金华北山常绿阔叶林群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的常绿阔叶林分布面积大,类型多样,是世界常绿阔叶林的主体,在保护区域生态环境、维持经济社会可持续发展方面具有重要作用。长期以来由于人们对其功能和作用的认识不足,曾遭到严重破坏,导致土壤退化、功能衰退、病虫害频繁等一系列问题。因此,在各地开展常绿阔叶林群落特征的研究工作就显得尤为重要和迫切。本研究以金华北山常绿阔叶林为研究对象,在野外调查的基础上,综合应用数量生态学的方法,对金华北山常绿阔叶林群落的植物区系、群落外貌、结构特征、空间分布、种群更新、种内种间竞争以及物种多样性进行研究,得到以下研究结果:
     (1)金华北山常绿阔叶林群落共有维管植物66科115属144种,其中蕨类植物8种,裸子植物2科2属2种;被子植物58科105属134种。在81种木本植物中,以壳斗科、樟科、山茶科等树种为主的常绿树种占有重要优势。这些均体现了我国亚热带常绿阔叶林群落的结构和组成特征。金华北山常绿阔叶林群落种子植物的区系成分复杂,具有明显的过渡性质。优势科的区系分析中,以热带成分为主,温带成分也占有一定比例;在属的区系分析中,热带成分占有重要优势,但温带成分更多,超过了热带成分的比例。群落中高位芽植物占有绝对优势,占总数的78.68%。叶的性质分析表明,金华北山常绿阔叶林群落以中、小型的全缘、草质、单叶植物为主。群落的区系组成和外貌特征都体现出中亚热带北缘常绿阔叶林的特征,反映出相对湿润温暖的气候特点。
     (2)整个群落的垂直结构可分为四个层次,其中乔木层植物有49种,灌木层植物有84种,草本植物有26种,层间植物有34种;采用Shannon-Wiener指数、Simpson指数、Pielou指数对群落各层次的物种多样性进行测定,结果表明:各指数变化趋势相同,均表现为灌木层>乔木层>层间>草本层,符合亚热带常绿阔叶林群落的一般规律。对优势树种的重要值分析得知,群落的建群树种为木荷(Schima superba)、苦槠(Castanopsis sclerophylla)、枫香(Liquidambar formosana)和马尾松(Pinus massoniana),它们都是亚热带地区植被的典型代表,反映出群落的基本面貌,体现了亚热带常绿阔叶林的特点。应用聚块性指数、扩散系数、负二项式分布等指标研究各群落优势种群的分布格局,结果表明:金华北山常绿阔叶林群落水平结构的聚集性特征明显,15个优势树种中有14个种群表现为集群分布,其中的常绿树种木荷、苦槠、香樟(Cinnamomum camphora)、女贞(Ligustrum lucidum)、山矾(Symplocos sumuntia)、格药柃(Eurya muricata)等聚集程度较高,而麻栎(Quercus acutissima)、枫香、白栎(Quercus fabri)、杉木(Cunninghamia lanceolata)等聚集程度相对较低,马尾松更是呈现出均匀分布特征。该空间格局的形成与各树种的生物学特性以及群落演替过程中个体间的种内、种间竞争有关。
     (3)采用空间代替时间的方法,将优势种群的年龄结构分为四种更新类型,并结合其生物学和生态学特性,对群落所处的演替阶段进行了诊断,结果为:逆-J字型的木荷、苦槠、香樟,都是耐荫性强的常绿阔叶乔木,群落中除有成熟的大径级个体外,林下还有大量的幼树和幼苗的存在,是该区亚热带常绿阔叶林顶极群落的优势种和主要组成种;L型的檵木(Loropetalum chinensis)、女贞、乌饭(Vaccinium bracteatum)、山矾、格药柃等均为常绿阔叶小乔木或者大灌木,耐荫性强,小径级个体数量较多,种群结构稳定,是顶极群落亚乔木层和灌木层的主要组成种;间歇型的枫香、麻栎、锥栗(Castanea henryi)、青冈栎(Cyclobalanopsis glauca),是喜光性树种,耐荫性差,经常出现在林窗内或林缘部,更新具有机会性和波动性特征,是林冠组成种中尚未分化完全的顶级性先锋种;纺锤型的白栎、马尾松和杉木均为阳性树种,在样地内只有少量大胸径个体出现,更新个体缺乏,是先锋种或林窗更新种,在演替后期比较稳定的群落内,将最终衰退消失;本群落可视为顶级群落,但只是处于顶级演替的前期,并未达到最终阶段,将进一步向以木荷、苦槠为优势种的方向发展。
     (4)根据金华北山常绿阔叶林群落中各树种的重要值大小,采用2×2联列表,综合运用方差分析、χ2检验、联结系数AC、共同出现百分率PC及点相关系数Φ,对15个优势树种进行种间联结性研究。结果表明:15个树种间总体呈现不显著的正联结关系,反映出群落结构的不稳定性;正联结种对数略大于负联结种对数,大多数种对的种间联结性较弱,其中马尾松与杉木,杉木与山矾,乌饭与锥栗的联结关系更是表现为完全独立,这说明各种群间独立性较强,没有形成相对稳定的协调搭配机制。这种种间联结关系的松散性,表明目前群落正处于顶级演替的前期阶段。
     (5)运用生态位宽度、生态位重叠值以及生态位相似比例等指标对金华北山常绿阔叶林中15个优势树种的生态位特征进行测定与分析。研究结果表明:在群落的15种优势树种中,木荷、枫香、格药柃、苦槠、马尾松、杉木的Levins和Shannon-Wiener生态位宽度值较大;15个优势树种的生态位重叠和生态相似性比例均较高,由它们组成的105个种对中有15对生态位重叠值大于0.8,有76.2%的种对大于0.4,而且生态位宽度大的树种间一般有较高的生态位重叠和生态位相似性比例。群落中生态位重叠较大的木荷与枫香,苦槠与马尾松,马尾松与格药柃等种对,彼此存在对资源的利用性竞争;而木荷与格药柃、檵木、山矾、乌饭树,位于群落的不同层次,木荷与它们能够共享资源;格药柃、檵木、山矾、乌饭树之间具有相似的生物生态学特性,在资源不足时因竞争而发生生态位重叠,在资源充足时共享资源。随着演替的进行,马尾松、杉木、枫香等阳性先锋树种将逐渐退出群落,木荷、苦槠、格药柃等常绿树种得到进一步发展,各种群生态位也将随之变化直至达到稳定的演替顶级。
Chinese evergreen broad-leaved forest, the main part of the evergreen broad-leaved forest in the world, has the large distribution area and various types, and has an important role in protecting the region ecological environment, maintaining sustainable economic and social development. For a long time, because of inadequate understanding of evergreen broad-leaved forest in its function and effect, it had been damaged and caused series of problems, such as soil degradation, function decline, pests'frequent. Therefore, the research work of evergreen broad-leaved forest community characteristic appears especially important and urgent. This paper is a report about studies on floristic characteristics, community physiognomy, structural features, distribution pattern, intraspecific and interspecific competition, population restoration and species diversity of the evergreen broad-leaved forest in Beishan mountain of Jinhua. The research was based on the field investigation and quantitative ecology methods. The main obtained results are as follows:
     (1) There were 144 species,66families and 115 genera of vascular plants, including 8 ferns,2 families,2 genera and 2 species of gymnosperms,58 families,105genera and 134 species in the evergreen broad-leaved forest community of Beishan Mountain in Jinhua. The evergreen trees of Fagaceae, Lauraceae and Theaceae occupied a dominant position in 81 woody plants. And these characters reflected community structure and composition features of subtropical evergreen broad-leaved forest in China. The floristic characteristics of seed plants in the community had complicated composition significant transition properties. The floristic analysis of dominant families showed that tropic elements occupied the dominant position, and the temperate components were also important. The floristic analysis of genera showed tropical components also had important advantages, but more of them were temperate components. The high buds plant in the community had an absolute advantage, total 78.68%. The analysis of leaf characters showed most of the plant were small and medium-sized, orthophyll, entire and sample leaf. Whatever flora composition or community appearance, they were all reflected the characteristics of evergreen broad-leaved forest in subtropical northern margin, and showed the relatively warm and humid climate characteristics.
