铁基粉末触媒合成金刚石作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人造金刚石作为天然金刚石的替代品,是一种用途广泛的极限性功能材料,其应用遍布工业、科技和国防等领域。因此,加强合成原材料和合成技术的研究,优化和改进现有的粉末触媒配方,开发低成本触媒,制备专门用途的人造金刚石磨料,极具战略意义。
     本文以铁基触媒配方研究为基础,深入研究了不同触媒成分、不同触媒与石墨配比对合成金刚石的影响规律,探讨了触媒在合成金刚石过程中的作用机理。并在此基础上设计出适合合成团粒结构金刚石(CSD)的新型低成本触媒配方,为此开展了以下研究:
     1)对Fe、Ni不同配比粉末触媒进行了合成金刚石实验,结果表明,随着触媒中Fe含量的增加,合成金刚石的最低条件和最佳条件均有所提高,金刚石生长V形区向右上方移动;金刚石的粒度峰值变粗,混合单产、静压强度、冲击韧性均有所降低;通过对触媒和石墨不同配比进行的金刚石合成实验表明;增加触媒用量可以提高合成金刚石单产。在综合考虑原材料成本、金刚石产量、质量等因素基础上,优化选择出Fe-30%Ni触媒、且与石墨配比为3:7的成分配比。并建立了触媒成分设计的基本原则。
     2)深入研究了在FeNi30中添加微量稀土元素对合成金刚石的影响,结果表明,稀土元素可有效降低触媒中结合氧含量,提高了粉末触媒的纯净度,在合成金刚石中对提高混合单产、增加粗颗粒比例、提高单粒度TI、TTI值,增加静压强度,降低磁化率值等都有不同程度的作用;通过优化实验,获得最佳稀土添加量为0.4%。
     3)根据触媒成分设计的基本原则,设计了不同成分的FeMn基触媒,并通过合成金刚石实验深入研究不同添加元素及含量对合成金刚石的影响规律,结果表明:单独使用FeMn触媒合成金刚石,在5.4~5.6GPa、1450~1600℃才能合成出金刚石,比FeNi触媒的合成条件高,且金刚石粒度较细,晶型较差;在FeMn触媒中加入5%的Ni或Co,合成压力、温度有所降低;添加稀土元素有助于金刚石晶形的改进;Ni含量保持15%不变,Mn含量由15%、20%、25%变化,金刚石的形核量逐渐增多,粒度变细,金刚石由灰绿色变成黑色,晶形变得不规则,Mn含量为25%时得到了团粒结构金刚石;Ni、Mn含量不变, Co含量增加,金刚石粒度变粗,晶形变好,混合单产增加,黑颜色金刚石变少,晶体透明度提高。
     4)针对市场对CSD金刚石不断增长的需求,利用FeMn基触媒的成本优势,开发出适合合成CSD金刚石的FeMn25Ni15触媒,并对合成工艺进行了深入研究,结果表明,采用新型FeMn触媒合成的CSD金刚石,性能指标达到使用要求,而成本显著低于目前使用的Ni70Mn30触媒。
     5)利用EDS能谱分析研究了金属包膜在金刚石合成过程中的作用,发现金属包膜在金刚石生长过程中起到向晶核输送碳源和向外排除杂质的作用,金属包膜破裂后,金刚石停止生长;对金属包膜的物相分析进一步表明室温下金属包膜的物相主要为Fe3C、(Fe,Ni)23C6以及γ-(Fe, Ni),石墨占的比例很少。因此,可以认为金刚石形核长大过程中存在着触媒粒子的熔聚现象。
     6)初步探讨了金刚石单晶生长所需碳的来源问题,利用现有热力学数据分析表明,金属包膜中金属碳化物(Fe3C)的分解降低了石墨转变为金刚石所要越过的势垒,因而更有利于形成金刚石;但是从Fe-C相图Fe3C的形成条件及Fe3C中碳转化成金刚石的数量等因素分析表明,在高温高压下Fe3C存在的可能性很小,用其作为金刚石合成的碳源在理论和实际应用中都缺乏依据。由于现有实验条件所限,金刚石转化碳源问题还需要进一步研究。
Synthetic Diamond, as a substitute for natural diamond, is a versatile functional material and applied in many fields including the industrial, scientific and defense fields. As a result, it is of great strategic significance to enhance research on synthetic technology and synthesis of raw materials, optimize and improve existing powder catalyst formulations, develop low-cost catalysts, and prepare special-purpose synthetic diamond abrasives.
