几种新型微波无源器件及准八木天线阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在信息产业高速发展的背景下,具有宽带、多频带、小型化等特性的新型微波无源器件在各类现代无线通信系统中展现出了广泛的应用前景。作为无线电通信系统的基础部件,功率分配器和微波滤波器更是得到了飞速的发展。设计实现满足系统要求的高性能功率分配器和微波滤波器,研究其新的结构形式及工程实现,已成为微波无源器件的重要研究方向。本文结合研究课题,围绕无线通信中微波滤波器、功率分配器的新型结构和宽带准八木天线阵列的设计方法及工程实现进行了深入研究。作者所取得的主要研究成果包括:
     1.基于钩型结构单元的微波滤波器研究。比较研究了微带型和缺陷型钩型结构单元的谐振和耦合特性,针对WLAN无线通信系统指标提出了三种微波滤波器。利用微带型钩型结构单元的谐振特性,采用一对成镜像对称的钩型单元以及抽头式的馈电结构,设计了微带双通带滤波器并分析了其等效电路模型;采用一对中心对称的微带钩型单元及0°馈电结构,提出了具有谐波抑制特性的微带型WLAN滤波器并分析了其等效电路模型。利用缺陷型钩型结构单元的谐振特性,设计了满足WLAN标准的双通带滤波器。
     2.基于缺陷地板结构(DGS)的功率分配器研究。DGS单元具有禁带及提高传输线等效电抗的特性,利用这些特性,提出了两款具有陷波特性的超宽带等分功率分配器和两款宽带不等分功率分配器。首先,运用DGS单元的禁带特性,分别采用阶梯阻抗缺陷开口谐振环(SI-DSRR)和一对对称放置的F形DGS,设计实现了具有陷波特性的超宽带2路和3路等分功率分配器。SI-DSRR和F-DGS均为半波长谐振器,调节其电长度可以有效地控制所需禁带的位置。其次,采用新型DGS和“工”形DGS与缝隙结构结合的方式,分别实现了宽带4:1的2路不等分功率分配器和宽带4:1:1的3路不等分功率分配器,通过运用含有DGS的微带传输线,避免了高特性阻抗传输线线宽过细不易加工的缺点。
     3.基于微带线—槽线结构的功率分配器研究。基于微带线―槽线转换器工作原理和等效电路模型,首先设计了多层结构的宽带2路和4路等分功率分配器。通过采用T形微带线馈电结构以及半圆形微带线枝节,实现了功率分配器的小型化、宽频带阻抗匹配以及良好的等功分比传输特性。其次,利用所提出的三款改进型微带线―槽线转换器,设计了两款共面结构的3路等分功率分配器。采用渐变的槽线结构以及半圆形/半椭圆形的槽线枝节,使功率分配器实现了宽频带性能、较低的插入损耗性能和良好的等功分特性。
     4.宽带准八木天线直线阵列研究。首先,通过采用弯曲有源振子臂并引入一段阻抗变换器,设计实现了宽频带阻抗匹配的准八木天线单元;其次,分析研究了8单元准八木天线直线阵列的低副瓣特性,应用差分进化算法优化了该阵列的辐射方向图;最后,设计了一个宽带8路不等分功率分配器,将其作为馈电网络,完成了C波段不等幅馈电准八木天线直线阵的宽带低副瓣设计。
With the phenomenal development in the information industry, microwave passivecomponents with multiband, wideband and miniature characteristics will be found very usefulin various wireless communication systems. As the fundamental components extensively usedin microwave and millimeter-wave circuits, power dividers and microwave filters have beenadvanced tremendously. Therefore, researching on the realization of novel power dividers andfilters with high performance becomes an important topic in microwave passive componentfield. As the main part of research projects, this dissertation is mainly concerned with thedesign of various broadband power dividers and dual-band filters, as well as theimplementation of a broadband quasi-Yagi antenna array. The author’s major contributions areoutlined as follows:
     1. Three hook-shaped microwave filters for WLAN operations have been studied. Theresonant and coupling properties of microstrip and defected hook-shaped resonators arestudied in comparison firstly. Then, two novel compact microstrip hook-shaped resonatorfilters, one is a dual-band operation using opposite hook-shaped resonators and symmetrictapped feed structure, and the other has harmonic suppression characteristic by using twocentrosymmetric hook-shaped resonators and zero degree asymmetric feed structure, areanalyzed and designed, separately. Finally, a dual-band microwave filter using defectedhook-shaped resonator is proposed.
