结构仿生化生物纤维增强摩擦材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可作为制动摩擦材料增强纤维的主要有玻璃纤维和有机合成纤维,如碳纤维、芳纶纤维等,这些纤维材料性能均一,是较为理想的增强材料。然而它们的原材料石油资源却日益枯竭,同时纤维的制造过程也会消耗大量能源,磨损产物污染环境。而天然纤维来源广泛,可再生,绿色无毒,且产量巨大,天然纤维如果用于增强适当的基体则可以制成完全降解的摩擦材料,这种材料将获得巨大的市场空间。天然纤维具有较高的强度,可以满足力学性能,但是天然纤维也存在与基体相容性差,均一性差及耐高温性能差等问题,采用改性处理以及结构仿生等技术来提高其与基体的结合性,提高摩擦材料的性能,为生物纤维应用拓宽领域。
     对黄麻纤维进行了改性处理:先对黄麻纤维进行分丝处理,然后将处理好的黄麻纤维充分浸润在1:1配比的甲醇-苯溶液中浸泡24小时,去除一定的淀粉和蜡质。然后对其进行碱处理。用水清洗并浸湿经过预处理的黄麻纤维,然后浸泡在氢氧化钠溶液(改性选用碱溶液浓度为17%)中,浸泡2小时后,用自来水冲洗去除多余碱溶液,再用硫酸(浓度为2%)进行中和,然后放入足量的蒸馏水中,这样处理后可彻底排除酸碱对纤维的影响。最后将黄麻纤维置于140℃电热干燥箱中,热处理3小时。
     应用仿生螺旋纤维编织机进行螺旋型黄麻纤维的制备,并用WDW-20微机控制电子万能试验机测试不同螺旋升角的断裂载荷,结果表明螺旋纤维断裂负荷随螺旋升角减小先增大后减小,峰值在66°左右。大于66°时纤维受力不均匀,纤维逐根断裂,小于66°时,在同样外拉力作用下,螺旋升角越小纤维受力越大。这个临界值与纤维的摩擦因数,弯曲度,均匀程度等相关。断裂伸长率曲线随螺旋升角的减小呈抛物线状下降趋势。
     较系统的分析了螺旋纤维含量及螺旋升角对摩擦性能的影响,得出螺旋型黄麻纤维含量在3%,螺旋升角为66°时摩擦因数符合制动要求,并且耐磨性能最为优异。
     哑铃间距为15mm的哑铃纤维增强摩擦材料磨损率最低,端部粗化处理具有较好的增强效果,磨损率较平直纤维降低很多。
     对纤维结构进行仿生化处理,有利于提高纤维的增强作用。在低温(200℃以下)下对于黄麻这种与基体界面结合较弱,基体相容性差的短切纤维复合材料具有重要意义,仿生结构处理后的黄麻纤维增强摩擦材料不再像平直纤维那样那么容易在纤维与基体粘结处产生疲劳裂纹。高温(300℃-350℃)下黄麻分解生成的石墨有自清洁和润滑作用,并随着摩擦力作用滑移填充不平整表面,有利于减小黏着磨损;由于减小了黏着磨损,有效防止玻璃纤维裸露及硬质部位的尖锐突出,另外硬质磨粒压入黄麻纤维凹槽处,有利于减小磨粒磨损;由于结构仿生黄麻纤维增强摩擦材料磨削中含有较多石墨,包覆摩擦材料表面,减少摩擦材料与氧气的接触面积,在一定程度上减少了热磨损。黄麻纤维生成石墨具有的这种自清洁和润滑作用对增强摩擦材料的摩擦性能极为有利。
Brake friction materials reinforce fiber mainly include glass fiber and organic syntheticfibers such as carbon fiber, aramid fiber, The properties of This fibers are uniform, they areideal reinforcing material. However, the raw material oil resources are depleted, while thefiber manufacturing process will consume a large amount of energy, the product of wear willpollute environment. Natural fibers are renewable, green non-toxic, and have a hugeproduction, natural fiber reinforce appropriate substrate can be made into completelydegraded friction material, this material will have a huge market space. Natural fiber withhigh strength can meet the mechanical properties, but it’s high temperature performance ispoor, modification and structural biomimetic can improve its properties and broaden thefield of bio-fiber applications.
     The appropriate modification of jute fibers is put jute fiber fully soak in to1:1methanol-benzene solution for24hours to remove some of the starch and wax. Then put in to cleanwater after pretreatment, and then soak it in sodium hydroxide solution (17%) modified theconcentration of alkali solution, soak for2hours, rinse with tap water to remove excessalkali solution, and then put it in to sulfuric acid (2%), and then put it in to sufficient amountof distilled water, this treatment can completely exclude the impact of acid-base. Finally, putjute fiber into electric oven temperature is140°C, heat for3hours.
