低渗储层裂缝特征及其对油气富集的控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然裂缝是油气藏中普遍存在的一种构造现象,尤其在盆地构造活动强烈的区域。对于低渗砂岩油藏,断裂系统对油气的成藏以及后续的开发工作显得尤为重要。本文研究的鄂尔多斯盆地南部红河油田长8油藏通过多年的勘探和开发实践已经证明了断层及裂缝系统是该油藏油气富集和获得高产的关键。本论文针对红河油田裂缝系统特征、成因、期次、发育控制因素以及和油气富集之间的关系展开深入研究,搞清红河油田长8油藏断裂系统的分布规律、油气成藏条件及断裂控油作用,进而构建油气成藏模式。
     文中根据大量野外露头裂缝的调查、岩芯裂缝描述、成像测井裂缝特征的研究,总结了裂缝的基本特征,认为研究区主要以高角度和垂直裂缝为主,主要发育北东组系,其次为北西组系,纵向可贯穿不同岩性层段,横向发育规模可以达到数米到十余米;研究区目的层段同时发育剪性破裂和张性破裂,其中剪性破裂缝面可见不同方向的剪切擦痕或者缝面光滑平整,呈共轭组系出现;而张性破裂缝面粗糙、凹凸不平、呈弯曲状等特征,缝面多见方解石充填物,一般以平行组系产出。裂缝以北东向和南北向组系有效性最高,砂岩中裂缝有效性高于泥岩裂缝的有效性。在裂缝特征认识的基础上,论文开展了有效裂缝的测井响应特征分析,认为各种探测深度的电阻率降低、声波时差增大、密度降低是天然有效裂缝的响应特征。因此采用判别分析、R/S分析、概率神经网络分析等方法,结合对裂缝孔隙度、渗透率参数的测井解释结果建立了适合构造平缓背景下红河油田长8油藏天然有效裂缝的常规测井综合识别标准。
     通过对红河油田长8油藏天然裂缝发育控制因素的研究认为,天然裂缝的发育与研究区断层、古构造应力演化、岩层厚度、岩性等因素有关。结合裂缝特征和力学性质,认为天然裂缝的成因为区域构造裂缝叠加断层共(派)生裂缝两种类型。通过岩石声发射实验、裂缝充填物稳定同位素分析,红河油田长8油藏天然裂缝主要形成时期为燕山期和喜山期,其中燕山期为关键时期,本次评价主要针对这两期天然裂缝开展了评价。
     本论文采用古构造恢复模拟了燕山期、喜山期古地应力场,对两期区域构造裂缝的分布进行了预测和评价。针对断层共(派)生天然裂缝建立了不同规模断层对裂缝发育的控制函数,预测和评价了断层共(派)生成因类型天然裂缝,并确定了不同规模断层对裂缝的控制距离。通过叠加这两种成因类型裂缝明确了研究区长8油藏天然裂缝的分布规律,从整体上看工区天然裂缝发育程度南部高于北部、断裂带内高于非断裂带区、砂岩发育区高于泥岩发育区。
     最后本论文从研究区油气地质条件入手分析了长8油藏的成藏背景及过程,充分考虑了构造、断裂、长7烃源岩与长8油藏砂体之间的配置关系,构建了长8油藏五种油气聚集成藏模式,即裂缝疏导成藏模式、断裂疏导成藏模式、源储接触成藏模式、砂体叠置侧向疏导成藏模式、组合疏导成藏模式。油气测试资料表明油气富集受控因素复杂,除了与断裂系统的分布关系密切,还受储层条件、成藏条件等各个因素的共同制约,因此各种成藏要素与断裂系统的匹配是红河油田长8油藏低孔低渗砂岩油藏油气富集以及获得高产的关键。
Natural fractures occur commonly in the oil and gas reservoirs, especially in thearea with intense tectonic activities. For the sandstone reservoirs with low permeability,fracture systems are particularly important in hydrocarbon accumulation andsubsequent petroleum development. It has been proven by the exploration andexploitation of the oil pools in the member Chang8of southern Red River Oilfield inthe Ordos Basin studied in the paper for many years that fault and fracture systems arethe key to the hydrocarbon enrichment and large output in the development of thereservoirs. The characteristics, origination, stages, controlling factors of the fault andfracture systems and the relation with hydrocarbon enrichment in the Red River oilfieldare studied in depth, and then the distribution rule of the fault and fracture systems inthe reservoir of Member Chang8in the Red River Oilfield is figured out. Consideringhydrocarbon accumulation conditions and fracture controlling effects on theaccumulation, hydrocarbon accumulation models are constructed.
