney J J. A chemical kinetic-model of vitrinite maturation and reflectance[J]. Geochimica Et Cosmochimica Acta,1989,53(10):2649-2657.
    [166]Burnham A K, Sweeney J J. Reply to comments by S. B. Nielsen and T. Barth on "A chemical kinetic model of vitrinite maturation and reflectance"[J]. Geochimica Et Cosmochimica Acta,1991,55(2):643-644.
    [167]Sweeney J J, Burnham A K. Evaluation of a simple-model of vitrinite reflectance based on chemical-kinetics[J]. AAPG Bulletin,1990,74(10):1559-1570.
    [168]Burnham A K. A simple kinetic model of petroleum formation and cracking (LLNL Report UCID-21665)[R]. CA (USA):Lawrence Livermore National Laboratory,1989.
    [169]黄保家,李里,黄合庭.琼东南盆地宝岛北坡浅层天然气成因与成藏机制[J].石油勘探与开发,2012,39(9):530-536.
    [170]范泓澈,黄志龙,袁剑,等.高温高压条件下甲烷和二氧化碳溶解度试验[J].中国石油大学学报(自然科学版),2011,35(2):6-11,19.
    [171]Price L C, Blount C W, Gowan D M, et al. Methane solubility in brines with application to the geopressured resource[A]. In:Bebout D G, Bachman A L, eds. Geopressured-geothermal energy, US Gulf Coast[C]. Baton Rouge, LA, USA:Louisiana Geological Survey, Louisiana State University, U.S. Department of Energy,1981,205-214.
    [172]龚再升,李思田,谢泰俊.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997:534.
    [173]李友川,邓运华,张功成,等.南海北部第三系海相烃源岩[J].石油学报,2011,32(2):219-225.
    [174]蔡李梅,陈红汉,李纯泉,等.济阳坳陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质,2009,30(1):17-25.
    [175]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊-陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-230,234.
    [176]李兆奇,陈红汉,刘惠民,等.流体包裹体多参数综合划分东营凹陷沙三段油气充注期次及充注时期确定[J].地质科技情报,2008,27(4):69-74.
    [177]陈红汉.油气成藏年代学研究进展[J].石油与天然气地质,2007,28(2):143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700