     In this paper, based on the research on iron-based catalyst, the rule of influence for synthetic diamond by the different composition of catalyst and different ratio between catalyst and graphite has been studied deeply, and also the mechanism of catalyst in the process of synthesizing diamond has been discussed. Based on above the research, new low-cost catalyst formula suitable for synthesizing granular structure diamond (CSD) has been designed out and the followed study has been carried out as a result:
     1) Carrying out Synthesis experiments using powdered catalyst with different ratio of Fe and Ni. The results show that, As the Fe content in catalyst is increasing, the lowest and the best synthesizing conditions are improved somewhat, and diamond V-shaped growth area moves to the upper right; diamond particle's crest value is thicker, the mixed yield per unit, static strength and impact toughness all decrease; the tests on the different ratios of catalyst and graphite have shown:increasing the usage of catalyst can enhance yield per unit. Considering the elements such as the cost of raw materials, diamond production and quality, the best effect can be gained by selecting the content of 70% Fe and 30% Ni and with the 3:7 ratio of catalyst and graphite, and the basic principle for designing catalyst composition has also been established.
     2) Studying deeply the effect on the synthesizing diamond by adding rare earth elements in FeNi30. It shows As followed:rare earth elements can increase effectively oxygen bonding content in catalyst, enhance the purity of powdered catalyst, and exert varying effect on increasing the mixed yield per unit, the proportion of coarse particles, TI and TTI value of single grain, static strength increases, and the magnetic susceptibility; optimized tests show that the best addition of rare earth is 0.4%.
     3) According to the basic principle for designing catalyst composition, FeMn-based catalysts with different composition have been designed, and by synthesizing diamond tests, it is studied on the rules which different adding elements and contents effect diamond synthesis, and the result shows that:by using FeMn-based catalyst only, diamond can be synthesized on 5.4~5.6GPa and 1450~1600℃, the synthetic conditions is more strictly than that in FeNi-based catalysts, and diamond particle size is less fine, and its crystal form is poorer; when 5% Ni or Co is added into the FeMn catalyst, the synthesizing pressure and temperature can be reduced more or less; adding rare earth elements contributes to the improvement of diamond crystal; when Ni content of 15% remains invariable, and Mn content varies from 15%,20% to 25%, diamond nucleation increases gradually, the particle size becomes thinner, the diamond color varies from gray-green to black, and crystal shape becomes irregular, and when Mn content is 25% the aggregate structure of diamond can been produced; when Ni and Mn contents keep invariable and Co content increases, the particle size becomes coarse, grain shape becomes better, mixed yield increases, black diamond decreases, and crystal transparency increases.
     4) Aimed at the increasing needs of market for CSD diamond, by advantage of cost of FeMn-based catalyst, the FeMn25Ni15 catalyst suitable for CSD diamond has been developed, and synthetic technics have also been studied deeply, the result shows that:the performance evaluation of CSD diamond synthesized by FeMn-based catalyst can meet the useful requirements and the cost is significantly lower than that of Ni70Mn30 catalyst which is currently used.
     5) EDS energy spectrum analysis is used to study the effect of metal envelope in the process of synthesizing diamond, and it is found that metal envelope exerts the effect of transporting carbon source and eliminating impurity to outside in the progress of diamond's growing, and after metal envelope breaks down, diamond will stop growing; the analysis for the phase of metal envelope further shows that the metal envelope's phase mainly consists of Fe3C, (Fe,Ni)23C6, andγ-(Fe,Ni), and the graphite content is very small. Therefore, it can be considered that catalyst grain agglomerating exists in the process of the diamond nucleation.
     6) Discussing initiatively the problem of source of carbon needed during the progress of diamond's growing; and the analysis on current thermodynamic data shows that, the decomposition of metal carbide(Fe3C) in metal envelope reduces the energy barrier during the progress of transforming graphite into diamond, and it benefits more the diamond's formation; however, through analyzing such elements as the formation conditions of Fe3C in Fe-C Phase diagram and the quantity of diamonds transformed from carbon in Fe3C, the result shows that it has little possibility for Fe3C to exist under high temperature and high pressure, and lacks base in theory and in real application for Fe3C to be used as carbon source during the process of synthesizing diamond. Due to limited test's conditions, it needs further study on carbon sources of diamond.