     (2) The vertical structure of the evergreen broad-leaved forest could be divided into four levels, including tree layer with 49 species, shrub layer with 84 species, herb layer with 26 species and inter layer with 34 species. The species diversity of the four layers was analyzed by using Shannon-Wiener index, Simpson index, and Pielou index. The results showed that:each index had the same change trend, and represented general rules which were shrub layer>tree layer>inter layer>herb layer in the subtropical evergreen broad-leaved forest community. The important value analysis of superiority species showed that the building-group trees in the community were Schima superba, Castanopsis sclerophylla, Liquidambar formosana, Pinus massoniana, and as representative trees, they reflected the basic appearance and characteristics of subtropical evergreen broad-leaved forest community. The distribution pattern of dominate trees was studied by using patchiness index, dispersion index, negative binomial parameter et al. The results showed that aggregation features of level structure in the forest were obvious, and there were 14 cluster distribution populations in 15 dominate trees, and the gathered degree of Schima superba, Castanopsis sclerophylla, Cinnamomum camphora, Ligustrum lucidum, Eurya muricata et al. were higher, while Quercus acutissima, Liquidambar formosana, Quercus fabric and Cunninghamia lanceolata showed lower gathered degree, especially, Pinus massoniana showed uniform distribution. The distribution pattern was concerned with the biological characteristics, and the intraspecific and interspecific competition in community succession process.
     (3) The age structure and development of dominant population were categorized into four regeneration types by the method of space for time sere. After that, combining the biological with ecological characteristics of that species, the diagnosis of succession stage of this community was carried out. The results were as follows:(1) Inverse-J type species, such as Schima superba, Castanopsis sclerophylla and Cinnamomum camphora, were strong shade-tolerant and dominant species in climax forest, they could regenerate through seedling bank or sprouting under the closed forest canopy; L type species, such as Loropetalum chinensis, Ligustrum lucidum and Ewya muricata, were broad-leaved evergreen small trees or large shrubs, and they were the main components of Iaccio wood layer and shrub layer species in climax community; Sporadic (multimodal) type species, such as Liquidambar formosana, Quercus acutissima and Castanea henryi, had the opportunity and volatility to the population structure, reflecting the characteristics of top pioneer species; Spindle type species, such as Quercus fabri, Pinus massoniana and Cunninghamia lanceolata, were high positive and the pioneer species in the successional sequence, but they had showed a recessionary signs because of the lack of updated population in the community. (2) The successional stage of the forest was classified as a late seral stage community that would develop into a climax community dominated by Schima superba and Castanopsis sclerophylla.
     (4) Based on the important value and 2×2 contingency table, interspecific association of 15 tree species in the evergreen broad-leaved forest of Beishan mountain were examined by using variance ratio (VR),χ2 text, association coefficient (AC), co-occurrence percentage (PC) and point related coefficient (Φ). The results showed that the interspecific relation of 15 species took on a not significantly positive coupling, which reflected instability of the community structure, and the number of positive coupling was slightly more than the negative coupling, most of the interspecific relation had weak coupling and some even had no relationship, such as Pinus massoniana and Cunninghamia lanceolata, Cunninghamia lanceolata and Symplocos sumuntia, Vaccinium bracteatum and Castanea henryi. This laxity feature between various groups reflected the community had not form a relatively stable harmonious collocation mechanism and was at the prophase of the top succession stage.