     Based on field investigation of cracks, description of core fractures and research offracture characteristics on imaging log, the basic characteristics of the cracks aresummarized that high-angle and vertical cracks mainly developed in the research areadominantly in the NE-SW group, secondly in the NW-SE group. The cracks cut throughthe different lithological layers vertically, extend a few meters to more than ten metershorizontally; shear ruptures and tensile ruptures occur together in the target layers in thestudy area among which shear ruptures developed in conjugated group, slickens andshear scratches in different directions or smooth fracture surfaces are visible, whereas tensile rupture surfaces are rough and uneven, bent-like, commonly with calcite fillingsand generally in parallel-group system. Fracture effectiveness is the best in NE-SW andSN groups is higher in the sandstone than that in the fractured shale. Based on theunderstanding of fracture characteristics, the paper analyzed logging responsecharacteristics of effective fractures, that is, low resistivity in various probing depth,increased acoustic value and slightly reduced density value. Therefore adoptingdiscriminant analysis, R/S analysis, probabilistic neural network analysis methodscombined with log interpretation parameters such as fracture porosity and permeability,the conventional logging standard for natural fracture identification in the reservoirs ofMember Chang8in Red River oil field is establish.
     It is believed through the research on control factors to the development of thenatural fractures in the reservoirs of Member Chang8in Red River oil field that thedevelopment of the natural fractures in the research area is related to faults, the ancienttectonic stress evolution, bed thickness, lithology and so on; it can be recognized on thebasis of the their characteristics and mechanical properties that regional tectonicfractures were superimposed by fault-associated (or fault-derived fractures). It isdetermined after rock acoustic emission experiment and stable isotope analysis offracture fillings that the natural fractures in the reservoirs of Member Chang8in RedRiver oil field developed mainly in the periods of Yanshanian and Himalayanmovements among which Yanshanian is critical period, the natural fractures developedin the two phases were evaluated in the paper.
     Paleostructure restoration in the paper simulated the ancient stress field in theperiods of Yanshanian and Himalayan movements, the distribution of tectonic fracturesin the periods is evaluated and predicted; in connection with fault-associated orfault-derived natural fractures, the control function to the development of differentscale faults is established, and the controlling distance of faults to the associatedfractures is determined. Finally the distribution pattern of the natural fractures in thereservoirs of Member Chang8was pointed out through superposition of the twogenetic types of cracks, and the development of the natural fractures is overall better inin the south part than in the north part, and in the fault zone than the non-fault zone, insandstone than in shale.
     Finally, the background and process of the hydrocarbon accumulation in thereservoirs of Member Chang8in Red River oil field are analyzed starting from thegeological conditions in the study area in the paper. After the matching of structures,faults, hydrocarbon source rocks and reservoirs is fully taken account of, five kinds hydrocarbon accumulation models for the reservoirs in the member Chang8are built,that is, cracks-divert accumulation model, fault-divert accumulation model,source-reservoir contacting accumulation model, the lateral-divert accumulation modelof stacked sand bodies and the combination-divert accumulation model; the controllingfactors to hydrocarbon-rich region obtained through well tests are complex, not onlythe fracture system but also the reservoir conditions, accumulation conditions and so on;the match of various accumulation factors and faults is the key to the oil and gasenrichment and to obtain high yield in the low porosity and low permeability reservoirsof Member Chang8in Red River oil field.
引文
[1]温爱琴,范久霄,鄂尔多斯盆地镇泾地区三叠系烃源岩地化特征及勘探前景[J].河南石油,2003,17(2):15~17.
    [2]王允诚.裂缝性致密储集层[M].北京:石油工业出版社,1992.
    [3]唐曾熊.油气藏的开发分类及描述[M].北京:石油工业出版社,1994.
    [4]何秋轩,高永利,阎庆来.油层渗流的若干微观机理[J].西安石油学院学报(自然科学版),1995,10(3):68~69.
    [5]阎庆来等.多孔介质中多相流体流动的微观可视化研究[C].陕西省首届力学测试技术研讨会论文集,1991.
    [6]李道品等.低渗透油田开发技术[M].北京:石油工业出版社,1994.
    [7]李道品.低渗透油田的开发方式[J].低渗透油气田,1997,2(1):38~44.