     2. Four broadband power dividers using DGS have been studied. Firstly, by using astepped impedance defected split-ring resonator (SI-DSRR) and a pair of opposite F-shapedDGS, a two-way and a three-way equal UWB Wilkinson power divider with band-notchedcharacteristics are presented. Since the SI-DSRR and F-DGS are both λ/2resonators, it isconvenient to adjust the resonance frequency of the notched band mainly by changing theirdimensions. Secondly, using a novel DGS and a “工” shaped DGS,a two-way broadband4:1unequal Wilkinson power divider and a three way4:1:1unequal power divider areimplemented. By using the proposed DGS, microstrip lines can be realized with very highimpedance of over150, and avoiding the fabrication problems caused by the very thinconductor microstrip width.
     3. Four broadband power dividers using microstrip-slotline have been studied. Firstly,with T-shaped microstrip feed lines and semicircular branches, novel two-way and four-wayminiature power dividers utilizing coupling via a multilayer microstrip-slot have beenanalyzed to exhibit broadband characteristics. Then, two uniplanar designs of three-waypower dividers using modified broadband slot-coupling configurations are presented. The gradual slot lines and semicircular/semiellipse slot short stubs are used to improve theimpedance matching. The measured results of the proposed three-way power dividers exhibitgood performance on insertion loss and amplitude balance.
     4. A quasi-Yagi antenna linear array has been studied. Firstly, a printed quasi-Yagiantenna with bend arms and an impedance transformer is proposed for a wide operatingfrequency band. Then, the differential evolution method is used to obtain the optimal powerdistribution for the low sidelobe array. Finally, as the feeding network of the array, aneight-way broadband unequal power divider is designed. Moreover, an8-element quasi-Yagiantenna linear array prototype is constructed to validate the feasibility and efficiency of thedesign.
引文
[1] M. Makimoto and S. Yamashita著,赵宏锦译,无线通信中的微波谐振器与滤波器,北京:国防工业出版社,2002。
    [2]刘长军,黄卡玛,闫丽萍,射频通信电路设计,北京:科学出版社,2005。
    [3]王保志,微波技术与工程天线,北京:人民邮电出版社,1991。
    [4] D. Pozar, Microwave Engineering: John Wiley&Sons Inc., Third edition,2005.
    [5] E. Wilkinson, An N-way hybrid power divider, IRE Trans. Microwave Theory Tech.,1960, vol.8, pp.116-118.
    [6] M. E. Bialkowski and A. M. Abbosh, Design of a compact UWB out-of-phase powerdivider, IEEE Microwave and Wireless Components Letters, April2007, vol.17, no.4,pp.289-291.
    [7] A. M. Abbosh, A compact UWB three-way power divider, IEEE Microw.WirelessCompon. Lett., Aug.2007, vol.17, no.8, pp.598-600.
    [8] Y. J. Ko, J. Y. Park, and J. U. Bu, Fully integrated unequal Wilkinson power dividerwith EBG-CPW, IEEE Microwave and Wireless Components Letters, July2003, vol.13, no.7, pp.276-278.
    [9] M. Moradian and H. Oaraizi, Application of grooved substrates for design of unequalWilkinson power dividers, Electronics Letters, Jan.2008, vol.44, no.1, pp.32-33.
    [10] J. S. Lim, S. W. Lee, C. S. Kim, J. S. Park, D. Ahn, and S. W. Nam, A4:1unequalWilkinson power divider, IEEE Microwave and Wireless Components Letters, March2001, vol.11, no.3, pp.124-126.
