用户名: 密码: 验证码:
固体氧化物燃料电池的传热传质数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对固体氧化物燃料电池(SOFC)进行了理论分析。考虑阴阳极极化和欧姆极化,计算分析了温度、电流密度对电压、极化的影响和组分浓度、气体利用率对电池电动势和开路电压的影响。
     以氢为燃料的平板式SOFC为研究对象,发展了三维的CFD模型。模型中采用质量、能量、动量和组分守恒方程描述电池内的流动、传热和化学组分传递等物理过程,耦合电化学动力学反应方程,建立数学模型。研究的区域包括燃料流道、空气流道、阳极和阴极、电解质和联接器的整个燃料电池的组成部件。应用FLUENT软件分别对稳态和非稳态进行了模拟,分析了电池参数对电池内部速度、温度和浓度的分布影响以及温度、浓度的分布随时间变化的过程,比较不同流场设计对燃料电池的影响。
According to the working principle of solid oxide fuel cell (SOFC) and its structures, the theory of SOFC is analyzed based knowledge of several disciplines such as fluid dynamics, heat and mass transfer, and electrochemistry. The cell theoretic potential is calculated by Nernst's equation and the open-circuit voltage is computed with considering the ohmic losses and the activation overpotential. The fuel cell performance is analyzed when some parameter (temperature, average current density, pressure, and/or fuel utility) changes.
    A three-dimensional mathematical model is developed to investigate the fluid flow, heat transfer, species transport in the solid oxide fuel cell. The model simultaneously accounts for electrochemical kinetics, fluid dynamics, and heat and mass transport. The computation domain consists of gas channels, anode, cathode, electrolyte and interconnecter. A set of transport equations is solved with the volume control finite discrete computation fluid dynamics (CFD). The steady-state and the transient model are computed with a commercial CFD package, FLUENT and its preprocessor Gambit. The numerical results show the behavior of the flow characteristics, distributions of temperature and the chemical components and their developing with time. The impact of different flow design upon the cell is discussed.
引文
1.沈胜强,郝刚,阿布里提·阿不都拉.平板式固体氧化物燃料电池的初步研究.节能,2002(8):5-7
    2.Raymond George,Klaus Hassmann.燃料电池及其发展前景.新能源发电,2001(2):24-26
    3.魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展.稀有金属,2003,27(2):286-298
    4.黄振中.中国的燃料电池技术.世界科技研究与发展,2001,13(4):36-39
    5.鲁德宏.石油天然气利用的新途径——燃料电池.石油与天然气化工,2003,32(1):10-13
    6.莫志军,朱新坚.中国燃料电池发电技术展望.新能源技术,2003(4):37-39
    7.郭懋端.燃料电池的特性和应用(1).电子元器件应用,2002,4(1-2):6-8
    8.郭懋端.燃料电池的特性和应用(2).电子元器件应用,2002,4(3):5-7,57
    9.衣宝廉.燃料电池——高效、环境友好的发电方式.北京:化学工业出版社,2000
    10.迟克彬,李方伟,李影辉,万书宝,肖海成,孔繁华,张风华.固体氧化物燃料电池研究进展.天然气化工,2002(27):37-44
    11.李瑛,王林山.燃料电池.北京:冶金工业出版社,2000
    12.谭小耀,于如军,杨乃涛,于先进,朱彬.中温固体氧化物燃料电池性能的初步研究.山东工程学院学报,2001,15(3):1-3
    13.骆仲泱,张小丹,方梦祥,余春江,岑可法.高温燃料电池技术分析及前景展望.热力发电,2003(1):6-9
    14.江义,李文钓,王世忠.高温固体氧化物燃料电池(SOFC)进展.化学进展,1997,9(1):387
    15.钟理,陈建军.硫化氢固体氢化物燃料电池研究进展.现代化工,2003,23(1):9-11
    16. Perry M L, Fuller T F. J Electrochem. Soc, 2002, 149(7): S59-S67
    17. Hackerman N, Miller B, Kohl P. J Electrochem. Soc, 2002, 149(1): 1-8
    18.新型能源及环境材料(Advanced Materials Industry),news,Feb,2003,53
    19.李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景.能源技术,2001,22(4):158-161
    20. A.B.Stambouli, E.Traversa. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable
    