     (5) The niche characteristics of 15 dominate species in the evergreen broad-leaved forest were determined and analyzed by using niche breath, niche overlap and niche similarity proportion. The results showed that Schima superba, Liquidambar formosana, Eurya muricata, Castanopsis sclerophylla, Pinus massoniana and Cunninghamia lanceolata had bigger niche breath value of Levins and Shannon-Wiener in the community, the niche overlap and niche similarity proportion of dominate trees were higher, and the number of niche overlap value which was greater than 0.8 was 15 in 105 pairs constituted by 15 dominate species and 76.2% was greater than 0.4 and the trees which had big niche breadth often had higher niche overlap and niche similarity proportion value. Schima superba and Liquidambar formosana, Castanopsis sclerophylla and Pinus massoniana, Pinus massoniana and Eurya muricata which had bigger niche overlap value in the community, they existed competition of resources utilization each other. Schima superba and Eurya muricata, Loropetalum chinensis, Symplocos sumuntia, Vaccinium bracteatum located in different levels in the community, schima superba could share resources with them. And Eurya muricata, Loropetalum chinensis, Symplocos sumuntia, Vaccinium bracteatum had similar bioecology characteristics; they would compete with each other, when the resources were short, but share in enough resources. The positive pioneer species such as Pinus massoniana, Cunninghamia lanceolata, and Liquidambar formosana would gradually withdraw from the community, while the evergreen trees such as Schima superba, Castanopsis sclerophylla and Eurya muricata would have further development, and the niches of various populations would also change until the community reaches the stable succession climax.
引文
[1]王孟本,毋月莲编.英汉生态学词典[M].北京:科学出版社,2004.
    [2]包维楷,刘照光,刘朝禄,等.中亚热带湿性常绿阔叶次生林自然恢复15年来群落乔木层的动态变化[J].植物生态学报,2000,24(6):702-709.
    [3]汤孟平,周国模,施拥军,等.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报,2006,30(5):743-752.
    [4]Miyawaki A. Studies in Conservation of natural Terrestrial Ecosystem in Japan, Part I: Vegetation and its Conservation [J]. Outline of Japanese Vegetation, JIBP Synthesis, 1975,8:19-28.
    [5]Miyawaki A. Vegetation of Japan (I-X) [M]. Tokyo:Shibundo,1980-1989.
    [6]Fujiwara, K. Phytosocioloical investigation of the evergreen broad-leaved forest of Japan (Ⅰ) [J]. Bull. Inst. Env. Sci. Techn. Yokahama Nati. Univ.,1981,7 (1):67-133.
    [7]Fujiwara, K. Phytosocioloical investigation of the evergreen broad-leaved forest of Japan (Ⅱ) [J]. Bull. Inst.Env. Sci. Techn. Yokahama Nati. Univ.,1981,8 (1):121-150.
    [8]Fujiwara, K. Phytosocioloical investigation of the evergreen broad-leaved forest of Japan(Ⅲ)[J]. Bull. Inst. Env. Sci. Techn. Yokahama Nati. Univ.,1983,9 (1):139-160.
    [9]Fujiwara, K. Phytosocioloical investigation of the evergreen broad-leaved forest of Japan(Ⅳ)[J]. Bull. Inst. Env. Sci. Techn. Yokahama Nati. Univ.,1986,13 (1):99-150.
    [10]Ovington, J D and L D Pryor. Temperate broad-leaved evergreen forests of Australia [J]. In:Ovington, J D (ed.):Temperate Broad-Leaved Evergreen Forests,1983:73-101. Ecosystem of the World 10. Amsterdam:Elsevier
    [11]Wardle, P. M., Bulfin, J. A., et al. Temperate broad-leaved evergreen forests of New Zealand. In:Ovington, J D (ED.) temperate Broad-Leaved Evergreen Forests,1983: 33-72. Ecosystem of the World 10. Amsterdam:Elsevier
    [12]Box, E.O, and Fujiwara, K. Phytosocioloical investigation of the evergreen broad-leaved forests of the southeastern United States:Preliminary deseription [J].Bull. Inst. Env.Sci.Natl.Univ.1988,15:71-93.
    [13]Fujiwan, K.,and Box, E.O. Evergreen broad-leaved forests of the southeasternUnited States:In:Miyawaki, A (ed.).Vegetation in Eastern North America-Vegetation System and Dynamics under Human Activity in the Eastern North American Cultural Region In Comparison with Japan [C]. University of Tokyo Press,1994,273-312.
    [14]Hara, M, and C Yonebayashi. (EDS.).Lucidophyllous Forests in Southwestern Japan and Taiwan [J].Nat.HIST.Res.SPec.Iss.No.4.Natural History Museum and Institute, Chiba,1997:173.
    [15]宋永昌编著.植被生态学[M].上海:华东师范大学出版社,2001.
    [16]Pavel Tarasov, John W. Williams, Andrei Andreev. Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia:Verification and application to late-Quaternary pollen data [J]. Earth and Planetary Science Letters, 2007,264 (15):284-298.
    [17]Paula Diehl, Maria Julia Mazzarino, Sonia Fontenla. Plant limiting nutrients in Andean-Patagonian woody species:Effects of interannual rainfall variation, soil fertility and mycorrhizal infection [J]. Forest Ecology and Management,2008,20 (7): 2973-2980.
    [18]Hikaru Komatsu, Tomonori Kume, Kyoichi Otsuki. The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield:A paired-catchment study in northern Japan [J]. Forest Ecology and Management,2008, 20:880-886.
    [19]Chien S S. Preliminary notes on the vegetation and floras of Huang Shan, Anhui, China [J]. Contr Biol Lab Soe,1927,3:1-85.
    [20]Yang, Y S., Guo, J. F., and Chen, G. s., et al. Effect of Slash Burning on Nutrient Removal and Soil Fertility in Chinese Fir and Evergreen Broad-leaved Forest of Mid-Subtropical China [J]. Pedosphere.2003,13(1):87-96.
    [21]侯学煜.贵州中北部之植物分布与土壤[J].土壤季刊,1941,1(3):123-129.
    [22]Teng S C. The forest regions of Kansu and their ecological aspects [J]. Bot Bull Acad Sinica,1947,1:187-200.