引文
[1]陈晓虎,王眠.金刚石的性能与应用[M].机械科学与技术,1997,12(5):1-2
    [2]中国机械工业年鉴编辑委员会.中国磨料磨削工业年鉴.北京:机械工业出版社,1999:23-28
    [3]宋健民.钻石合成.台北:全华科技图书股份有限公司,1989:72-78
    [4]Yoder M.N.. Dimaond in the USA. Dimaond and Related Materials,1993,2:59-64
    [5]Cvaeney R.J..Diamond research:Past, Present and future. J.Hard Mater.1994,5:23-29
    [6]Novikov N.V., Shulzhenko A.A.. New Superhard material and their Industrial Application. Sverkhtverdye Materialy.1987,9(5):8-14
    [7]黄漫,唐明强,罗锡裕.金刚石工业用粉末材料的研究与发展.粉末冶金工业,2005(4):33-39
    [8]翟光辉.我国超硬材料及其制品工业发展对策.金刚石与磨料磨具工程,1996,1:36-39
    [9]Nakahara T., Fujimori N..Innovation in diamond. Mat. Res. Innovat.,1997,1:38-43
    [10]Lugmann E. K., Polowczyk M.. Semiconducting diamond as material for high Temperature thermistors. Mat. Res. Innovat.,2000,4:45-48
    [11]党冀萍.高温半导体器件的研究现状.半导体情报,1994,31(2):46-56
    [12]Lansdale F.. In:Physical properties of diamond, Claredon, Oxford,1965
    [13]Palafnik L. S., Gladkikh L. I.. The properties of diamond. New York:Academic Press.1979:494
    [14]沈主同.新型超硬材料探索中的新动向.金刚石与磨料磨具工程,1998,3:5-10
    [15]Nassau K., Nassau J.. The history and present status of synthetic diamond. Journal Of crystal growth,1979,46:157-172
    [16]陈乾旺,娄正松,工强,陈昶乐.人工合成金刚石研究进展.前沿进展,2005(3):199-204
    [17]Liander H.. Ark Kemi,1960,16:139
    [18]Bundy F. P., Hall H. T., Strong H. M., et al. Preparation of Diamond[J]. Nature, 1959,184:1094-1098
    [19]罗锡裕,刘一波,唐明强,黄漫.中国金刚石的发展及其性能研究.粉末冶金材料科学与工程,2005(2):71-77
    [20]李志宏,赵博.2009年及2010年上半年超硬材料行业经济运行形势简析[R].海峡两岸超硬材料技术发展论坛论文集[C].中国西安:2010:1-16
    [21]方啸虎,洪涛.高速发展的中国超硬材料.探矿工程,2004,3:49-52
    [22]李志宏,赵博,宜云雷等.骄人的成就光辉的未来.第五届郑州国际超硬材料及制品研讨会论文集.海洋出版社,2008,1-16
    [23]李志宏.2007年行业经济运行情况简介.中国超硬材料发展论坛论文集[C].桂林:桂林矿产研究院,2008:1-3
    [24]谭金华.2008年1-6月份中国内地天然石材、磨料磨具及人造金刚石出口量值统计汇总表[J].石材,2008,(8):50-51
    [25]王秦生,宋城,尹学敏.CSD金刚石磨料的结构与性能[J].金刚石与磨料磨具工程,2002,127(1):10-14
    [26]张克从,张乐穗.晶体生长科学与技术.北京:科学出版社,1997:197-460
    [27]郝兆印,陈宇飞,邹广田.人工合成金刚石.长春:吉林大学出版社,1996:1-209
    [28]Chow L., Zhow D..Chemical vapor deposition of novel materials. Thin Solid Film, 2000,368:193-197
    [29]Anthony T..The chemical vapor deposition of diamond:A discussion of Reported techniques and mechanisms.Diamond ARI Seminar.Naval Research Laboratory. Washington. D.C.1987
    [30]Seiichino M.. Development of diamond techniques at low pressure. Thin Solid Film, 2000,368:231-235
    [31]王传新,汪建华,满卫东等.金刚石薄膜异质外延的研究进展.真空与低温,2002,8(2): 71-76
    [32]Jiang X., Clages C. P., Zachai R.. Epitaxial diamond thin film on (001)silicon Substrates. Appl. Phys. Lett.,1993,62(26):673-698
    [33]匡同春,王晓初,刘正义.金刚石薄膜涂层刀具的研究进展与应用现状.硬质合金,1999,16(1):41-50
    [34]高见,李建平,马文存等.WC基硬质合金CVD涂层的组织与性能.中国有色金属学报,2002,12(2):331-333
    [35]王秦生.超硬材料制造[M].北京:机械工业出版社,2007:50-52
    [36]苟清泉.高温高压下石墨变金刚石的结构转化机理.吉林大学学报,1974,(2):52-63
    [37]王秦生.超硬材料制造[M].北京:机械工业出版社,2007:36-37