    [8]张哨楠致密天然气砂岩储层:成因和讨论[J].石油与天然气地质,2008,29(1):1-10.
    [9] Aguilera R. Determination of Subsurface Distance Between Vertical Parallel NaturalFractures Based on Core Data[J].Am. Assoc.Petrol. Geol.Bull.,1988,72(7):845~851.
    [10] Aguilera R.Natural Fractured Reservoir. Penewell Publishing Company,Tulsa,Oklahoma,1995:181~183.
    [11] Nelson R A. Geological Analysis of Naturally Fractured Reservoirs.[M].Houston,GulfPublishing Company,1985.
    [12] R. A. Nelson. Production characteristics of the fractured reservoirs of the La Paz field,Maracaibo basin, Venezuela[J]. AAPG Bulletin,2000,84(11):1791~1809.
    [13] Pollard, D. D.&Aydin, A. Progress in Understanding Jointing Over the Past Century[J].GSA Bulletin,1988,100(6):1181~1204.
    [14] Narr W. Suppe J.Joint Spacing in Sedimentary Rocks.[J].Struct.Geol.,1991,13(9):1037~1048.
    [15] Narr W.Lerch I A. Method for Estimating Subsurface Fracture Density in Core[J].Am. Assoc.Petrol. Geol. Bull.,1984,68(5):637~648.
    [16] Lornz J C,Finley.S J,.Regional fractures II:Fracturing of Mesaverde Reservoris in thePiceance basin, Colorado[J]. AAPG Bulletin,1991,75(11):1738~1757.
    [17] Dennis J G.International Tectonic Dictionary[J].Am. Assoc. Petrol. Geol., Men.7,1967:196.
    [18]周文.裂缝性油气储集层评价方法[M].成都:四川科技出版社,1998.
    [19] D.W.Stearns. Certain Aspects of Fracture in Naturally Defoumed Rocks in NSF AdvancedScience Seminar in Rock Mechanics,R.E.Rieker,Ed.,Special Report.Air Force CambridgeResearch Laboratories,Bedford,Mass.,1968.97~118.
    [20] M. Friedman and D.W.Stearns,Relations Betewwn Stresses Inferred from Calcite TwinLamellae and Macrofractures.Teton Abticline, Montana[J]. Geol. Soc. Amer. Bull.,1971,82(11):3151~3162.
    [21] D.W.Stearns. and M. Friedman, Reservoirs in Fractured Rock[J]. Am. Assoc. Petrol. Geol.,Memoir.1972,16:82~100.
    [22] E M.斯麦霍夫.裂缝性油气储层勘探的基本理论与方法[M].北京:石油工业出版社,1985
    [23] T.D.Van Golf~Racht. Fundamentals of Factured Reservoir Engineering[M]. ElsevierScientific Publishing company new York,1982.
    [24] Sibbit A. M., Faivre O.裂缝岩石的双侧向测井响应(T)[A].宋兰琴译.测井分析家协会第二十六届年会论文集[C].北京:石油工业出版社,1989.
    [25]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990(2):83~92.
    [26]陈科贵,穆曙光,魏彩茹,等.一种评价碳酸盐岩储层裂缝参数的测井新模型[J].西南石油学院学报,2003,25(1):6~8.
    [27] Romain Prioul, Jeroen Jocker. Fracture characterization at multiple scales using boreholeimages, sonic logs,and walkaround vertical seismic profile[J]. AAPG Bulletin,2009.93(11):1503-1516.
    [28] Barton,C. C.,Lapointe,P. R.,Fractal in petroleum geology and earth science processes [M].New York,1995.
    [29] T Hirata Fractal d in ension of fault susten on Japan fractal structure in rock geometry atvarious scales Journal of Pure and Appl[J].Geophysics,1989,131:131~157.
    [30] Velde B,Duboes J etc Fractal analysis of fracture in rocks the Cantor’s Dustm ethod[J].Tectonphysics,1990,57(3):61~68.
    [31] Murray G H. Quantitative fracture study, Sanish pool, Mckenzie county, North Dakota[J].AAPG Bulletin,1968,52(1):57~65.
    [32] Murry G H. Quantitative fracture study, Sanish Pool, Fracture-controlled[J].AAPG, BulletinReprint Series21,1977.264~275.
    [33] Arnaud G. Lange.Assisted history matching for the characterization of fracturedreservoirs[J].AAPG Bulletin,2009.93(11):1609-1619.