    [23]Teng S C. Forest geography of eastern Tibet plateaus [J]. Bot Bull Acad Sinica,1948a, 2:62-66.
    [24]Teng S C. A provincial sketch of the forest geography of Chinas[J]. Bot Bull Acad Sinica.1948b.2:133-146.
    [25]何景.福建之植物区域与植物群落[J].中国科学,1951.2(2):193-213.
    [26]曲仲湘,文振旺,朱克贵.南京灵谷寺森林现状的分析[J].植物学报,1952,1(1): 18-49.
    [27]侯学煜.贵州省南部的植物群落[J].植物学报,1952,1(2):65-116.
    [28]侯宽昭,徐祥浩.海南岛的植物和植被与广东大陆植被概况[J].植物生态学与地植物学资料丛刊,1955,4:1-52.
    [29]王献溥.广西临桂雁山附近的植物群落[J].植物生态学与地植物学资料丛刊,1956,7:1-45.
    [30]徐祥浩,钟章成,王灵昭,等.广东英德滑水山的植物群落[J].植物生态学与地植物学资料丛刊,1958,2:1-59.
    [31]陈彦卓,宋永昌,张绅,等.武夷山脉邵武建阳山区植被概况(武夷山脉邵武建阳山区植物调查研究报告)[R].上海华东师范大学生物学系,1960:1-36.
    [32]钱崇澍,吴征锚,陈昌笃.中国植被区划草案[J].中华地理志丛刊,1956,1:85-142.
    [33]宋永昌,张绅,史家梁.关于亚热带山地次生灌丛和幼年林的取样问题[J].植物生态学与地植物学从刊,1965,3:247-263.
    [34]陈彦卓,宋永昌,张绅,等.庐山常绿阔叶林的基本特点类型划分和分布概况[J].华东师范大学学报(自然科学版),1965,1:77-89.
    [35]宋永昌,张绅,刘金林.浙江省常绿阔叶林的基本特征(一)[J].上海师范大学学报(自然科学版),1980,3:59-75.
    [36]张绅,宋永昌,刘金林.浙江省常绿阔叶林的基本特征(二)[J].上海师范大学学报(自然科学版),1980,4:92-100.
    [37]宋永昌,张绅,王献溥,等.浙江泰顺县乌岩岭常绿阔叶林的群落分析[J].植物生态学与地植物学丛刊,1982,6:14-35.
    [38]钟章成.常绿阔叶林生态学研究[M].重庆:西南师范大学出版社,1988:1-100.
    [39]王伯荪,彭少麟.鼎湖山森林群落分析(11):物种联结性[J].中山大学学报(自然然科学版),1983,4:27-35.
    [40]王伯荪,彭少麟.南亚热带常绿阔叶林种间联结测定技术研究(Ⅰ):种间联结测式的探讨与修正[J].植物生态学与地植物学丛刊,1985,9:274-285.
    [41]周玉丽,王献溥,宋永昌.广西常绿阔叶林的排序[J].华东师范大学学报(自然科学版),1989,1:33-41.
    [42]刘玉成.缙云山常绿阔叶林的排序[J].生态学杂志,1989,8(5):10-12.
    [43]丁圣彦,宋永昌.常绿阔叶林植被动态研究进展[J].生态学报,2004,24(8):1769-1779.
    [44]宋永昌,陈小勇,王希华.中国常绿阔叶林究的回顾与展望[J].华东师范大学学报(自然科学版),2005,(1):1-8.
    [45]祝燕,赵谷风,张俪文,等.古田山中亚热带常绿阔叶林动态监测样地---群落组成与结构[J].植物生态学报,2008,32(2):262-273.
    [46]闫俊华,周国逸,黄忠良.鼎湖山亚热带季风常绿阔叶林蒸散研究[J].林业科学,2001,37(1):37-45.
    [47]李日红.鼎湖山季风常绿阔叶林的基本结构和特征[J].中山大学学报论丛,2001,21(3):31-35.
    [48]周小勇,黄忠良,欧阳学军,等.鼎湖山季风常绿阔叶林原锥栗—厚壳桂—木荷群落演替[J].生态学报,2005,25(1):37-44.
    [49]欧阳学军,周国逸,黄忠良,等.鼎湖山季风常绿阔叶林水相沉积元素分布及其相关性研究[J].植物生态学报,2005,29(2):218-225.
    [50]王志高,叶万辉,曹洪麟,等.鼎湖山季风常绿阔叶林物种多样性指数空间分布特征[J].生物多样性,2008,16(5):454-461.
    [51]张娜,乔玉娜,刘兴诏,等.鼎湖山季风常绿阔叶林大气降雨、穿透雨和树干流的养分特征[J].热带亚热带植物学报,2010,18(5):502-510.
    [52]蔡飞,宋永昌.武夷山木荷种群结构和动态的研究[J].植物生态学报,1997,21(2):138-148.
    [53]蔡飞,于明坚,张勇,等.武夷山常绿阔叶林中优势种群种间竞争的研究[J].浙江农业大学学报,1997,23(1):27-30.
    [54]李振基,刘初钿,杨志伟,等.武夷山自然保护区郁闭稳定甜储林与人为干扰甜储林物种多样性比较[J].植物生态学报,2000,24(1):64-68.
    [55]王新功,洪伟,吴承祯,等.武夷山米储林主要种群生态位研究[J]中南林学院学报,2003,23(3):34-38,
    [56]王新功,洪伟,昊承祯,等.武夷山米储林优势种种间联结性研究[J].中国生态农业学报,2003,11(3):25-28.
    [57]王新功,蓝斌.武夷山米储林群落优势种群空间格局的研究[J].河南农业大学学 报,2003,37(1):44-48.
    [58]何国生,林思祖,曹子林,等.武夷山天然常绿阔叶林林隙物种多样性比较研究[J].中国生态农业学报,2004,12(1):70-73.
    [59]何建源.武夷山自然保护区米储群落物种多样性研究[J].厦门大学学报(自然科学版),2005,44(s):7-10.