    [38]Bundy F. P., Bovenkerk H. P., Strong H. M., et al. Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond [J].J.Chem Phys,1961, 35(2):383-391
    [39]Minoru A Kaishi, Shinobu Yamaoka, Fumihiro Ueda etal. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties.Diamond and Related materials,1996,5:2-7
    [40]Suresh V., Minyoung L., Robert CD.. Progress of large diamond growth Technoloy and future prospects.J.hard material,1990,1(4):233-245
    [41]Strong H. M., Hanneman R. E.. Crystallization of diamond and graphite. J. Phys. Chem.,1967,46:3668-3676
    [42]Kennedy C. S., Kennedy G. C. The equilibrium boundary between graphite and Diamond. J.of Geophysical research,1976,61(14):2467-2469
    [43]沈主同.超高压高温下金刚石的合成机制.工业金刚石,2000,5:1-11
    [44]王光祖.我国人造金刚石晶体生长机理研究概述.金刚石与磨料磨具工程,2000,2:48-50
    [45]苟清泉.高压高温下石墨变金刚石的结构转化率.成都科技大学学报,1983,(1):11-17
    [46]沈主同.人造金刚石晶体生长机制的探讨.物理,1977,6(4):243-250
    [47]张克从.晶体生长.北京:科学出版社,1981:584-605
    [48]Lansdale K., Milledge H. J., Naave E.. X-ray studies of synthetic diamonds[J].Mineral Magazine.32 (1959):185
    [49]Giardini A. A., Kohn J. A., Eckart D. W.. Notes and news:formation of coesite And kyannite from pyrophyllite at very high pressure and high temperature[J]. Amer. Mineral.,1961,46:976-981
    [50]Giardini A. A., Tydings J. E.. Diamond synthesis:observations on the mechanism of formation[J].Amer.Mineral.1962,47:1393-1399
    [51]Yan X., Kanda H., Ohsawa T., et al. Behavior of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent[J].J.Mater.Sci.,1990,25:1585-1589
    [52]Strong H. M., Chrenko R. M.. Further study on diamond growth rates and Physical Properties of laboratory-made diamond. J. Phys. Chem.1971,75(12):1838-1843
    [53]Burns R. C., Hansen J. O., Spits R. A., et al.Growth of high purity large synthetic Diamond crystals[J]. Diamond Relat.Mater.,1999,8:1433-1437
    [54]Strong H.M..Catalystic effects in the transformation of graphite to diamond [J] J.Chem. Phys.,1963,39:2057-2062
    [55]谢有赞.金刚石理论与合成技术[M].长沙:湖南科学技术出版社,1993:73
    [56]王秦生.超硬材料制造[M].北京:中国标准出版社,2002:34
    [57]Wentorf R. H.. The behaviour of some carbonaceous materials at very high pressures and high temperatures [J]. J.Phys.Chem.,1965,69:3063-3069
    [58]Naka S., Tsuzuki A., Hirano S. I.. Diamond formation and behavior of carbides in Several 3d-transition metal-graphite systems[J].J.Mater.Sci.,1984,19:259-262
    [59]Perry J., Nelson S., Hosomi S.. Diamond formation in solid metal[J]. Mater.Res.Bull., 1990,25:749-756
    [60]Pavel E.. Combinative mechanism of HP-HT catalytic synthesis of diamond [J].Phys.B:Conden.Matte'1998,245:288-292
    [61]Sung J..Graphite-diamond transition under high pressure:a kinetics approach [J].J.Mater.Sci.,2000,35:6041-6054
    [62]Shen Zhu tong. Important Progress in Study on Synthesizing Mechanism of Synthetic Diamond with Flux-catalyt Method at Super high Pressure Journal of Synthetic Crystals,2005,34(6):1036-1049