    [11] First Report and Order.445,12th Street, S. W. Washington, DC.20554, USA: FederalCommunications Commission (FCC), February2002,
    [12] Z. Lin and Q. X. Chu, A novel compact UWB power divider for spatial powercombining, Journal of Electromagnetic Waves and Applications,2009, vol.23, No.13,pp.1803-1812.
    [13] A. M. Abbosh, A compact UWB three-way power divider, IEEE Microwave andWireless Components Letters, Aug.2007, vol.17, no.8, pp.598-600.
    [14] B. Zhou, H. Wang, and W. X. Sheng, A modified UWB Wilkinson power divider usingdelta stub, Progress In Electromagnetics Research Letters,2010, vol.19, pp.49-55.
    [15] A. M. Abbosh, Broadband multilayer inphase power divider for C-band applications,Electronics Letters, Jan.2008, vol.44, no.2, pp.120-121.
    [16] K. Song, Y. Fan, and X. Zhou, Broadband multilayer in-phase power divider,Electronics Letters, March2008, vol.44, no.6, pp.417-418.
    [17] C. H. Ho, L. Fan, and K. Chang, Slot-coupled double-sided microstrip interconnectsand couplers, MTT-S International Microwave Symposium Digest,1993, vol.3, pp.1321-1324.
    [18] D. S. Eom, J. Byun, and H. Y. Lee, Multilayer substrate integrated waveguidefour-way out-of-phase power divider, IEEE Transactions on Microwave Theory andTechniques, Dec.2009, vol.57, no.12, pp.2469-2476.
    [19] K. J. Song and Q. Xue, Novel ultra-wideband (UWB) multilayer slotline powerdivider with bandpass response, IEEE Microwave and Wireless Components Letters,Jan.2010, vol.20, no.1, pp.13-15.
    [20] A. M. Abbosh, Design of ultra-wideband three-way arbitrary power dividers, IEEETransactions on Microwave Theory and Techniques, Jan.2008, vol.56, no.1, pp.194-201.
    [21] X. P. Chen, K. Wu, and Z. L. Li, Dual-band and triple-band substrate integratedwaveguide filters with chebyshev and quasi-elliptic responses, IEEE Transactions onMicrowave Theory and Techniques, Dec.2007, vol.55, no.12, pp.2569-2578.
    [22] C. G. Hsu, C. H. Lee, and Y. H. Hsieh, Tri-band bandpass filter with sharp passbandskirts designed using tri-section SIRs, IEEE Microwave and Wireless ComponentsLetters, Jan.2008, vol.18, No.1, pp.19-21.
    [23] F. C. Chen and Q. X. Chu, Design of compact tri-band bandpass filter using assembledresonators, IEEE Transactions on Microwave Theory and Techniques, Jan2009, vol.57. no.1, pp.165-171.
    [24] X. Lai, C. H. Liang, H. Di, and B. Wu, Design of tri-band filter based on stub loadedresonator and DGS resonator, IEEE Microwave and Wireless Components Letters,May.2010, vol.20, no.5, pp.265-267.
    [25] Z. Zhang, Y. C. Jiao, X. M. Wang, and S. F. Cao, Design of a Compact Dual-BandBandpass Filter Using Opposite Hook-Shaped Resonator, IEEE Microwave andWireless Components Letters,2011, vol.21, no.7, pp.359-361.
    [26] L. Y. Ren, Tri-Band bandpass filters based on dual-plane microstrip dgs slot structure,IEEE Microwave and Wireless Components Letters, Aug.2010, vol.20, no.8, pp.429-431.
    [27] G. L. Dai, Y. X. Guo, and M. Y. Xia, Dual-band bandpass filter using parallelshort-ended feed scheme, IEEE Microwave and Wireless Components Letters, June2010, vol.20, no.6, pp.325-327.
    [28] C. H. Huang, H. C. Li, C. H. Chen, and T. S. Horng, A novel compact dual-bandbandpass filter using spiral-shaped microstrip resonators, Microwave and OpticalTechnology Letters, March2010, vol.52, no.3, pp.543-547.