    [60]林益明,杨志伟,李振基编著.武夷山常绿林研究[M].厦门:厦门大学出版社,2001.
    [61]胡正华,于明坚,索福喜.古田山国家自然保护区常绿阔叶林植物物种多样性研究[J].林业科学,2005,21(3):134-137.
    [62]胡正华,于明坚.浙江古田山常绿阔叶林演替序列研究:群落物种多样性[J].生态学杂志,2006,25(6):603-606.
    [63]宫贵权,程积民,米湘成,等.古田山常绿阔叶林木本植物与生境的相关性[J].中国水土保持科学,2007,5(3):79-83.
    [64]李立,陈建华,任海保,等.古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析[J].植物生态学报,2010,34(3):241-252.
    [65]赖江山,米湘成,任海保,等.基于多元回归树的常绿阔叶林群丛数量分类---以古田山24公顷森林样地为例[J].植物生态学报,2010,34(7):761-769.
    [66]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,22(4):303-311.
    [67]贺金生,胡东.福建龙栖山自然保护区的常绿阔叶林类型及其群落物种多样性分析[J].生态学杂志,1998,17(3):1-6,10.
    [68]胡舜士.广西常绿阔叶林的群落学特点[J].植物学报,1979,21(4):362-369.
    [69]于明坚.青冈常绿阔叶林群落动态研究[J].林业科学,1999,35(6):42-51.
    [70]包维楷,刘照光.中亚热带湿性常绿阔叶林次生林自然恢复15年群落乔木层的动态变化[J].植物生态学报,2000,24(6):702-709.
    [71]金则新.浙江天台山甜槠群落物种多样性[J].生态学杂志,2002,21(3):1-4.
    [72]彭军,李旭光,董鸣.重庆四面山亚热带常绿阔叶林种子库研究[J].植物生态学报,2000,24(2):209-214.
    [73]丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特 征[J].植物生态学报,1997,23(2):197-207.
    [74]Xi-HuaWang, MartinKet, Xiao-Feng Fang. Evergreen broad-leaved forest in Eastern China:Its ecology and conservation and the importance of resprouting in forest restoration [J]. Forest Ecology and Management.2007,245 (1-3):76-87.
    [75]Jianjun Huang, Xihua Wang, Enrong Yan. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China [J]. Forest Ecology and Management,2007,239 (1-3):150-158.
    [76]Da L J, Yang Y C and Song Y C. Study on the Population structure and regeneration types of main species of evergreen broad-leaved forest in Tiantong National Forest park, Zhejiang Provinee, Eastern China [J]. Acra Photoecological Sinica,2004,28 (2): 376-384.
    [77]Liu W Y, Fox J E D & Xu Z F.Biomass and nutrient aceumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China [J]. Forest Ecology and management,2002,158 (1-3):223-235.
    [78]Jean-Marc D ufour-Dror, Aytekin Ertas. Bioclimatic perspectives in the distribution of Quercus ithaburensis Deene.subspecies in Turkey and in the Levant [J]. Journal of biogeography,2004,31:461-474.
    [79]John J W., Michael J D. Historical biogeography, ecology and species richness [J]. Trends in Ecology and Evolution,2004,19:639-644.
    [80]David D C, Kurt H R. Topographic controls on the regional-scale biodiversity of the south-western U.S.A. [J]. Journal of Biogeography,2004,31:1125-1138.
    [81]David Salvador-Van Eysenrode, Jan Bogaert, Piet Van Hecke, et al. Forest canopy perforation in time and space in Amazonian Ecuador[J]. Acta Oecologica,2000,21 (4-5):285-291.
    [82]Jonathan P P. Floristic biogeography of the Hawaiian Islands:influences of area, environment and pale geography [J]. Journal of Biogeography,2004,31:487-500.
    [83]吴征镒.中国植物区系的热带亲缘[J].科学通报,1965,17(1):25-33.
    [84]张宏达.论华夏植物区系的起源[J].中山大学学报(自然科学版),1980,9(1):1-12.
    [85]吴征镒,王荷生.中国自然地理一植物地理(上册)[M].北京:科学出版社,1983.
    [86]王荷生.植物区系地理[M].北京:科学出版社,1992.
    [87]王荷生,张镜铿.中国种子植物特有属的生物多样性的特征[J].植物分类学 报.1991,29(2):113-130.
    [88]张宏达.植物的特有现象与生物多样性[J].生态科学,1997,16(2):9-17.
    [89]吴征镒.中国植被[M].北京:科学出版社,1980:166-169.
    [90]王荷生.中国森林种子植物区系的特征[J].热带亚热带植物学报,1998,6(2):87-96.
    [91]沈泽昊,张新时.中国亚热带地区植物区系地理成分及其空间格局的数量分析[J].植物分类学报,2000,38(4):366-350.
    [92]金则新.浙江天台山种子植物区系分析[J].广西植物,1994,14(3):211-215.
    [93]郭水良,刘鹏,陈刚,等.浙江金华北山植物区系及植被[J].浙江师大学报(自然科学版),1993,16(2):59-67.
    [94]王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    [95]Mueller-Dombois, D.& Ellenberg, H. Aims and Methods of Vegetation [M].New York:John Wiley & Sons,1974:139-147.
    [96]Whittaker, R H. Communities and Ecosystems [M]. New York:MacMillan Company, 1970:6-17.
    [97]高贤明,陈灵芝.植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J].植物学报,1998,40(6):553-559.
    [98]Raunkiaer, C. The life forms of Plants and Statistical Plant Geography [M]. New York: Oxford University Press,1932:2-104.
    [99]江洪.东灵山植物群落生活型谱的比较研究[J].植物学报,1994,36(11):884-894.
    [100]王献溥.广西亚热带山地针阔混交林的群落学特点[J].武汉植物学研究,1990,8:243-253.
    [101]王伯荪,余世孝,彭少麟,等.植物群落学实验手册[M].广州:广东高等教育出版社,1996:34-36.