     Use biomimetic helical fiber knitting machine spiral fiber into spiral jute fiber. Then useWDW-20microcomputer control electronic universal testing machine to test the fractureload of different helix angle, the results show that the spiral fiber breaking load decreaseswith the helix angle increased and then decreases, the peak at about66°. greater than66°fiber, fiber fracture one by one, when less than66°, face to the same external tensile force,the helix angle the smaller the greater the force of fiber. The threshold effect by fiber frictionfactor, curvature, and uniformity. Elongation with the helix angle decreases downward trend.
     This paper had a systematic analysis of spiral fiber content and the helix angle effect offriction performance, when the content of spiral jute fiber is3%, and helix angle is66°, thefriction factor can meet the braking requirements, and wear resistance is the mostoutstanding.
     Dumbbell fiber reinforced friction material who’s dumbbell spacing is15mm have the lowest wear rate.
     The fiber with Bionic structure will help to improve the enhancement of the fiber. Forjute whose force of combined with substrate interface is weak make great significance at alow temperatures (lower than200°C). Reinforced by the jute with bionic structure frictionmaterial is no longer so easy get fatigue crack between fiber and matrix. under hightemperature (300°C-350°C) Jute decomposition generated Graphite, which have aself-cleaning and self-lubricating effect, with the action of friction slip to fill into unevensurfaces, reduce the adhesive wear and the adhesive wear, effectively prevent bare glassfiber and the rigid prominent parts of the sharp, helps to reduce abrasive wear. Bionic jutefiber reinforced friction materials grinding coating friction material surface can reducefriction material contact with oxygen, reduce the heat wear at a certain extent. The generategraphite which have self-lubrication and self-cleaning effect is extremely beneficial forenhancing the performance of friction material.
引文
[1]马洪涛,张勇亭,杨军.汽车制动摩擦材料研究进展[J].现代制造技术与装备2011,5:76-79.
    [2]赵世海,蒋秀明,淮旭国,等.[J].机械工程材料,2010,5:52-55.
    [3] I. Norio, P. Eleni, S. Yoshihiro. Effect of coupling treatment of carbon fiber surfaceon mechanical properties of carbon fiber reinforced carbon composites [J].Composites Part A,1998,29A:965-972.
    [4] S. R. Dhakate, P. BahI, P. D. Sahare. Oxidation behavior of PAN based carbon fiberreinforced phenolic resin matrix composites [J]. Journal of Materials Science Letters,2000,19:1959-1961.
    [5] B. C. Mitra, R. K. Bsak. Studies on jute-reinforced composites, its limitations, andsome solutions through chemical modification of fiber [J]. Appl Polym Sci,1998,67(6):1093-1100.
    [6]许群,赵颖慧,孙益华.中国应对石油短缺的思考[J].中国矿业,2005,14(8):37-40.
    [7] J. H. Petersen, H. Reitz, M. E. Benzon. Tribological properties of sulfur-implantedsteel[J]. Surface&Coatings Technology,2004,179:165-175.
    [8]王铁山.欧洲摩擦材料先进技术的特征[J].摩擦密封材料.2002,(3):1-4.
    [9] H. Jang, K. Ko, S. J. Kim, R.H. Basch, J. W. Fash. The effect of metal fibers on thefriction performance of automotive brake friction materials [J]. Wear.2004,256(3-4):406-414.
    [10]X. M. Wang, Z. G. Zhang, M. Li, D. X. Zhang,;Z. J. Sun. Studies on impact strengthof friction materials reinforced by aramid pulp and copper fiber[J].CailiaoGongcheng/Journal of Materials Engineering,2009,3:27-31.
    [11]G. Zhang, Z. Rasheva, A. K. Schlarb, Friction and wear variations of short carbonfiber (SCF)/PTFE/graphite (10vol.%) filled PEEK.Effects of fiber orientation andnominal contact pressure [J].Wear.2010,268(7-8):893-899.
    [12]S. G. Huang, Z. Zong, C. Q. Peng,. Influence of carbon fiber percent on frictioncoefficient of copper-graphite brush[J]. Run Hua Yu Mi Feng/LubricationEngineering,2006,8:91-92.
    [13]S. L. Yan, Z. S. Zhang, Z. Q. Song, H. Xu. Properties of wet copper-based frictionmaterials containing carbon fiber[J].Fenmo Yejin Cailiao Kexue yuGongcheng/Materials Science and Engineering of Powder Metallurgy,2010,15(2):186-190.
    [14]S.V. Prasad, K.R. Mecklenburg, Friction behavior of ceramic fiber-reinforcedaluminum metal-matrix composites against a440C steelcounterface[J].Wear,1993,162-64:47-56.
    [15]A.P.Verman et al. Wear,1996,(193):193-195.
    [16]P. Gopal, L.R. Dharani, Speed and temperature sensitivities of acarbon-fiber-reinforced phenolic friction material[J].Wear,1995,(181-183):913-921.