    [29] X. Luo, H. Z. Qian, J. G. Ma, K. X. Ma, and K. S. Yeo, Compact dual-band bandpassfilters using novel embedded spiral resonator (ESR), IEEE Microwave and WirelessComponents Letters, Aug.2010, vol.20, no.8, pp.435-437.
    [30] G. S. Huang and C. H. Chen, Dual-band balun bandpass filter with hybrid structure,IEEE Microwave and Wireless Components Letters, July2011, vol.21, no.7, pp.356-358.
    [31]王乃彪,超宽频带锥削槽天线及阵列的设计与实现,西安电子科技大学博士学位论文,2010。
    [32] A. Abbosh, Planar ultra wideband in-phase power divider, Microwave and OpticalTechnology Letters, May2009, vol.51, no.5, pp.1185-1188.
    [33] A. Dadgarpour, G. Dadashzadeh, M. Naser-Moghadasi, F. Jolani, and B. S. Virdee,PSO FDTD optimization technique for designing uwb in-phase power divider forlinear array antenna application, IEEE Antennas and Wireless Propagation Letters,2010, vol.9, pp.424-427.
    [34] M. Leib, A. Vollmer, and W. Menzel, In-phase and anti-phase power dividers for UWBdifferentially fed antenna arrays, IEEE Antennas and Wireless Propagation Letters,2010, vol.9, pp.455-458.
    [35] E. J. Wilkinson, An N-way hybrid power divider, IEEE Transactions on MicrowaveTheory and Techniques, Jan.1960, vol.8, no.1, pp.116-118.
    [36] N. Nobuo, M. Eiji, and O. Koujiro, New N-way hybrid power dividers, IEEETransactions on Microwave Theory and Techniques,1977, vol.25, pp.1008-1012.
    [37]梁昌洪,官伯然,谢拥军,简明微波,西安:西安电子科技大学出版社,2002。
    [38]廖承恩,微波技术基础,西安:西安电子科技大学出版社,1995。
    [39] R. Ludwig and P. Bretchko, RF Circuit Design: Theory and Applications: PearsonEducation,2nd International edition,2008.
    [40] S. B.Cohn, A class of broadband three port TEM-mode hybrids, IEEE Trans. Microw.Theory Tech., Feb.1968, vol.16, no.2, pp.110-116.
    [41] B. Menc′a-Oliva, A. M. Pel′aez-P′erez, P. Almorox-Gonz′alez, and J. I. Alonso, Newtechnique for the design of ultra-broadband power dividers based on tapered lines,IEEE MTT-S International Microwave Symposium Digest, June2009, pp.493-496.
    [42]刘涓,吕善伟,一种实现宽频带功分器的新方法,电子学报,2004,32卷,第9期:1572-1529。
    [43] C. T. Chiang and B. K. Chung, Ultra wideband power divider using tapered line,Progress In Electromagnetics Research,2010, vol.106, pp.61-73.
    [44] H. Oraizi and A. R. Sharifi, Design and optimization of broadband asymmetricalmultisection Wilkinson power divider, IEEE Transactions on Microwave Theory andTechniques, May2006, vol.54, no.5, pp.2220-2231.
    [45] X. P. Ou and Q. X. Chu, A modified two-section UWB Wilkinson power divider,ICMMT Proceedings, April2008, vol.3, pp.1258-1260.
    [46] Y. Lin and Q. X. Chu, Design of a compact UWB Wilkinson power divider, ICMMTProceedings, April2008, vol.1, pp.360-362.
    [47] H. Y. Yee, F. C. Chang, and N. F. Audeh, N-way TEM-mode broad-band powerdividers, IEEE Transactions on Microwave Theory and Techniques, Oct.1970, vol.18,no.10, pp.682-688.
    [48] G. L. Matchaei, L. Young, and E. M. T. Jones, Microwave Filter. Impedance-matchingNetwork and Coupling Structures. Massachusetts: Artech House,1980.
    [49] M. Kishihara, K. Yamane, and T. Kawai, A design of multi-stage, multi-way microstrippower dividers with broadband properties, IEEE Microwave and Wireless ComponentsLetters, June2004, vol.1, no.6, pp.69-72.