    [63]徐国太.人造金刚石生长机理的探讨[J].人造金刚石与砂轮,1980(5):44-49
    [64]章元龙.“溶剂-催化剂”促进石墨向金刚石有效转化的过程.[J].新型无机材料,1980(8):10
    [65]张广云.在有金属或合金参与下人造金刚石形成机理的探讨[J].人造金刚石,1976(3):19-29
    [66]王光祖.触媒参与下金刚石晶体生长机理的探讨[J].人造金刚石与轮,1979(3):1-6
    [67]中国科学院上海硅酸盐研究所.金刚石的生长机理[J].人造金刚石,1978(3):1-7
    [68]Badzian A R., Klokocki A.. On the catalytic growth of synthetic diamond [J]. Journal of Crystal Growth,1981,52:843-847
    [69]林铭西.人造金刚石生产工艺与理论.[M].桂林:广西师范大学出版社,1996
    [70]卢照田.金刚石和立方氮化硼形成与反转化[J].磨料磨具与磨削,1981(3):1-6
    [71]曹振骏.过渡金属在石墨向金刚石转变过程中的络合催化作用[J].人造金刚石与砂轮,1980(5):43
    [72]高濂.金刚石合成中的胶体观点[J].科学通报,1982(1):21-22
    [73]聂崇礼.由人造金刚石最佳温度的选择谈到石墨-金刚石转化机理[J].人造金刚石与砂轮,1980(5):43
    [74]郝兆印.人工合成金刚石[M].吉林大学出版社,1996
    [75]陈启武.金刚石合成机制的研究[J].超硬材料工程,2005(1):26-30
    [76]许斌.金属包膜的微观结构及其在高温高压合成金刚石中的作用[博士论文].济南:山东大学,2003,1-128
    [77]陈启武.人造金刚石用触媒材料的过去、现在和将来.工业金刚石,1994(1):1-5
    [78]孙江.人造金刚石触媒材料.钢铁研究总院学报,1985,5(2):231-236
    [79]Huang Man, Tang Ming qiang, Luo Xi yu. Research and Development of Powder Materials For Industrial Diamond. Powder Metallurgy Industry,2005,15 (4):33-35
    [80]方啸虎,洪涌,马万金等.当前我国新触媒的研究与应用.超硬材料与宝石,2003,15(51):1-5
    [81]王光祖.粉末触媒的技术特征及其对金刚石合成的影响.98郑州国际超硬材料及制品研讨会,郑州,1998,100
    [82]周新东,陈启武,熊湘君.合成金刚石用触媒材料的研究.矿冶工程,2002,22(3):108-110
    [83]杜香竹.触媒合金的组织形态对金刚石性能的影响.东北大学学报,1996,17(1):60-64
    [84]Yi Jian Hong. Comparison of Synthesis Diamond Quantity with Different Catalysts. Material Science and Technology,1999,17 (4):63-66
    [85]Xie Ming xing, Chen Li fang, Ruan jin biao et al. Large Reaction Cavity Diamond Synthesizing Technologies Using Pulverous Block and Sheet Block-A Constract. Mining and Metallurgical Engineering,2003,23(6):83-85
    [86]张晓莉,黄光宏,闫长海等.片、粉状触媒合成金刚石比较.金刚石与磨料磨具工程,2001,6(126):24-25
    [87]Yi Jian hong. Analyses on Pressure and Temperature's Change of Synthesis Cubic with Powder Catalyst or Slice Catalyst.Mining and Metallurgical Engineering,1999, (4):45-48
    [88]Hao Z.Y., He Y.X., Chen Y. F.. Relation between Recrystallized Graphite and Diamond Growth. J.Crystal Growth.1994,135:370-373
    [89]Saito S., Fujimod N., Fukunaga O., et al. Classificafion of the catalysts for diamond growth. Advances in new diamond science and technology.1994:507-512
    [90]Shen Z.T., Wang L.J., Sun G.X., et al. The Formation Mechanism of Synthetic Diamond at High Pressure. Physica.1986,139:642-644
    [91]孙江,李君峰,耿大全.人造金刚石触媒材料的研究现状.金属功能材料.1996,3(2): 41-46
    [92]Kanda H., Akaishi M., Yamaoka S.. New catalysts for diamond growth under high pressure and high temperature. Appl. Phys. Lett.,1994,65 (6):784-786
    [93]Hosomi S.. Graphite-diamond conversion proceeded by the use of carburized cobalt solvent. Mat. Res. Bull.,1984,19:479-486
    [94]郝兆印.石墨、催化剂合金的选择.工业金刚石,1996,1:6-9
    [95]Chien-Min Sung, Ming-Fong Tai. Reactivities of Transition Metals with Carbon: Implications to the Mechanism of Diamond Synthesis Under High Pressure.Int. J. of Refractory Metals & Hard Materials,1997,15:237-256
