天牛科发育关系、基因条码构建及测序中假基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用了天牛线粒体DNA的特定片段,采用直接测序法对不同种类天牛的线粒体DNA进行了测序,并通过序列比对分析了天牛科不同亚科的进化关系。同时,在研究中针对出现假基因的情况作了初步探讨。研究的主要结论如下:
     通过对天牛科五个亚科的天牛线粒体DNA的Cytb和16S rRNA基因片段进行了测序,根据序列的差异建立了系统发育树,并对天牛科高级阶元的分类进行了初步探讨。从对Cytb序列进行分析的Bootstrap树和N-J系统树中可以看出,幽天牛亚科的光胸断眼天牛与花天牛亚科的双斑厚花天牛先聚为一枝,随后与沟胫天牛亚科的光肩星天牛的分枝相聚。三者相聚在一个节点后,再与天牛亚科的家茸天牛和锯天牛亚科的中华薄翅天牛相聚在同一节点,且中华薄翅天牛明显离节点较远。显示出幽天牛亚科与花天牛亚科的亲缘关系较近。其次是沟胫天牛亚科,再次是天牛亚科,最后是锯天牛亚科,即五个天牛亚科呈现如下的关系:锯天牛亚科天牛亚科→沟胫天牛亚科→花天牛亚科幽天牛亚科。从对16SrRNA序列构建的Bootstrap树和N-J系统树中可以看出,幽天牛亚科的光胸断眼天牛和花天牛亚科的双斑厚花天牛先聚在同一分枝,随后与沟胫天牛亚科的粒肩天牛的分枝相聚。三者相聚在一个节点后,再与天牛亚科的家茸天牛相聚在同一节点,最后,与锯天牛亚科的中华薄翅天牛和吉丁虫科的花曲柳窄吉丁虫相聚。显示出五个天牛亚科也呈现出如下的进化关系:锯天牛亚科天牛亚科→沟胫天牛亚科→花天牛亚科幽天牛亚科
     通过对天牛科4个亚科13个属的16种共30个天牛样品及吉丁虫科的花曲柳窄吉丁虫和叶甲科的二纹柱萤叶甲的mtDNA COⅠ基因的一段序列进行了分析,对天牛科基因条码的构建进行了初步的研究。结果显示,样品的碱基差异率由种内到种间、属间呈逐渐增大的趋势,天牛不同分类阶元的种间具有明显的碱基差异,且差异分布各不相同,的确就像基因条码一样,因此笔者确信该基因可以作为天牛种类鉴定的依据,该段基因适合于基因条码的构建。对其灵敏度进行了分析,显示了引物的高度灵敏性与稳定性,同时也说明了该反应体系的稳定性和可重复性。但本研究测序天牛种类还较少,有必要选择各分类阶元主要种及重要检疫性天牛一一测序,以建立天牛基因条码系统,为天牛的鉴定和遗传学、系统学研究提供更为科学的基础。
     在对不同地理来源的光肩星天牛进行测序时发现,线粒体COⅠ-2基因的序列明显分为两组并且差异较大,通过比较用长片段扩增技术和通用引物扩增技术对来自河北霸州的光肩星天牛测得序列后发现,其中有一组有可能是出现了假基因,并对假基因的原因进行了初步探讨,认为提取的总DNA中线粒体DNA含量少且采用通用引物进行扩增是导致假基因出现的直接原因。
Some fragment of mtDNA of samples were respectively sequenced,and these samples including individuals from different subfamilies of Cerambycidae.The relation ships of these samples from different subfamilies and the reasons brought numts were studied. The results were an follows:
     We sequenced Cytb DNA and 16S rRNA of the samples from different subfamilies and builded phylogenetic tree.The tree was builded according to the differences between the sequences of the samples.We studied the classification of these samples.The result of the analysis of Cyt b DNA sequence indicated that the Tetropium castaneum and Pachyta bicuneata were grouped in a same clade of the phylogenetic tree and subsequently integrated the clade of the Anoplophora glabripennis.After they integrated at same joint,the three subfamilies finally meet Trichofreus compestris and Megopis sinica(White) at the other joint.The distance from joint of Megopis sinica(White) was farer than Trichofreus compestris. According to the result we can included that the relationship of the five subfamilie as follows: Prioninae→Cerambycinae→Lamiinae→Aseminae→Lepturinae. The tree which builded according to the sequence of 16S rRNA indicated that the Tetropium castaneum and Pachyta bicuneata were grouped in a same clade of the phylogenetic tree and subsequently integrated the clade of the Apriona germari Hope . After they integrated at same joint,the three subfamilies finally meet Trichofreus compestris and Megopis sinica(White) at the other joint.Also,the five subfamilies relationship as follow: Prioninae→Cerambycinae→Lamiinae→Aseminae→Lepturinae.Result of the two studies jointly prove the same relationship of the five subfamilies.