    [102]钟章成,刘芸.植物种群生态学研究进展中的几个问题[A].In:中国生态学会,生态学与全面、协调、可持续发展[M].北京:中国生态学会.2004:55-56.
    [103]Greig-Smith, P. Quantitative Plant Ecology [M]. Oxford:Blackwell Scientific Publishing,1983.
    [104]Greig-Smith, P. Pattern in vegetation [J]. Ecology,1979,67:755-779.
    [105]张金屯.数量生态学[M].北京:科学出版社,2004:86-94.
    [106]Sewart G. H.& Rose A. B. The significance of life history strategies in the developmental history of mixed beech forests [J]. New Zealand Vegetation,1990,87: 101-114.
    [107]Kershaw K A, Looney, J H. Quantitative and dynamic plant ecology (Third edition) [M]. London:Edward Arnold,1985,50-127.
    [108]Morisita M. Measuring of the dispersion of individuals and analysis of the distributional patterns [J]. Memoirs of the Faculty of Science, Kyushu University, series D,1959.2 (2):215-235.
    [109]Lloyd M, Lnger R F, King F W. On the reptile and amphibian species in a Borean rain forest [J]. American Naturalist,1968,102:497-515.
    [110]兰国玉,胡跃华,曹敏,等.西双版纳热带森林动态监测样地---树种组成与空间分布格局[J].植物生态学报,2008,32(2):287-298.
    [111]谢国文,张志勇.永瓣藤的地理分布及其种群空间格局[J].生态科学,1999,18(1):7-11.
    [112]李先琨,向悟生,欧祖兰,等.濒危植物南方红豆杉种群克隆生长空间格局与动态[J].云南植物研究,2003,25(6):625-632.
    [113]Brodie C, Howle G, Fortin M J. Development of a Populus balsamifera clone insubarctic Quebec reconstructed from spatial analyses [J]. Journal of Ecology,1995, 83:309-320.
    [114]达良俊,杨永川,宋永昌.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J].植物生态学报,2004,28(3):376-384.
    [115]蔡飞,宋永昌.武夷山木荷种群结构和动态的研究[J].植物生态学报,1997,21(2):138-148.
    [116]李新荣.俄罗斯平原针阔混交林群落的灌木层植物种间相关研究[J].生态学报,1999,19(1):55-56.
    [117]彭明春,党承林.云南鸡足山元江拷群落和高山拷群落的植物种间结合研究[J].生态学报,1998,18(2):158-166.
    [118]郭志华,卓正大,陈洁,等.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J].植物生态学报,1997,21(5):424-432.
    [119]Hurlburt, S.H. Acoefficient of interspecific association [J]. Ecology,1969,50(1):1-9.
    [120]王义弘.森林生态学实验实习方法[M].哈尔滨:东北林业大学,1987.
    [121]孙中伟,赵士洞.长白山北坡椴树阔叶红松林群落木本植物种间联结性与相关性研究[J].应用生态学报,1996,7(1):1-5.
    [122]黄世能.海南岛尖峰岭次生热带山地雨林树种间的联结动态[J].植物生态学报,2000,24(5):569-574.
    [123]周先叶,王伯荪,李鸣光.广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J].植物生态学报,2000,24(3):332-339.
    [124]张金屯,焦蓉.关帝山神尾沟森林群落木本植物种间联结性与相关性研究[J].植物研究,2003,23(4):458-463.
    [125]Dice, L.R. Measure of the amount of ecological association between species [J]. Ecology,1945,26:297-302.
    [126]Hubalek, Z. Coefficient of association and similarity based on binary Presence-absence data:an evolution [J]. Biological Review,1982,57:669-689.
    [127]Moore P D, Chapman S B. Methods in Plant Ecology [M]. Blackwell Scientific Publications,1986,462-465.
    [128]Elton C S. Animal Ecology [M]. London:Sidgewick and Jackson,1927:63-68.
    [129]李军玲,张金屯,郭逍宇.关帝山亚高山灌丛草甸群落优势种群的生态位研究[J].西北植物学报,2003,23(12):2081-2088.
    [130]金松岩,张敏,杨春.生态位理论研究论述[J].内蒙古环境科学,2009.21(4):12-15.
    [131]Pianka, E. R. The structure of lizard communities [J]. Annual Review of Ecology and Systematics,1973,4:53-74.
    [132]王孝安.马衔山林区优势植物种群竞争的初步研究[J].植物生态学与地植物学丛刊,1984,8(1):36-40.
    [133]Hutchinson, G. E. The Ecological theatre and the evolutionary play [M]. New Heaven Connecticut:Yale University Press,1965.
    [134]Parrish, J. A. D.& F. A. Bazzaz. Competitive interactions in plant communities of different successional ages. Ecology,1982,63(2):314-320.
    [135]Chave J. Neutral theory and community ecology [J]. Ecology Letters,2004, 7:241-253.
    [136]Stephen P, Hubbell. Neutral theory and the evolution of ecological equivalence [J].Ecology,2006,87(6):1387-1398.
    [137]余世孝.鼎湖山厚壳桂群落优势种生态位宽度与重叠之研究中国科学院鼎湖山森林生态系统定位研究站.热带亚热带森林生态系统研究(第3集)[M].海口:海南人民出版社,1985,32-41.
    [138]梁士楚.云贵鹅耳枥群落乔木种群生态位初探[J].广西植物,1994,14(3):227-230.
    [139]刘金福,洪伟.格氏栲群落生态学研究--格氏栲林主要种群生态位的研究[J].生态学报,1999,19(3):347-352.
    [140]姚小贞,丁炳扬,金孝锋,等.凤阳山红豆杉群落乔木层主要种群生态位研究[J].浙江大学学报(农业与生命科学版),2006,32(5):569-575.
    [141]王祥福,郭泉水,巴哈尔古丽,等.崖柏群落优势乔木种群生态位[J].林业科学,2008,44(4):6-13.