    [96]Minoru A Kaishi, Shinobu Yamaoka, Fumihiro Ueda et al. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties. Diamond and Related materials,1996,5:2-7
    [97]Sumiya H., Satoh S.. High-pressure synthesis of high-purity diamond crystal. Diamond and Related Materials,1996,5:1359-1365
    [98]Zhou L., Jia X. P., Ma H. A.. Influences of additive sulfur on the synthesis of Industrial diamonds using Ni70Mn25Co5 alloy powder as catalyst.Diamond & Related Materials,2006,15:1318-1322
    [99]Liu W. Q., Ma H. A., Li X. L., et al. Effects of additive Al on the HPHT diamond synthesis in an Fe-Mn-C system. Diamond & Related Materials,2007,16: 1486-1489
    [100]Liu W. Q., Ma H. A., Han Q. G., et al.The character of FeMn-1# powder catalyst and its influence on the synthesis of diamond. Journal of Crystal Growth,2009,311: 3310-3313
    [101]Skury A. L. D., Bobrovnitchii G. S., Monteiro S.N., et al. Influence of the reactive mixture density on the diamond yield from a synthetic process. International Journal of Refractory Metals & Hard Materials,2003,21:155-158
    [102]方啸虎.中国超硬材料新技术与发展[M].安徽合肥:中国科学技术大学出版社,2003:69
    [103]吉林大学固体物理教研室编.人造金刚石[M].北京:科学出版社,1975:35
    [104]Davidenko V. M., Kidalov S. V., Shakhov F. M. et al. Fullerenes as a co-catalyst for high Pressure-high temperature synthesis of diamonds. Diamond & Related Materials,2004,13:2203-2206
    [105]Liang Z. Z., Kanda H., Jia X. P., et al. Synthesis of diamond with high nitrogen concentration from powder catalyst-C-additive NaN3 by HPHT.Carbon,2006,44: 913-917
    [106]Wen Chao, Jin Zhi hao, Liu Xiao xin, et al. Synthesis of diamond using nano-graphite and Fe powder under high pressure and high temperature. Materials Letters,2006,60:3507-3510
    [107]Jun Youp Choi, Jong Ku Park, KY Eun, etc. SiC enhanced nucleation of diamond under high pressure and high temperature. Diamond and Related Materials,1996, 5:1214-1217
    [108]李和胜,李木森.添加剂铜对铁基触媒合成金刚石的影响.金刚石与磨料磨具工程,2007,5:1-4
    [109]周林,马红安,李彦涛等.用含添加剂硫的粉末触媒合成金刚石.金刚石与磨料磨具工程,2005,1:22-24
    [110]关长斌,崔占全,杨雪梅.B对人造金刚石表面结构及性能的影响.人工晶体学报,2001.2:216-219
    [111]黄培云.粉末冶金原理.北京:冶金工业出版社,1997:45-56
    [112]李中林,王振东.用水雾化法生产低氧含量超细预合金粉末.第五届郑州国际超硬材料及制品研讨会论文集.北京:海洋出版社,2008,128-132
    [113]赵新明,徐骏,朱学新等.气雾化和水雾化制备合成金刚石用FeNi30粉末触媒的差异.第五届郑州国际超硬材料及制品研讨会论文集.北京:海洋出版社,2008,133-137
    [114]赵文东,徐骏,宋月清,等.共沉淀-共还原法制备金刚石工具用超细预合金粉末的研究.粉末冶金技术,2010,28(2):43~48
    [115]赵文东,徐骏,郭宏,等.化学共沉淀—共还原方法制备Fe70Ni27Co3触媒粉及其金刚石合成实验研究.粉末冶金工业,2010,20(1):8-13
    [116]李爱国,熊益民,徐丽莉.机械合金化技术在超细硬质材料中的应用进展.金属热处理,2006,31(10):1-3
    [117]杨炳飞,冯安生,岳铁兵,等.叶蜡石在高压合成中作为密封传压介质的应用研究[J].矿产综合利用,2006,1:37-41
    [118]郝兆印,贾攀,卢灿华.高温高压条件下叶蜡石的相变[J].工业金刚石,2004,2: 1-6
    [119]陈天虎,王道轩,方啸虎,等.白云石内衬材料在合成金刚石密封介质中的作用[J].高压物理学报,2001,15(4):291-296
    [120]亓曾笃.导电堵头的重要性[J].工业金刚石,2004,4:22-23
    [121]杜香竹.合成金刚石后触媒合金成分的研究.有色矿冶,1998,5:33-36