    Energy Reviews, 2002(6): 433-455
    21.江金国,陈文,徐庆,黄端平,郑锦霞.中低温固体氢化物燃料电池陶瓷阴极材料.陶瓷学报,2002,23(3):198-200
    22.陈坤尧,沈培康.燃料电池进展(上).电池,1994,24(2):74-77
    23.沈承,曹广益,朱新坚.熔融碳酸盐燃料电池(MCFC)系统建模与控制的研究现状与发展.能源技术,2001,22(5):204-205
    24.V.哈特科普夫古,潘毅群,吴刚,R.布莱姆.固体氧化物燃料电池在建筑冷热电联产中的应用.暖通空调HV&AC,2003,33(1):47-52
    25.张会生,伊亭,苏朋.混合装置中高温燃料电池建模综述.电源技术,2002,26(4):321-325
    26.林子敬,顾晔,张晓华.YSZ中温燃料电池的稳态模拟.电化学,2002,8(4):445-451
    27. C.G.Vayenas, P.G.Debenedettl, I.Yentekakls, L.L.Hegedus.Cross-flow,solid-state electrochemical reactors: a steady-state analysis. Ind. Eng.Chem. Fundam, 1985(24): 316-324
    28. S.Ahmed, C.MePheeter, R.Kumar. Thermal-hydraulic model of a monolithic solid oxide fuel cell. J.Electrochem.Soc, 1991, 9(138): 2712-2718
    29. J.R.Ferguson, J.M.Fiard, R.Herbin. Three-dimensional numerical for various geometries of solid oxide fuel cells. Journal of Power Sources, 1996(58): 109-122
    30. O.Melhua, S.K.Ratkje. A simultaneous solution of all transport processes in a solid oxide fuel cell. Denki Kagaku, 1996, 6(64): 662-673
    31. P.Costamagna, E.Arato, E.Achenbach, U.Reus. Fluid dynamic study of fuel cell devices: simulation and experimental validation. J.Power Sources, 1994(52): 243 -249
    32. R.J.Boersma, N.M.Sammes. Distribution of gas flow in internally manifolded solid oxide fuel cell stacks. J.Power Sources, 1997(66): 41-45
    33. J. Yuan, M. Rokni, B. Sunden. The development of heat transfer and gas flow modeling in the solid oxide fuel cells(SOFCs), in : S.C.Singhal, M.Dokiya(Eds.)in: Solid Oxide Fuel Cells(SOFC Ⅵ), The Electrochemical Society, Pennington, 1999, pp. 1099-1108
    34. Jinliang Yuan, Masoud Rokni, Bengt Sunden. Simulation of fully developed laminar heat and mass transfer in fuel cell duets with different cross-sections. International Journal of Heat and Mass Transfer, 2001(44): 4047-4058
    35. Jinliang Yuan, Masoud Rokni, Bengt Sunden. Three-dimensional Computational
    
    analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells. International Journal of Heat and Mass Transfer, 2003(46): 809-821
    36. J.Yuan, M.Rokni, B.Sunden. Buoyancy effects on developing laminar gas flow and heat transfer in a rectangular fuel cell duct. Numer.Heat Transfer, 2001(39): 801-822
    37. H.Yakabe, M.Hishinuma, M.Uratani, Y.Matsuzaki, I.Yasuda. Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 2000(86): 423-431
    38. Mitsunori Iwata, Takeshi Hikosaka, Makoto Morita, Toru Iwanari, Kohei Ito, Kazuo Onda, Yoshimi Esaki, Yoshinori Sakaki, Susumu Nagata. Performance analysis of planar-type unit SOFC considering current and temperature distributions. Solid State Ionics, 2000(132): 297-308
    39. E.Achenbach. Journal of Power Sources, 1994(49): 333
    40. E.Achenbach, U.Reus. The effect of mass flow distribution of the characteristics of a solid oxide fuel cell system, solid oxide fuel cells (SOFC Ⅵ), in Proceedings of the Sixth International Symposium, 1999, 99(19): 1125-1134