     We sequenced 30 samples of Cerambycidae,1 samples of Buprestidae and 1 samples of Chrysomelidae. We studied the feasibility of the building of the gene code .The result indicated that the difference of the sequence was more larger within than between species. So we believed that this fragment of mtDNA COⅠcan be used as a marker to build the gene code of all individual of Cerambycidae. We inspect the delicacy of this PCR system,and the result proved that the system had a high veracity and stability. The number of species in this study was inadequate and important species and quarantine species were should be sequenced in next study.This study will provide scientific base of the inspection, genetics and phylogenesis.
     We found that the sequences of COⅠ-2 of Anoplophora glabripennis form different area were divided into two group on base of the difference of sequence.After sequenced the Anoplophora glabripennis form Hebei province with the long PCR,we believe that the numts was existed in one group.The reason of appearance of the numts were analyzed then we found the possible reason.We believe that the conserved primers and the low content of mtDNA were the most possible reasons.
引文
1.董抗震,杨星科. 天牛科高级阶元分类研究进展.昆虫知识,2003,40(3):211-217
    2.吴蔚文,蒋书楠.昆虫学报,1993,36(1):81-84
    3.张大治,郑哲民. 分子遗传标记技术在蜻蜓目昆虫研究中的应用. 昆虫知识,2005,42(2):123-127
    4.王备新,杨莲芳. 线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88-92
    5.成新跃,周红章,张广学. 分子生物学技术在昆虫系统学研究中的应用. 动物分类学报,2000,25(2):121-133.
    6.徐庆刚,花保祯. 线粒体 DNA 在昆虫系统学研究中的应用. 西北农林科技大学学报(自然科学版),2001,29(增刊):79—83.
    7. 鲁 成 , 刘 运 强 , 廖 顺 尧 . 家 蚕 线 粒 体 基 因 组 全 序 列 测 定 与 分 析 . 农 业 生 物 技 术 学 报 ,2002,10(2):163-170
    8. 王 存 芳 , 曾 勇 庆 , 杜 立 新 等 . 线 粒 体 DNA(mtDNA) 的 研 究 进 展 . 动 物 科 学 与 动 物 医学,2001,18(1): 16-18
    9.熊庆,刘作易,喻子牛. 线粒体 DNA 的研究与应用. 西南农业学报,2002,15(3):111-115
    10.孟紫强,耿红,张波.线粒体 DNA 及其表达的研究进展.《生命的化学》,2001,21(6):500-502
    11. 代 金 霞 , 郑 哲 民 . 鞘 翅 目 昆 虫 线 粒 体 DNA 多 态 性 研 究 进 展 . 宁 夏 农 学 院 学 报 , 2003,24(3):70-74
    12 陈爱辉,蒋国芳.基于线粒体 12S 和 16SrRNA 基因部分序列探讨蚱科 12 种的系统发育关系.动物学研究 2004,25(6):510-514
    13 .孙钦霞,张雅林.七种蝽 mtDNA-16S rRNA 基因序列多态性的研究(半翅目:蝽科). 2004,26(2)107-113
    14.SimonC,1994.Evolution,weighting,and phylogenetic utility of mitochodrial gene sequences and a compilation of conserved polymerase chain reaction primers.Ann.Entomol.Soc.Amer.,87(6):651-701
    15.Masahiko M.,Kenjiro K.,Toru S. Appl. Entomol. Zool.,2000,35(3):293-307.
    16.Sperling F A H, Raske A G, Otvos I S . Mitochondrial DNA sequence variation among populations and host races of Lambdina fiscellaria (Gn) (Lepidoptera:Geometridae). Insect Mol Biol,1999,8:97-106.