    [142]袁志忠,何炳辉.生态位理论及其在植物种群中的应用[J].福建林业科技,200431(2):123-127.
    [143]郑祥,鲍毅新,孔军苗,等.金华北山阔叶林大型土壤动物群落的初步研究[J].土壤,2005,37(5):545-550.
    [144]刘鹏,徐根娣,周丽,等.浙江北山七子花土壤主要理化性状的研究[J].浙江师范大学学报,1999,22(1):67-71.
    [145]罗虹,刘鹏,谢陈笑.金华北山七子花林土壤的微生物和酶特征研究[J].浙江林业科技,2004,24(4):1-4.
    [146]林鹏.植物群落学[M].上海:上海科学技术出版社,1986.
    [147]黄全能,陈存及,邱尔发,等.红锥天然林群落特征研究[J].亚热带植物通讯,1998,27(2):7-11.
    [148]吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究,2003,25(3):245-257
    [149]宋永昌.浙江天童国家森林公园的植被和区系[M].上海:上海科学技术文献出版社,1995.
    [150]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991(增刊):1-139.
    [151]Raunkiaer C. The life forms of Plants and statistical plant geography, Being the Collected papers of C. Raunkiaer [M].Oxford England:Clarendon Press.1934.
    [152]Paijmans K. An analysis of four tropical rain forest sites in NewGuinea [J]. Journal of Ecology,1970,58:77-101.
    [153]Barkman J J. The investigation of vegetation texture and structure. In:Werger M JA. (ed.) The study of vegetation [M]. The Hague-Boston-London:Dr.Junk by Publishers.125-160.1979
    [154]余树全.浙江省常绿阔叶林的生态学研究[D].北京:北京林业大学,2003.
    [155]林勇明,吴承祯,洪伟,等.珍稀濒危植物长苞铁杉群落的植物生活型及叶特征分析[J].植物资源与环境学报,2004,13(4):35-35.
    [156]Castro D P, Villar S P, Perez R C, et al. Leaf chemical eomlxition in three on (Fagaeae) species along a rainfall gradient[J]. NE Spain,1997,11:127-134.
    [157]陈章和,李鸣光,吕小红.广东南昆山自然保护区森林群落[J].生态科学,1983,2(1):18-29.
    [158]杨一川,庄平,黎系荣.峨眉山峨嵋栲、华木荷群落研究[J].植物生态学报,1994,18(2):105-120.
    [159]包维楷,刘照光.四川瓦屋山原生和次生常绿阔叶林的群落学特征[J].应用与环境生物学报,2002,8(2):120-126.
    [160]刘济明.茂兰喀斯特森林主要树种的繁育更新对策[J].林业科学,2000,3(5):114-122.
    [161]何恒斌,张惠娟,贾桂霞.磴口县沙冬青种群结构和空间分布格局的研究[J].林业科学,2006,42(10):13-18.
    [162]徐学红,于明坚,胡正华,等.浙江古田山自然保护区甜槠种群结构与动态[J].生态学报,2005,25(3):645-643.
    [163]刘鹏,康华靖,陈子林,等.浙江六十田自然保护小区常绿阔叶林群落特征及优势乔木种的动态[J].浙江师范大学学报(自然科学版),2007,30(2):128-134.
    [164]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究[J].生态学报,1995,15(3):268-277.
    [165]Pielou E C. Ecological diversity [M]. New York:John Wiley & Sons,1975.
    [166]Whittaker R H. Evolution and measurement of species diversity [J]. Taxon,1972,21: 213-251.
    [167]Alatalo R V. Problems in the measurement of evenness in ecology [J]. Oikos,1981, 37:199-204.
    [168]Pielou E C. Mathematical ecology [M]. New York:Wiley interscience,1985,84-193.
    [169]陈辉,刘玉宝,吴承祯,等.闽北次生常绿阔叶林主要树种空间分布格局及其应用研究[J].应用与环境生物学报,1999,5(6):561-565.
    [170]闫淑君,洪伟,吴承祯,等.武夷山天然米槠林优势种群结构与分布格局研究[J].热带亚热带植物学报,2002,10(1):15-21.
    [171]郝朝运,刘鹏,邬周伟.浙江中部七子花种群结构与空间分布格局的研究[J].林业科学研究,2006,19(6):778-784.
    [172]张光富.浙江天童灌丛群落中优势种群的年龄结构和分布格局[J].武汉植物学研究,2001,19(8):233-240.
    [173]Ohsawa, M., W. Wildpret & M. del Arco. A comparative study on evergreen broad-leaved forests and trees of the Cannary Islands and Japan [J]. Chiba Laboratory of Ecology, Chiba University,1999:67-87.
    [174]杨永川,达良俊,陈波.天童米槠-木荷群落主要树种的结果及空间格局[J].生态学报,2006,26(9):2927-2938.
    [175]Arevalo J R and Fernandez-Palacios J M. Spatial patterns of trees and juveniles in a laurel forest of Tenerife, Canary Islands [J]. Plant Ecology,2003,165:1-10.
    [176]Manabe T, Nishimura N and Miura M, et al. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan[J]. Plant Ecology,2000,151:181-197.
    [177]张文辉,卢彦昌,周建云,等.巴山北坡不同干扰条件下栓皮栎种群结构与动态[J].林业科学,2008,44(7):12-16.
    [178]Magurran A. E. Ecological diversity and its measurement [M]. Sydney:Princeton University Press,1988:1-79.
    [179]刘琪憬,胡理乐,李轩然.小流域治理20年后的千烟洲植物多样性[J].植物生态学报,2005,29(5):766-774.
    [180]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,22(4):303-311.
    [181]彭少鳞.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    [182]蔡飞,陈爱丽,陈启瑞.浙江建德青冈常绿阔叶林种群结构和动态的研究[J].林 业科学研究,1997,11(1):99-106.
    [183]金则新.浙江天台山甜槠种群结构与动态[J].生态学杂志,1999,18(6):10-15.