    [17]N.S.M. El-Tayeb, B.F. Yousif. Evaluation of glass fiber reinforced polyestercomposite for multi-pass abrasive wear applications[J].Wear,2007,262(9-10):1140-1151.
    [18]张西奎,等.碳纤维增强汽车摩擦材料的研究[J].汽车工艺和材料,2003,(4):9-11.
    [19]关庆丰,李晓宇,李光玉,等.碳纤维增强摩阻材料的摩擦磨损特性研究[J].摩擦学学报,1999,19(1):87-90.
    [20]J. Du, Y. H. Liu, S. R. Yu, H. D. Dai. Effect of alumina fiber volume fraction ondry sliding friction and wear behavior of alumina and carbon short fibers reinforcedaluminum alloy hybrid composites[J].Fuhe Cailiao Xuebao/Acta MateriaeCompositae Sinica,2003,20(4):5-9.
    [21]C.Li, A.H.Feng, X.J. Gu, D. L. Chen. Localized cyclic strain measurements offriction stir welded aluminum alloy using a flat-clad optical fiber sensor array[J].IEEE Sensors Journal,2010,10(4):888-892.
    [22]L. Liu, W. W. Li, Y. P. Tang, B. Shen, W. B. Hu. Friction and wear properties ofshort carbon fiber reinforced aluminum matrix composites[J]. Wear,2009,266,(7-8):733-738.
    [23]J. P. Giltrorn. The role of the counter face in the friction and wear ofcarbon-fiber-reinforced thermosetting resin [J]. Wear,1970,16:359.
    [24]J. R. Baron, W. F. Schmidt. Polyethylene reinforced with keratin fibers obtainedfrom chicken feathers [J]. Composites Science and Technology,2005,65(2):173-181.
    [25]张清海.非石棉盘式制动的发展现状[J].汽车技术,1993(6):45.
    [26]Y. Loken. Asbestos free brakes and dry cluches reinforced with Kevlar aramid fiber[J]. SAE paper,800667,1980.
    [27]J. Wu, X.H. Cheng. The tribological properties of Kevlar pulp reinforced epoxycomposites under dry sliding and water lubricated condition [J]. Wear,2006,261(11-12):1293-1297.
    [28]F. Brown, C. J. Burgoyne. The friction and wear of Kevlar49sliding againstaluminium at low velocity under high contact pressures[J]. Wear,1999,236(1-2):315-327.
    [29]TAKHISAKAT0AK1RAMAGARIO[J].Tribiology transactions,1994,37:559
    [30]杨景美等.无石棉混杂纤维增强树脂基摩擦材料[J].机械工程材料,1990(5):27-32.
    [31]B. A. Acha, N. E. Marcovich, M. M. Reboredo. Physical and mechanicalcharacterization of jute fabric composites[J].Journal of Applied Polymer Science.2005,98(2):639-650.
    [32]Y. Chen, L. F. Sun, O. Chiparus, I. Negulescu, V. Yachmenev, M. Warnock. Kenaf/ramie composite for automotive headliner. Journal of Polymers and the Environment.2005,13(2):107-114.
    [33]X. C. Xu, X. Guang, F. Q. Liu. Friction properties of sisal fibre reinforced resinbrake composites[J]. Wear,2007,262(5-6):736-741.
    [34]杨亚洲.仿生哑铃形黄麻纤维制动摩擦材料研制[D].吉林大学,2006;
    [35]笹原茂美,渡辺隆幸.非石綿系摩擦材.日本特許公開.平10-8037,1998.
    [36]S. Gunderson, R. Schiavone. The insect exoskeleton: a natural structuralcomposite[J]. JOM,1989,41(11):60-62.
    [37]B. Chen, X. Peng, C. Cai, H. Niu, X. Wu. Helicoidal microstructure of Scarabaeicuticle and biomimetic research[J]. Materials Science and Engineering: A.2006,423(1-2):237-242.
    [38]J. R. Barone, W. F. Schmidt. Polyethylene reinforced with keratin fibers obtainedfrom chicken feathers[J]. Composites Science and Technology.2005,65(2):173-181.
    [39]赵晓鹏,田晓滨,周本濂.短纤维增强复合材料的仿生模型Ⅱ.弱结合界面的强度理论[J].金属学报.1994,30(4):187-193.
    [40]沈以赴,郭晓楠,张坤,李顺林,周本濂.单电流脉冲作用下的碳纤维石墨化[J].航空学报,1998,19(5):628.
    [41]王永恒,石彩杰,崔再治.喷丝板的设计[J].聚酯工业,2006,3(19)27-30.
    [42]张春燕,于俊荣,刘兆峰.中空纤维制备技术及其应用[J].合成纤维SFC,2004,6:21-25.