    17 .Kelley,Scott et al. Effects of specialization on genetic differentiation in sister species of bark beetles.Heredity,2000,84(2):218-227.
    18 . Shufran K A,Burd J D,Ansead J A,Lushai G. Insect Mol. Biol.,2000,9 (2):279-284.
    19.安榆林,黄晓明等.2004.光肩星天牛及其近缘种 mtDNA 序列和基因特点.南京林业大学学报, 28(4):6-12
    20.施伟,叶辉.云南桔小实蝇五个地理种群的遗传分化研究.昆虫学报,2004(3):25-30
    21.任 竹 梅 ,马 恩 波 ,郭 亚 平 .不 同 地 域 小 稻 蝗 mtDNA 部 分 序 列 及 其 相 互 关 系 .昆 虫 学报,2003,46(1):51-57
    22.代金霞,郑哲民.蝽科部分昆虫细胞色素 b 基因序列及其系统发育关系的探讨.动物学研究 2004, 25(5):397-402
    23. 朱 振 华 , 叶 辉 , 张 智 英 . 基 于 mtDNA Cytb 的 六 种 果 实 蝇 的 分 子 鉴 定 . 昆 虫 学报,2005,48(3):386-39
    24. .Pashley D, KeL D. Sequence evolution in the mitochondrial ribosomal and ND-1 gene in Lepidoptera:implications for phylogenetic analyses. Mol Biol Evol,1992,9:1061-1075.
    25. Desalle, R.,et al. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. Mol.Evol.,26: 157-164.
    26. Makita H,Shinkawa T,Ohta K,et al. Phylogeny of Luehdorfia butterflies inferred from mitochondrial ND5 gene sequences. Entomological Science,2000,3(2):321-329.
    27. 黄永成,李伟丰,陆温等.昆虫学报.2001,44 (4):494-500
    28. Tsujino F., Kosemura A., Inohira K., et al. Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila. J. Mol. EVt)l. 2002,55:573-583
    29. Taylor M. F.,McKechnieS.W.,PierceN.,etal. The lepidopteran mitochondrial control region: structure and evolution. M01. B101,EVOl. 1993,10(6):1259-1272
    30. Zhang D. X., Szymura J. M., Hewitt G. M. Evolution and structural conservation of the control region of insect mitochondrial DNA J. MOI Evol. 1995,40:382-391
    31. Hidayat,Purnama et al. Molecular and morphological characters discriminate Sitophilus oryzae and S.zeamais and confirm reproductive isolation.Annals of the Entomological Society of American,1996,89(5):645-652.
    32.Normark,Benjamin B. et al. Aramigus uruguayendid,a new specides based on mtDNA and morphological characters.Entomological News,1996,107(5):311-316.
    33. Kelley,Scott et al. Effects of specialization on genetic differentiation in sister species of bark beetles.Heredity,2000,84(2):218-227.
    34.Miller,Liza et al. Identification of morphologically similar canegrubs using a molecular diagnostic technique. Australian Journal of Entomology,1999,38(3)189-196.
    35.Kieran M.Clements,Brian M. Wiegmann,Clyde E. Sorenson et al.Genetic Variation in the Myzus persicae Complex (Homoptera:Aphididae):Evidence for a Single Species.Annals of the Entomological Society of America,1993,1:31-46.
    36.李伟丰,黄永成,陈邦禄等.7 种长蠹科昆虫的线粒体 DNA ND4 基因序列比较分析.植物检疫,2001,(5):257-262
    37.黄原.分子系统学原理、方法和应用.1998,中国农业出版社
    38. Langor, David W.,and Felix A.,H.Sperling,MtDNA variation and identification of bark weevils in the Pissodes strobe species group in western Canada(ColeoPtera:Curculionidae),Canadian Entomologist,1995,127(6),895-911
    39.Emerson,Brent C,et al. mtDNA phylogeography and recent intraisland diversification among Canary Island Calathus bettles .Molecular phylogenetics and Evolution,1999,13(1):149-158.