    [34]曾锦光.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982.
    [35]曾锦光.构造裂缝的理论分析研究[A].中国南方油气勘查新领域探索论文集[C].北京:地质出版社,1988.
    [36]王仁,丁中一,等.固体力学基础[M].北京:地质出版社,1979,15~28.
    [37] Creties Jenkins, Ahmed Ouenes, Abdel Zellou.Quantifying and predicting naturally fracturedreservoir behavior with continuous fracture models[J]. AAPGBulletin,2009.93(11):1597-1608.
    [38]周文.麻黄山西区块裂缝发育特征及与油气成藏关系研究[R].华北分公司,2008.
    [39]曾联波,柯世镇,刘洋,等.低渗透油气储层裂缝研究方法[M].北京:石油工业出版社,2010.
    [40]曾联波,郑聪斌.陕甘宁盆地靖安地区裂缝及其对油田开发的影响[J].西安石油学院学报,1999,14(1):16~18.
    [41]赵重远,刘池洋.残延克拉通内盆地及其含油气性——以鄂尔多斯和四川盆地为例[A]中国地质学会.“七.五”地质科技重要成果学术交流会议论文选集[C].北京:科学技术出版社,1992:610~613.
    [42]张岳桥,廖昌珍.晚中生代新生代构造体制转换与鄂尔多斯盆地改造[J].中国地质,2006,33(1):28~40.
    [43]张泓.鄂尔多斯盆地中新生代构造应力场[J].华北地质矿产杂志,1996,13(1):87~92.
    [44]张吉森,杨奕华,王少飞等.鄂尔多斯地区奥陶系沉积及其与天然气的关系[J].天然气工业,1995,15(2):5~10
    [45]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展,2003,18(3):398~404.
    [46]周新桂,邓宏文.储层构造裂缝定量预测研究及评价方法[J].地球学报,2003,24(2):175~180.
    [47]李士祥,邓秀芹,庞锦莲,等.鄂尔多斯盆地中生界油气成藏与构造运动的关系[J].沉积学报,2010,28(4):798~807.
    [48]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    [49]刘岩.鄂尔多斯盆地南部镇泾油田长8油层组储层特征研究[D].成都理工大学硕士论文,2008
    [50]袁明生,潘懋,童亨茂,等.低渗透裂缝性油藏勘探[M].北京:石油工业出版社,2000.
    [51]袁士义,宋新民,冉启全.裂缝性油藏开发技术[M].北京:石油工业出版社,2006.
    [52]童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报,2004,14(2):9~13.
    [53]陈琼,王伟,葛辉.成像测井技术现状及进展[J].国外测井技术,2007,22(3):8~10.
    [54]曾联波,高春宇,漆家福.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[D].中国科学辑:地球科学,2008,38(增刊Ⅰ):41~47.
    [55]曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社,2008.
    [56]许同海.致密储层裂缝识别的测井方法及研究进展[M].油气地质与采收率,2005,12(3):75~78.
    [57]王允诚.裂缝性致密油气储集层[M].北京:石油工业出版社,1992.
    [58]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990,14(2):83~92.
    [59]邓瑞,郭海敏.裂缝性储层的常规测井识别方法[J].勘探地球物理进展,2007(2):107~110.
    [60]邓瑞,郭海敏.常规测井亦可有效识别裂缝[J].中国石油石化,2006,19:62~63.
    [61]安丰全,李从信,李志明等.利用测井资料进行裂缝的定量识别[J].石油物探,1998,3:119~123.
    [62]刘兴刚,张旭.测井裂缝参数估算方法研究[J].天然气工业,2003,23(4):31~34.
    [63]胡宗全. R/S分析在储层垂向非均质性和裂缝评价中的应用[J].石油实验地质,2000,22(4):382~386.
    [64]孙霞.分形原理及其运用[M].安徽:中国科技大学出版社,2003.
    [65]贾焕军.油气层神经网络识别方法研究(D).大庆石油学院,2003.
    [66]模式识别与智能计算MAtlab技术实现[M].北京:电子工业出版社,2009.
    [67] Narr W,Lerch I A.Method for estimating fracture density in core[J].AAPG Bulletin,1984,68(5):637~648.
    [68]曾联波,田崇鲁.伸展构造区低渗透储层构造裂缝的分布特征[J].石油实验地质,1997,19(4):344~347.