    41. R.J.Boersma, N.M.Sammes. Computional analysis of the gas-flow distribution in solid oxide fuel cell stacks. J.Power Sources, 1993(63): 215-219
    42. Robert J.Kee, Pavan Korada, Kevin Waiters, Mark Pavol. A generalized model of the flow distribution in channel networks of planar fuel cells. Journal of Power Sources, 2002(109): 148-159
    43. S.H.Chan, K.A.Khor, Z.T.Xia. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001(93): 130-140
    44. R.J.Boersma, N.M.Sammes, C.J.Fee. Losses resulting from in-plane electricity conduction in tubular solid oxide fuel cells. Solid State Ionics, 2000(135): 493-502
    45. H.Yakabe, T.Ogiwara, I.Yasuda, M.Hishunuma. Model calculation for planar SOFC focusing on internal stresses, solid oxide fuel celIs(SOFC Ⅵ), in Proceedings of the Sixth International Symposium, 1999, 99(19): 1087-1098
    46. H.Yakabe, T.Ogiwara, M.Hishunuma, I.Yasuda. 3-D model calculation for planar SOFC. J.Power Sources, 2001(102): 144-154
    47.红梅,衣宝廉,阿布里提·阿不都拉,侯明.燃料电池组的气体分配管道.电
    
    源技术,2001,25(6):423-427
    48. K.P.Recknkagle, R.E.Williford, L.A.Chick, D.R.Rector, M.A.Khaleel. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. Journal of Power Sources, 2003(113): 109-114
    49. Comas Haynes, William J.Wepfer. Characterizing heat transfer within a commercial-grade tubular solid oxide fuel cell for enhanced thermal management. International Journal of Hydrogen Energy, 2001 (26): 369-379
    50. M.K.Alkam, M.A.Al-Nimr, M.O.Hamdan. Enhancing heat transfer in parallel-plate channels by using porous inserts. International Journal of Heat and Mass Transfer, 2001(44): 931-938
    51. B.Alazmi, K.Vafai. Analysis of fluid and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer, 2001(44): 1735-1749
    52. J.Billingham, A.C.King, R.C.Copcutt, K.Kendall. Analysis of a model for a loaded, planar, solid oxide fuel cell. J.Fluid Mech, 2000(411): 233-262
    53.曾丹苓,敖约,朱克雄,李清荣.工程热力学(第二版).高教出版社,1987
    54.杨辉,卢文庆.应用电化学.北京:科学出版社,2001
    55.李大珍.化学热力学基础(第二版).北京:北京师范大学出版社,1994
    56.林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995
    57. R.Herbin, J.M.Fiard, J.R.Ferguson. Three-dimendional numerical simulation of the temperature, potential and concentration distributions of a unit cell for various geometries of SOFCs. Proceedings, European Solid Oxide Fuel Cell Forum Ⅰ, Luzern, Switzerland, 1994
    58. M.Bernier, J.R.Ferguson, R.Herbin. A 3-dimensional planar SOFC stack model, Proceedings, European Solid Oxide Fuel Cell Forum, Nantes, France, 1998, pp.483-495
    59. H.Karoliussen, K.Nisanciouglu, Mathematical modeling of cross plane SOFC with internal reforming, Proceedings, Third Int. Symposium on Solid Oxide Fuel Cells, Honolulu, Hawaii, USA, May 16-21, 1993, pp.868-877
    60. N.F.Bessette, W.J.Wepfer. Electrochemical and thermal simulation of a solid oxide fuel cell. Chemmical Engineering Communications, 1996(147): 1-15