    [50] A. Wentzel, V. Subramanian, A. Sayed, and G. Boeck, Novel broadband Wilkinsonpower combiner, Proceedings of the36th European Microwave Conference, Sep.2006,pp.212-215.
    [51] S. W. Wong and L. Zhu, Ultra-Wideband power divider with good in-band splittingand isolation performances, IEEE Microwave and Wireless Components Letters, Aug.2004, vol.18, no.8, pp.518-520.
    [52] B. Zhou, H. Wang, and W. X. Sheng, A novel UWB Wilkinson power divider,International Conference on Information Science and Engineering (ICISE), Dec.2010,pp.1763-1765.
    [53] O. Ahmed and A. R. Sebak, A modified Wilkinson power divider/combiner forultrawideband communications, IEEE Antennas and Propagation SocietyInternational Symposium, June2009, pp.1-4.
    [54] S. W. Wong and L. Zhu, Ultra-wideband power dividers with good isolation and sharproll-off skirt, Asia-Pacific Microwave Conference (APMC), Dec.2008, pp.1-4.
    [55] D. J. Woo and T. K. Lee, Suppression of harmonics in Wilkinson power divider usingdual-band rejection by asymmetric DGS, IEEE Transactions on Microwave Theoryand Techniques, June2005, vol.53, no.6, pp.2139-2144.
    [56] Y. Yao and Z. Feng, A band-notched ultra-wideband1to4Wilkinson power dividerusing symmetric defected ground structure, IEEE Antennas and Propagation SocietyInternational Symposium, June2007, pp.1557-1560.
    [57] F. Wei, L. Chen, X. W. Shi, Q. Y. Wu, and Q. L. Huang, Design of compact UWBpower divider with one narrow notch-band, Journal of Electromagnetic Waves andApplications,2010, vol.24, no.17-18, pp.2343-2352.
    [58] J. S. Lim, G. Y. Lee, Y. C. Jeong, D. Ahn, and K. S. Choi, A1:6unequal Wilkinsonpower divider, Proceedings of the36th European Microwave Conference, Sep.2006,pp.200-203.
    [59] C. P. Chang, C. C. Su, S. H. Hung, Y. H. Wang, and J. H. Chen, A6:1unequalWilkinson power divider with EBG-CPW, Progress In Electromagnetics ResearchLetters,2009, vol.8, pp.151-159.
    [60] J. J. Koo, S. Oh, and M. S. Hwang, A New DGS unequal power divider, Proceedingsof the37th European Microwave Conference, Oct.2007, pp.556-559.
    [61] B. Li, X. D. Wu, and W. Wu, A10:1unequal Wilkinson power divider using coupledlines with two shorts, IEEE Microwave and Wireless Components Letters, Dec.2009,vol.19, no.12, pp.789-791.
    [62] W. H. Chen, Y. C. Liu, X. Li, Z. H. Feng, and F. M. Ghannouchi, Design ofreduced-size unequal power divider for dual-band operation with coupled lines,Electronics Letters, Jan.2011, vol.47, no.1, pp.59-60.
    [63] Y. Wu and Y. Liu, An unequal coupled-line wilkinson power divider for arbitraryterminated impedances, Progress In Electromagnetics Research,2011, vol.117, pp.181-194.
    [64] B. Li, X. Wu, N. Yang, and W. Wu, Dual-band equal/unequal wilkinson powerdividers based on coupled-line section with short-circuited stub, Progress InElectromagnetics Research,2011, vol.111, pp.163-178.
    [65] M. Y. Xia, A dual-band unequal Wilkinson power divider using asymmetriccoupled-line, Journal of Electromagnetic Waves and Applications,2011, vol.25, no.11, pp.1587-1595.
    [66] Y. L. Wu, H. Zhou, Y. X. Zhang, and Y. A. Liu, An unequal wilkinson power dividerfor a frequency and its first harmonic, IEEE Microwave and Wireless ComponentsLetters, Nov.2008, vol.18, no.11, pp.737-739.