    [122]Strong H. M., Hanneman R. E.. Catalyst effect in the transformation of graphite to Diamond. J.chem. phys.,1987,2:36-68
    [123]Wentorf R. H.. Advances in High-Pressure Research.Academic Press,1974,4: 257-26
    [124]王秦生.超硬材料制造[M].北京:中国标准出版社,2002:29-31
    [125]秦杰明FeNi粉末触媒合成工业金刚石的研究[D].吉林:吉林大学,2006
    [126]朱凤福,宁磊,张铁喜,等.用粉状技术合成高品级金刚石的研究[J].人工晶体学报,2002,31(2):169-172
    [127]周连科.粉末法合成人造金刚石技术的研究与应用[J].人工晶体学报,2008, 37(1):109-113
    [128]方啸虎.中国超硬材料新技术与进展[M].合肥:中国科学技术大学出版社,2003:66-74
    [129]刘光华.稀土材料与应用技术[M].北京:化学工业出版社,2005:24-35
    [130]徐燕军,柳成渊,陈 哲,等.粉末触媒合成柱真空烧结工艺的研究[J].金刚石与磨料磨具工程,2008,4:18-21
    [131]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981
    [132]Putyatin A. A., Makarova O. V., Semenenko K. N.. Interaction in the Fe-C System at High Pressure and Temperature[J]. Sverkhtverdye Materially,1989,11:127
    [133]Solozhenko Bladimir L., Turkevich Bladimir Z.. Kinetics of Diamond Crystallization from the Melt of the Fe-Ni-C System [J]. J Phys Chem B,2002,106 (26):6634-6637
    [134]Plvel E., Baluta G., Barb D.. Complex Carbides in Synthetic Diamond Crystals Produced at Approx 5.5 GPa [J]. J Mater Sci,1993,28 (6):1645-1647
    [135]Strong H. M., Hanneman R. E.. Crystallization of Diamond and Graphite [J]. J. Chem. Phys.,1966,46:3668-3672
    [136]Lin Q. Y., Zhu Y.Y., Zhang Y. Z.,et al. Microanalysis of Metal Film [J]. J Iron Steel Res,1999,11 (2):51-54
    [137]Xu B.,Li M. S.,Yin L.W., et al. Effect of Metallic Film in Diamond Growth from Fe-Ni-C System at High Temperature and High Pressure[J]. Chin Phys Lett.,2003, 20 (5):753-756
    [138]张瑞林.固体与分子经验电子理论[M].吉林:吉林科学技术出社,1993:63-240
    [139]刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用[J].自然科学进展,1998,8(2):150-160
    [140]程开甲,程淑玉TFDC模型和余氏理论对材料设计的应用[J].自然科学进展,1993,3(5):417-432
    [141]Sun Z. G., Li Z. L., Liu Z. L.. Electron Density Calculation on Interface from Different Phases [J]. Chinese Science Bulletin,1995,40(4):2219-2222
    [142]刘志林,李志林.界面电子结构与界面性能[M].北京:科学出版社,2002:45-88
    [143]Liu Z. L., Li Z. L., Sun Z. G.. Catalysis Mechanism and Catalyst Design of Diamond Growth[J]. Metal Mater Trans A,1999,30 (11):2757-2766
    [144]李丽,许斌,宫建红,等.高温高压合成金刚石中触媒的价电子结构分析.高压物理学报,2006,20(4):372-378
    [145]贾攀,卢灿华,郝兆印.催化剂合金的配比原则.2009年及2010年上半年超硬材料行业经济运行形势简析[R].海峡两岸超硬材料技术发展论坛论文集[C].中国西安:2010:65-70
    [146]王秦生.超硬材料制造[M].北京:中国标准出版社,2002:143
    [147]De Beers Standard Diamond Grit Product Range,1993
    [148]Pramadia PDA321, De Beers Industrial Diamond Division,2000
    [149]刘锡光,曾秋娥,曾维勇,等.合成自锐性磨料级金刚石用触媒研究[J].矿业工程,1993,13(1):57-62
    [150]周连科.粉末法合成人造金刚石技术的研究与应用[J].人工晶体学报,2008,37(1):109-113
    [151]朱凤福,宁 磊,张铁喜,等.用粉状技术合成高品级金刚石的研究[J].人工晶体学报,2002,31(2):169-172
    [152]易建宏.粉末触媒在六面顶压机上合成优质金刚石研究[J].中南工业大学学报,1999,30(3):276-278
    [153]王秦生,宋城.CSD金刚石磨料的研制[J].金刚石与磨料磨具工程,2005,145(1):1-7
    [154]Sunaghna I..Growth and morphology of diamond crystals under stable and metastable condition. J. of crystal Growth,1990,90:1156-1161