    61. T.Sira and M.Ostenstad. Temperature and flow distributions in planar SOFC stacks. Third Int. Symposium on Solid Oxide Fuel Cells, Honolulu, Hawaii, USA, May 16-21, 1993, pp.851-860
    
    
    62. P.Costamagna, K.Honegger, J.Electrochem.Soc, 1998, 145(11): 2717-2718
    63. S.B.Beale, W.Dong, S.V.Zhubrin, R.F.Boersma. Calculations of transport phenol mena in stacks of solid oxide fuel cells, Proceedings, ASME Int. Mechanical Engineering Congress and Exposition, IMECE2001/PID-25615, New York, 2001
    64. Bessette NF, Wepfer W J, Wirmick J.A mathematical model of a solid oxide fuel cell.J Electrochem Soc, 1995(142): 3792-3800
    65. Y.Lin and S.B.Beale. Numerical simulations of the performance of a planar solid-oxide fuel cell stack
    66. Hirano A, Suzuki M, Ippommatsu M.Evaluation of a new solid oxide fuel cell system by non-isothermal modeling.J Electrochem Soc, 1992(139): 2744-2751
    67. S.G.Neophytides.The reversed flow operation of a cross-flow solid oxide fuel cell monolith.Chem.Eng.Sci., 1999(54): 4603-4613
    68. J.R.Selman, How to model solid oxide fuel cells, Proc. IEA Workshop, Charmey, Switzerland, 1989
    69. J.R.Ferguson, J.M.Fiard and R.Herbin.Two-dimendional simulation of a solid oxide fuel cell.IEA Workshop: Fundamental Barriers to SOFC performance, Lausanne, Switzerland, Aug. 1992, OPEN, Berne, Switzerland.
    70. L. Petruzzi et al. Journal of Power Sources, 2003 (118): 96-107
    71. J.M.Fiard and R.Herbin.Numerical simulation of solid oxide fuel cells at the cell and stack level.Eurogas 92, Trondheim, Norway, June 1992, NTH-SINTEF, Norway
    72. E.Achenbach with KFA-IER, Status of the IEA-bench mark test 1 on stack-modeling, IEA Workshop, Rome, Italy, 22-23 Apr. 1994
    73. K.Niscioglu and H.Karoliussen, Cell and stack optimization by modeling, Proc. 1st Eur. Solid Oxide Fuel Cells Forum, Lucerne, Switzerland, October 1994
    74. A.Malandrino and M.Chindemi, Effect of cell configuration and fuel on SOFC modeling, in Singhal et Iwahara(des.), Proc.3rd Int.Wymp., Honolulu, HI, USA, May 1993, pp. 16-21
    75.黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社,2000
    76.林子敬,张晓华.固体氧化物燃料电池电化学与热分析耦合的二维模型.无机材料学报,2003,18(3):661-666
    77.于兴文,黄学杰,陈立泉.固体氧化物燃料电池研究进展.电池,2002,32(2):110-112
    
    
    78.赵兵.中低温固体氧化物燃料电池电解质材料.稀土,1998,19(4):55
    79.梁广川.Sm、Gd共掺杂的CeO_2基电解质性能研究.硅酸盐学报,2000,28(1):44
    80.石慧,马桂林,贾定先,仇立干,陈蓉.BaCe_(0.9)Y_(0.1)O_(3-a)固体氧化物燃料电池电极极化性能的研究.苏州大学学报(自然科学),2002,18(2):90-95
    81.尧巍华,唐子龙,张中太,谭强强,罗绍华.LaGaO_3基固体电解质在SOFC中的应用.硅酸盐学报,2002,30(3):347-351
    82.马桂林,仇立干,陈蓉.Ba_xCe_(0.8)Y_(0.2)O_(3-a)固体氧化物燃料电池性能.化学学报,2002,60(12):2135-2140
    83.钟英杰,都晋燕,张雷梅.CFD技术及在现代工业中的应用.浙江工业大学学报,2003,31(3):284-289
    84.高培德.燃料电池的新进展
    85. EG&G Services, Parsons, Inc., Science Applications International Corporation. Fuel Cell Handbook(Filth Edition)
    86. Fluent Inc. Product Documentation(FLUENT帮助文档)
    87. Chao-Yang Wang. Computational Fuel Cell Research and SOFC Modeling at Penn State

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700