    [67] C. Monzon, A small dual-frequency transformer in two sections, IEEE Transactionson Microwave Theory and Techniques, April2003, vol.51, no.4, pp.1157-1161.
    [68] C. Feng, G. Zhao, X. F. Liu, and F. S. Zhang, A novel dual-frequency unequalWilkinson power divider, Microwave and Optical Technology Letters,2008, vol.50,no.6, pp.1695-1699.
    [69] Y. Wu, Y. Liu, and S. Li, Unequal dual-frequency Wilkinson power divider includingseries resistor-inductor-capacitor isolation structure, IET Microwave Antennas andPropagation,2009, vol.3, no.7, pp.1079-1085.
    [70] T. Yang, J. X. Chen, and Q. Xue, Novel approach to the design of unequal powerdivider with high-dividing ratio, Microwave and Optical Technology Letters, May2009, vol.51, no.5, pp.1240-1243.
    [71] J. L. Li and B. Z. Wang, Novel design of Wilkinson power dividers with arbitrarypower division ratios, IEEE Transactions on Industrial Electronics, June2011, vol.58,no.6, pp.2541-2546.
    [72] Y. Z. Zhu, W. H. Zhu, X. J. Zhang, M. Jiang, and G. Y. Fang, Shunt-stub Wilkinsonpower divider for unequal distribution ratio, IET Microwave Antennas andPropagation,2010, vol.4, no.3, pp.334-341.
    [73] P. W. Li and K. K. M. Cheng, A new unequal power-divider design with enhancedinsertion loss flatness, IEEE Microwave and Wireless Components Letters, Dec.2009,vol.19, no.12, pp.786-788.
    [74] Y. Wu, Y. A. Liu, Y. X. Zhang, J. C. Gao, and H. Zhou, A dual band unequal Wilkinsonpower divider without reactive components, IEEE Transactions on Microwave Theoryand Techniques, Jan.2009, vol.57, no.1, pp.216-222.
    [75] Y.L.Wu, Y. A. Liu, S. L. Li, and C. P. Yu, Miniaturized unequal dual-frequencywilkinson power divider using pi-structure impedance transformers, Electromagnetics,Nov.2010, vol.30, no.8, pp.671-682.
    [76] S. W. Zhao, Z. X. Tang, Y. W. Wu, and B. Zhang, An unequal broadband powerdivider using composite right/left-handed transmission lines, IEEE InternationalConference on Ultra-Wideband, Sept.2010, vol.2, pp.1-3.
    [77] J. X. Chen and Q. Xue, Novel5:1unequal Wilkionson power divider using offsetdouble-sided parallel-strip lines, IEEE Microwave and Wireless Components Letters,March2007, vol.17, no.3, pp.175-177.
    [78] Y. Wu, Y. Liu, S. Li, and C. Yu, Extremely unequal Wilkinson power divider with dualtransmission lines, Electronics Letters, Jan.2010, vol.46, no.1, pp.90-91.
    [79] Y. Cassivi, L. Perregrini, P. Arcioni, and etc., Dispersion characteristics of substrateintegrated rectangular waveguide, IEEE Microwave and Wireless Components Letters,Sept.2002, vol.2, no.9, pp.333-335.
    [80] D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planarform, IEEE Microwave and Wireless Components Letters, Feb.2001, vol.11, no.2, pp.68-70.
    [81] D. Deslandes and K. Wu, Single substrate integration technique of planar circuits andwaveguide filters, IEEE Transactions on Microwave Theory and Techniques,2003, vol.51, no.21, pp.593-596.
    [82] A. M. Abbosh, Broadband multilayer inphase power divider for C-band applications,Electronics Letters, Jan.2008, vol.44, no.2, pp.120-121.
    [83] D. S. Eom, J. Byun, and H. Y. Lee, Multilayer substrate integrated waveguidefour-way out-of-phase power divider, IEEE Transactions on Microwave Theory andTechniques, Dec.2009, vol.57, no.12, pp.3469-3476.