    40. Emerson,Brent C,et al. Tracking colonization and diversification of insect lineages on islands:MtDNA phylogeography of Tarphius canariensis .Proceeding of the Royal Society Biological Science Series,2000,267(1458):2199-2205.
    41. Anthony I Cognato,Felix A H Sperling. Phylogeny of Ips degeer species (Coleoptera:Scolytidae) inferred from mitochondrial cytochrome oxidaseⅠDNA sequence. Molecular Phylogenetics and Evolution,2000,14(3):445-460.
    42. Vogler,Alfried P. et al. Phylogeny of North American Cicinedela tiger beetles inferred from multiple mtDNA sequence. Molecular phylogenetics and Evolution,1997,8(2):225-235.
    43. Vogler,Alfried P, et al. Covariation of defensive traits in tiger beetles. Evolution,1998,52(2):529-538.
    44. . Sota,Teigi et al. Incongruence of mt and nuclear gene tree in the Carabid beetles Ohomoterus . Systematc Biology,2001,50(1):39-59.
    45. Juan,Carlos et al. MtDNA sequemce variation and phylogeography of Pimelia darkling beetles on the island of Tenerife.Heredity,1996,77(6):589-598.
    46. Juan,Carlos et al. Phylogeny of the genus Hegeter and its colonization of the Canary Island deduced from cytochrome oxidase I mitochondrial DNA sequence.Heredity,1996,76(4):392-403.
    47. 任竹梅,马恩波,郭亚平.山稻蝗及相关物种 Cytb 基因序列及其遗传关系.遗传学报, 2002, 29(6):507-513
    48. Clarke,T.E. et al. Rapid evolution in the Nebria gregaria group and the paleogeography of the Queen Charlotte Island .Evolution,2001,55(7):1048-1418.
    49. J A Anstead,J D Burd,K A Shufran. Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera:Aphididae) clones from cultivated and non-cultivated hosts:haplotype and host associations. Bulletin of Entomological Research,2002,92:17-24.
    50. Desall, R.,et Grimaldi, D. A. 1991. Morphological and molecular systematics of the Drosophilidae. Annu. Rev. Evol.Syst.,22: 447-475.
    51.Collins, F. H.,et al. 1987. A rDNA probe differentiates member species of the Anopheles gambiae complex. Am. J. Trop. Med. Hyg.,37: 37-41.
    52.Hill, S. M.,et al. 1991. Synthetic DNA probes for the identification of sibling species within the Anopheles gambiae complex. Med. Vet. Entomol.,5: 455-463.
    53. 牛玲玲等.1992. DNA 探针用干中华按蚊和嗜人按蚊的分类研究.中国寄生虫学与寄生虫病杂志,10(4): 267-270.
    54. Paskewitz,S.M.,1993.Evoluation of the polymerase chain reaction method for identifying members of the Anopheles gambiae complex in Southern Africa.J.Med.Entomonl.,30(5):953-957
    55.Raich,J.J.,etal.1993.Polymerase chain reaction approaches to culicoides (Diptera:Ceratopogonidae) identification .J.Med. Entomol.,30(1):228-232
    56.Smith,D.R.,et Brown,W.M.1990.Restriction endonuclease cleavage site and length polymorphisms in mtDNA of Apis mellifera and A.m carnica.Ann.Entomol.Soc.Am.,83(1):81-88
    57.Schmitz,J.er Moritz,R.F.A.1990.Mitochondrial DNA variation in social wasps.Experientia (Basel),46(10): 1068-1072
    58.Derr,Y.N.,et al.1998.Variation and the phylogenetic utility of the large ribosomal subunit of mitochondrial DNA from the Insect order Hymenoptera. Mol.Phylogenet.Evol.,1(2):136-147
    59.Simon C,Frati F,Beckenbach A,et al. Evolution,weighting and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers. Ann Entomol Soc Am,1994,87(6):651-701.
    60. Chapco W , Kuperus W R , Litzenberger G. Molecular phylogeny of melanopline grasshoppers (Orthoptera:Acrididae) the genus Melanoplus. Ann Entomol Soc Am,1992,92(5):617-623.