    [43]杨杭生,徐铸德,卢筱楠,吴国涛,王淼,李文铸.一种节状纳米碳纤维的CVD生长[J].化学物理学报,2006,3(13):324-328.
    [44]B. C. Mitra, R. K. Bsak. Studies on jute-reinforced composites, its limitations, andsome solutions through chemical modification of fiber [J]. Appl Polym Sci,1998,67(6):1093-1100.
    [45]F. Li, S. Q. Li, N. Jiang, X. G. Shi, K. C. Feng. Synthesis of carbon nanotubesusing dielectric barrier discharge plasma enhanced chemical vapor deposition[J].Zhenkong Kexue yu Jishu Xuebao:2005,25(3):200-203.
    [46]吴国涛,王淼,李振华,陈卫祥等.竹节状纳米碳纤维的制备及嵌锂性能研究[J].化学物理学报,2003,4(16):299-302.
    [47]田晓滨,赵晓鹏,周本濂.短纤维增强复合材料的仿生模型Ⅰ.哑铃状短纤维增强复合材料的应力分析[J].金属学报,1994,30(4):180.
    [48]赵晓鹏,周本濂,罗春荣等.短纤维增强复合材料的仿生模型Ⅲ.脆性基体复合材料中哑铃状纤维的强化作用[J].金属学报,1996,32(4):438.
    [49]周本濂.哑铃状碳化硅晶须的微观结构分析[J].材料研究学报,2000,14(5):12-15.
    [50]白朔.仿生哑铃形碳化硅晶须的制备及微观结构和生长机理的研究[D].沈阳:中国科学院金属研究所,1999.
    [51]K. Zhang, Y. Q. Wang, B. L. Zhou. Biomimetic study on helical fibercomposites[J]. Journal of Materials Science and Technology.1998,14(1):29-32.
    [52]刘艳秋.螺旋状纳米碳纤维制备及其性能研究[D]沈阳理工大学,2008;
    [53]M. Z. Rong, M. Q. Zhang, Y. Liu. The effect of fiber treatment on the mechanicalproperties of unidirectional sisal-reinforced epoxy composites [J]. CompositesScience and Technology,2001,61:1437-1447
    [54]杨桂成,曾汉民,张维邦.剑麻纤维的热处理及热行为的研究[J].纤维素科学与技术,1995,3(4):15-19.
    [55]欧阳国恩,欧国荣.复合材料试验技术[M].武汉:武汉大学出版社,1993
    [56]金·曼达夫.羊毛学[M].呼和浩特:内蒙古人民出版社,1981.
    [57]鲁博,张林文,曾竟成.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [58]Ludger Pille, Jeffrey S. Church, Robert G. Gillbert. Adsorption of amino-functionalpolymer particles onto keratin fiber [J]. Journal of Colloid and Interface Science,1998,198:368-377.
    [59]徐博,刘让同.羊毛角蛋白降解行为机理[J].北京纺织,2004,25(2):54-56.
    [60]J. M. Maxwell, M. G. Huson. Scanning probe microscopy examination of the surfaceproperties of keratin fibres [J]. Micron,2005,36:127-136.
    [61]韩永生编.工程材料性能与选用[M].北京:化学工业出版社,2004.
    [62]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001年,第三版.
    [63]A. K. Bledzki, et al. Properties and modifications of NVF composites[J]. J ApplPolym Sci,1996,59:1329-1336.
    [64]顾金霞,仿生螺旋纤维编织技术与编织机械[D].吉林大学,2008.
    [65]曹献坤.1-2-3型制动摩擦材料及其摩擦磨损性能研究[D].武汉工业大学博士学位,武汉工业大学,1999.
    [66]I. J. Beyerlein, et al. On the influence of fiber shape in bone-shaped short-fibercomposites [J]. Composites Science Technology,2001,61:1341-1357.
    [67]Y. T. Zhu, et al. Fracture toughness of a composite reinforced with bone-shaped shortfibers [J]. Materials Science and Engineering,2001, A317:93-100.
    [68]Y. T. Zhu, I. J. Beyerlein. Bone-shaped short fiber composites—an overview [J].Materials Science and Engineering,2002, A326:208-227.
    [69]Y. T. Zhu, et al. A composite reinforced with bone-shaped short fibers [J]. ScriptaMaterialia,1998,38(9):1321-1325
    [70]B. L. Zhou. Bio-inspired study of structural materials [J]. Mater. Sci. Eng.,2000,C11:13-18.
    [71]H. G. Jiang, et al. The strength and toughness of cement reinforced with bone-shapedsteel wires [J]. Composites Science Technology,2000,60:1753-1761.
    [72]张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2000.6.
    [73]叶伟.几种天然生物纤维增强摩擦材料的制备与性能[D].吉林大学,2011.
    [74]申荣华,何林.摩擦材料及其制品生产技术[M]。北京:北京大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700