    [184]Da, L.J.& M. Ohsawa. Abandoned pine-plantation succession and influence of pine mass-dieback in the urban landscape of Chiba, Central Japan [J]. Japanese Journal of Ecology,1992,42:81-93.
    [185]王献溥,郭柯,田新智.广西杉木林的分类、分布和演替[J].植物资源与环境学报,2004,13(1):43-47.
    [186]许冬焱.缙云山风灾迹地恢复群落主要乔木树种种间联结性.广西植物,2009,29(3):321-326.
    [187]张金屯.植被数量生态学方法.北京:中国科学技术出版社,1995.
    [188]上官铁梁,张峰山.西绵山植被优势种群的分布格局与种间联结的研究.武汉植物学研究,1988,6(4):357-364.
    [189]杜道林,刘玉成.给云山亚热带栲树林优势种群种间联结性研究[J].植物生态学报,1995,19(2):149-157.
    [190]刘金福,洪伟,樊后保,等.天然格氏栲林乔木层种群种间关联性研究.林业科学,2001,37(4):117-123.
    [191]王文进,张明,刘福德,等.海南岛吊罗山热带山地雨林两个演替阶段的种间联结性.生物多样性,2007,15(3):257-263.
    [192]Dice, L.R. Measure of the amount of ecological association between species [J]. Ecology,1945,26:297-302.
    [193]Hubalek, Z. Coefficient of association and similarity based on binary Presence-absence data:an evolution [J]. Biological Review,1982,57:669-689.
    [194]Moore P D, Chapman S B. Methods in Plant Ecology [M]. Blaekwell Scientific Publications,1986:462-465.
    [195]Pielou, E.C. (卢泽愚译).数学生态学(第二版)[M].科学出版社,1988:119-254.
    [196]郭志华,卓正大,陈洁,等.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J].植物生态学报,1997,21(5):424-432.
    [197]郭忠玲,马元丹,郑金萍,等.长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究[J].应用生态学报,2004,15(11):2013-2018.
    [198]彭少麟,周厚诚,郭少聪,等.鼎湖山地带性植被种间联结变化研究[J].植物学 报,1999(11):1239-1244.
    [199]骆土寿,李意德,陈德祥,等.海南岛鸡毛松人工林群落种间联结性研究[J].生态学杂志,2005,24(6):591-594.
    [200]邓贤兰,刘玉成,吴杨.井冈山自然保护区栲属群落优势种群的种间联结关系研究[J].植物生态学报,2003,27(4):531-536.
    [201]钟章成主编.常绿阔叶林生态系统研究[M].重庆:西南师范大学出版社,1992:333-364.
    [202]孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002.
    [203]孟广涛,柴勇,方向京,等.云南富源光皮桦种群与主要伴生树种生态位研究[J].南京林业大学学报(自然科学版),2006,30(2):63-66.
    [204]邵彬,邓坤枚.长白山北坡亚高山云冷杉林的植物种类组成及重要值[J].自然资源学报,2000,15(1):66-73.
    [205]张中峰,张璐,陈北光,等.南岭国家级自然保护区广东松群落优势种群生态位研究[J].华南农业大学学报,2006,27(2):74-77.
    [206]Pielou E C. Niche width and niche overlap:A method for measuring them [J]. Ecol, 1972,53 (4):687-692.
    [207]Chnzeiy. Induct of hietorysis by ecdysterone in vitro:Degradation of anterior silk gland in silkworm, Bombyxmori (Lepidoptera:Bombycidae) [J]. Appl EntZool, 1975,10:136-138.
    [208]苏志尧,吴大荣,陈北光.粤北天然林优势种群生态位研究[J].应用生态学报,2003,14(1):25-29.
    [209]梁士楚.红海榄群落演替中种群生态位研究[J].广西科学,1997,4(2):120-123.
    [210]向悟生,李先琨,苏宗明,等.元宝山冷杉群落主要树木种群生态位的初步研究[J].武汉植物学研究,2002,20(2):105-112.
    [211]陈存及,陈新芳,刘金福,等.人工-天然杉阔混交林种群生态位及竞争研究[J].林业科学,2004,40(1):79-83.
    [212]陈子林,张志祥,刘鹏,等.浙江六十田常绿阔叶林主要乔木种生态位研究[J].中南林业科技大学学报,2007,27(6):77-81.
    [213]李登武,张文辉,任争争.黄土沟壑区狼牙刺群落优势种群生态位研究[J].应 用生态学报,2005,16(12):2231-2235.
    [214]彭逸生,郑明轩,莫罗坚,等.珠海市陆生天然次生林优势种的生态位[J]生态学杂志,2007,26(4):483-488.
    [215]梁士楚.红海榄群落演替中种群生态位的研究[J].广西科学,1997,4(2):120-123.
    [216]赵永华,雷瑞德,何兴元,等.秦岭锐齿栎林种群生态位特征研究[J].应用生态学报,2004,15(6):913-918.
    [217]闫淑君,洪伟,吴承祯,等.万木林中亚热带常绿阔叶林林隙主要树种的高度生态位[J].应用与环境生物学报,2002,8(6):578-582.
    [218]奚为民.怀柔山区灌丛群落优势种群生态位的研究[J].植物生态学报,1993,17(4):324-330.
    [219]毕润成,王祎玲.山西霍山森林群落主要种生态位的研究[J].西北植物学报,1999,19(6):198-205.
    [220]丁圣彦,宋永昌.常绿阔叶林植被动态研究进展[J].生态学报,2004,24(8):769-1774.
    [221]蔡锡交,彭少麟,曹洪麟.广州罗岗村边次生常绿阔叶林群落分析[J].应用与环境生物学报,1998,4(2):107-114.
    [222]石胜友,尚进,田海燕,等.缙云山风灾迹地常绿阔叶林生态恢复过程中优势种群分布格局和动态[J].武汉植物学研究,2003,21(4):321-326.
    [223]陈小勇,宋永昌.受损生态系统类型及影响其退化的关键因素[J].长江流域资源与环境,2004,13:78-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700