    [69]曾联波,张吉昌.辽河坳陷边台变质岩潜山油藏裂缝分布特征[J].石油大学学报(自然科学版),1997,21(3):16~19.
    [70]曾联波,高春宇,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J].中国科学D辑:地球科学,2008,38(增I):41~47.Nelson RA.Geologicanalysis ofnaturallyreservoirs[M].Houston,Gulf Publishing company,1985.
    [71][1] Nelson RA.Geologicanalysis of naturallyreservoirs[M].Houston,Gulf Publishing company,1985.
    [72] Lorenz J C, Teufel L W, Warpinski N R. Regional fracturesⅠ: A mechanism for theformation of regional fractures at depth in flat-lying reservoirs[J]. AAPG Bull,1991,75(11):1714~1737.
    [73] Lorenz J C, Finley S J. Regional fracturesⅡ: Fracturing of M esaverde Reservoirs in thePiceance basin, Colorado[J]. AAPG Bull,1991,75(11):1738~1757.
    [74]张林炎,范昆,等.鄂尔多斯盆地镇原泾川地区三叠系延长组构造裂缝分布定量预测[J].地质力学学报,2006,12(4):476~484.
    [75]张宝琪.声发射的原理及应用[J].化工炼油机械通讯,1980(6):45~55.
    [76] Kanagawa T.Hayashi M and Nakasa H. Estimation of spatial geostress components in rocksamples using the Kaiser effect of acoustic emission.Third Acoustic[J] EmissionSymposium,Tokyo,1976:229~248.
    [77] Boyce G.m.,A study of the acoustic emission response of various types[D] M.S. thesis,Drexel University,1981.
    [78]孙宝珊,丁元辰,邵兆刚等.声发射测量古今应力在油田中的应用[J].地质力学学报,1996,2(2):11~17.
    [79]丁元辰,张大伦.声发射抹录不净现象在地应力测量中的应用[J].岩石力学与工程学报,1991,10(4),313~326.
    [80]尹贤刚等.岩石破坏过程的声发射特征研究[J].矿业研究与开发,2003,23(3):270~275.
    [81]郑荣才.储层裂缝研究的新方法一声发射实验[J].石油与天然气地质,1998,19(3):312~317.
    [82]彭文斌FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [83]周新桂.鄂南镇-泾地区构造应力与储层裂缝系统发育规律研究[R].华北分司勘探开发研究院,中国地质科学院地质力学研究所,2005.
    [84]孟召平,李明生等.深部温度、压力条件及其对砂岩力学性质的影响[J].岩石力学与工程学报,2006,25(6):1177~1181.
    [85]王连捷等.地应力测盆的原理和应用[M.]北京:地质出版社,1981.
    [86]王连捷等.地质力学文集[M].北京:地质出版社,1989.
    [87]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986.
    [88]赵文智,汪泽成,李晓清.油气藏形成的三大要素[J].自然科学进展,2005,15(3):304~312.
    [89]何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003.
    [90]赵文智,胡素云,汪泽成等.鄂尔多斯盆地基地断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1~5.
    [91]郭彦如,刘俊榜,杨华等,鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理[J].石油勘探与开发,2012(8),39(4):417~425.
    [92]王学军,王志欣,陈杰等.鄂尔多斯盆地镇北油田延长组石油运聚机理[J].石油勘探与开发,2011,38(3):299~306.
    [93]喻建,杨亚娟,杜金良.鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征[J].石油勘探与开发,2010,37(2):181~187.
    [94]张文正,杨华,解丽琴等.湖底热水活动及其对优质烃源岩发育的影响:以鄂尔多斯盆地长7烃源岩为例[J].石油勘探与开发,2010,37(4):424~429.
    [95]丁晓琪,张哨楠,谢世文等.鄂尔多斯盆地镇泾地区中生界成藏系统[J].石油与天然气地质,2011,32(2):157~163.
    [96]陈小梅,温爱琴,李仲东.鄂尔多斯盆地南部镇泾地区中生界油气成藏规律研究[J].石油地质与工程,2009,23(5):12~14.
    [97]张文正,杨华,李剑锋,等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289~293.
    [98]杨华,窦伟坦,喻建等.鄂尔多斯盆地低渗透油藏勘探新技术[J].中国石油勘探,2003,8(1):32~40.
    [99]雷振宇,张朝军,杨晓萍.鄂尔多斯盆地含油气系统划分及特征[J].勘探家,2005,5(3):75~82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700