    61.Martin,J.A.,et Pashley,D.P.1992.Molecular systematic analysis of butterfly family and some subfamily relationships (Lepidoptera:Papilionoidae).Ann.Entomol.Soc.Am.,85(2):127-139
    62.黄原,袁锋,周尧.昆虫核酸分子系统学研究进展.昆虫分类学报,1995,17(3):180-184
    63.Zhang D.X, Hewitt G.M .Nuclear integrations: Challenges for mitochondrial DNA markers[J]. Trends in Ecology and Evolution,1996,11:247-251.
    64.Quinn T W.Molecular evolution of the mitochondrial genome [A].In:Mindell D Peds. Avian molecular evolution and systematics [C].NewYork:Academic Press,1997.3-28.
    65. Pereira S L,Baker A J.Low number of mitochondrial pseudo genes in the chicken (Gallusgallus) nuclear genome:implications for molecular inference of population history and phylogenetics [J]. BMCE vol Biol, 2004,254(1):17.
    66. Michael D, Sorenson M D,Robert C F.Multiple independent transpositions of Mitochondrial DNA control region sequences to the nucleus [J]. Proc Natl Acad Sci, 1996,93(26):15239-15243.
    67. Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear Pseudo gene [J] .Proceedings of the Royal Society of London SeriesB,1995,26 (1363):13-19.
    68. Corral M, Baffet G,Kitzis A,etal DNA-sequences homologous to mitochondrial genes in nuclei from normal rat-tissues and from rat hepatoma-cells[J]. Biochem Biophys Res Commun, 1989,162(1):258-264.
    69. Blanchard J L,Schmidt G W. Mitochondrial DNA migration events in yeast and humans: Integration by a common end2-joining mechanism and alternative perspectives on nucleotide substitution pattern [J]. J Mol Evol,1996,13(3):537-548.
    70. Bensasson D,Zhang D X,Hewitt G M. Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes [J]. Mol Biol Evol,2000,17(3):406-415.
    71. Van der Kuyl A C,Kuiken C L,Dekker J T,etal.Nuclear counter parts of the cytoplasmic mitochondrial 12SrRNA gene: aproblem of ancient DNA and molecular phylogenies [J]. J Mol Evol, 1995,40(6):652-657.
    72. Smith M F,Thomas W K,Patton J L.Mitochondrial DNA –like sequences in the nuclear genome of an akodontine rodent [J].Mol Biol Evol,1992,9 (2):204-215.
    73. Collura R V,Stewart C B.Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids [J]. Nature,1995,378(6556):485-489.
    74. Sunnucks P,Hales D F.Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobin (Hemiptera:Aphididae) [J]. Mol Biol Evol, 1996, 13(3): 510-524.
    75.Mundy N I,Pissinatti A,Woodruff DS.Multiple nuclear insertions of mitochondrial cytochrome b sequences in callitrichine primates[J]. Mol Biol Evol,2000,17(7):1075-1080.
    76. Williams S T, Knowlton N.Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus [J].Mol Biol Evol,2001,18(8):1484-1493.
    77.Jacobs H T,Posakony J W,Grula J W, etal.Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus [J].J Mol Biol,1983,165(4):609-632.
    78. Weeler W C,Cartwright P,Hayashi C Y. A sombined approach. Cladistics. Arthropod phylogeny,1993,9 (1):1—39.
    79. 徐来祥,张知彬,宋铭晶.福尔马林保存的动物标本基因组DNA的提取方法.动物学报,2002, 48 (2):264~269
    80.刘泽,邹本玲,李庆伟.线粒体假基因——核基因组中的分子化石.辽宁师范大学学报(自然科学版),2005,28 (2):232-235
    81. 崔峰,夏家辉.关于假基因的研究进展.生命科学研究,1999,3(3):203-209
    82. Bensasson D,Zhang D X,Hartl L,Hewitt G M.Mitochondrial pseudo genes:evolution’s misplaced witnesses. Trends Ecol Evol,2001,16(6):314~321.
    83.Williams S T,Knowlton N.Mitochondrial pseudo genes are perva sive and often insidious in the snapping shrimp genus Alpheus.Mol Biol Evol,2001,18(8):1484~1493.
    84. 张 凤 英 , 马 凌 波 , 乔 振 国 . 青 蟹 线 粒 体 COI 假 基 因 的 分 离 和 特 征 分 析 . 遗 传 , 2006,28(1):43~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700