    [155]王春生,曾永泉,吴京,等.成核过程的热力学分析.人工晶体学报,1994,23(1):50-55
    [156]熊湘君,肖任之,陈启武,等.基于粉末工艺人造金刚石合成曲面实验研究.矿冶工程,2000,20(2):45-47
    [157]史冬丽,赵延军,李克华,等.自锐性金刚石树脂砂轮磨削性能的研究.金刚石与磨料磨具工程,2005,147(3):59-61
    [158]杨宗庆.人造金刚石和CBN晶体生长过程实时研究的评述[J].磨料磨具与磨削,1986,(6):20-23
    [159]Pavel E., Baluta G., Barb D., et al. The Nature of the Metallic Inclusions in Synthetic Diamond Crystals Synthesized at 5.5 GPa in Fe-C System[J].Solid State Commun,1990,76:531-533
    [160]Sterenberg L. E., Slesarev V. N., Korsunskaya I. A., et al.The Experimental Study of the Interaction between the Melt Carbides,and Diamond in the Iron-Carbon System at High Pressure [J].High Temp High Press,1975,7:517-522
    [161]Naka S.,Tsuzuki A.,Hirano S. I.. Diamond Formation and Behaviour of Carbides in Several 3d-Transition Metal-Graphite Systems [J].J Mater Sci.,1984,19:259-262
    [162]许斌,李丽,田斌,等.高温高压触媒法金刚石生长的热力学分析.高压物理学报,2009,23(3):189-195
    [163]许斌,崔建军,王淑华,等.人造金刚石单晶铁基金属包膜的精细结构[J].金属学报,2005,41(4):444-448
    [164]许斌,李木森,宫建红,等.Fe基金属包膜的Mossbauer参量及其在金刚石合成中的催化作用[J].金属学报,2004,40(8):810-814
    [165]许斌,李木森,尹龙卫,等.铁基触媒合成金刚石形成的金属包膜的组织结构[J].硅酸盐学报,2003,31(5):470-475
    [166]Xu B., Li M. S., Cui J. J., et al. An Investigation of a Thin Metal Film Covering on HP/HT As-Grown Diamond from Fe-Ni-C System[J].Mater Sci Eng A,2005, 39(6):352-359
    [167]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002
    [168]Reeber R. R., Wang K.. Thermal Expansion Molar Volume and Specific Heat of Diamond from 0 to 3000K [J].J Elect Mater,1996,25(1):63-67
    [169]Mounet N.,Marzari N..High-Accuracy First-Principles Determination of the Structural, Vibrational and Thermodynamical Properties of Diamond, Graphite and Derivatives [J].Phys Rev B,2005,71(20):205-214
    [170]Morgan W. C..Thermal Expansion Coefficients of Graphite Crystals[J]. Carbon, 1972,10:73-79
    [171]Bundy F. P., Bovenkerk H. P., Strong H. M., et al. Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond [J].J.Chem Phys,1961, 35(2):383-391
    [172]Bundy F. P., Bassett W. A.,Weathers M. S., et al.The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated through 1994[J].Carbon,1996, 34(2):141-153
    [173]中国金属学会,中国有色金属学会.金属物理性能及测试方法[M].北京:冶金工业出版社,1987:249
    [174]Michal M., Paul E., Karsten A.. Analytic Bond-Order Potential for bcc and fcc Iron-Comparison with Established Embedded-Atom Method Potentials [J]. Phys. Condens Matter.,2007,19:320-326
    [175]Wood I. G., Lidunka V., Knight K. S., et al.Thermal Expansion and Crystal Structure of Cementite,Fe3C,between 4 and 600 K Determined by Time-of-Flight Neutron Powder Diffraction [J]. J. Appl. Crys.,2004,37:82-90
    [176]Scott H. P., Williams Q., Knittle E.. Stability and Equation of State of Fe3C to 7.3 GPa:Implications of Carbon in the Earths Core[J].Geop. Res. Lett.,2001,28 (9):1875-1878

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700