    [84] D. Eom, J. Byun, and H. Y. Lee, Multi-layer four-way out-of-phase power divider forsubstrate integrated waveguide applications IEEE MTT-S International MicrowaveSymposium Digest, June2009, pp.477-480.
    [85] S. B. Cohn, Direct coupled cavity filters, Proceedings of IRE, vol.45, pp.187-196.
    [86] L. Young, Direct-coupled cavity filters for wide and narrow bandwidths, IEEETransactions on Microwave Theory and Techniques,1963, vol.11, no.5, pp.162-178.
    [87] R. Levy, Theory of direct-coupled cavity filters, IEEE Transactions on MicrowaveTheory and Techniques,1967, vol.15, no.6, pp.340-348.
    [88] H. J. Orchard, Filter design by iterrated analysis, IEEE Transactions on CircuitSystems,1985, vol.32, no.11, pp.1089-1096.
    [89] A. E. Atia, A. E. Williams, and R. W. Newcomb, Narrow-band multiple-coupledcavity synthesis, IEEE Transactions on Circuits and Systems,1974, vol.21, no.5, pp.649-655.
    [90] R. J. Cameron, General coupling matric synthesis methods for chebyshev filteringfunction, IEEE Transactions on Microwave Theory and Techniques,1999, vol.47, no.4, pp.433-442.
    [91] R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters,IEEE Transactions on Microwave Theory and Techniques,2003, vol.51, no.1, pp.1-10.
    [92] S. Amari, Synthesis of cross-coupled resonator filters using an analyticalgradient-based optimization technique, IEEE Transactions on Microwave Theory andTechniques,2000, vol.48, no.9, pp.1559-1564.
    [93] S. Amari, U. Rosenberg, and J. Bornemann, Adaptive synthesis and design ofresonator filters with source/load-multiresonator coupling, IEEE Transactions onMicrowave Theory and Techniques,2002, vol.50, no.8, pp.1969-1978.
    [94] J. D. Rhodes, A lowpass prototype network for microwave linear phase filters, IEEETransactions on Microwave Theory and Techniques,1970, vol.18, no.6, pp.290-301.
    [95] Q. Pfitzenmaier, Synthesis and realization of narrow-band canonical microwavebandpass filters exhibiting linear phase and transmission zeroes, IEEE Transactions onMicrowave Theory and Techniques,1982, vol.30, no.9, pp.1300-1311.
    [96] J. D. Rhodes and R. J. Cameron, General extracted pole synthesis technique withapplications to low-loss TE011mode filters, IEEE Transactions on Microwave Theoryand Techniques,1980, vol.28, no.9, pp.1018-1028.
    [97] S. J. Hedges and R. Q. Humphreys, An extracted pole microstrip elliptic function filterusing high temperature super conductom, Proceedings of the24th EuropeanMicrowave Conference,1994, vol.1, pp.517-521.
    [98] U. Rosenbcrg and S. Amari, Novel coupling schemes for microwave resonator filters,IEEE Transactions on Microwave Theory and Techniques,2002, vol.50, no.12, pp.2896-2902.
    [99] X. P. Chen and K. Wu, Substrate integrated waveguide cross-coupled filter withnegative coupling structure, IEEE Transactions on Microwave Theory and Techniques,Jan.2008, vol.56, no.1, pp.142-149.
    [100] W. Shen, W. Y. Yin, and X. W. Sun, Compact substrate integrated waveguide (SIW)filter with defected ground structure, IEEE Microwave and Wireless ComponentsLetters, Feb.2011, vol.21, no.2, pp.83-85.
    [101] L. Szydlowski, A. Lamecki, and M. Mrozowski, Design of Microwave Lossy FilterBased on Substrate Integrated Waveguide (SIW), IEEE Microwave and WirelessComponents Letters, May2011, vol.21, no.5, pp.249-251.
    [102] L. S. Wu, Y. X. Guo, J. F. Mao, and W. Y. Yin, Design of a substrate integratedwaveguide balun filter based on three-port coupled-resonator circuit model, IEEEMicrowave and Wireless Components Letters, May2011, vol.21, no.5, pp.252-254.
    [103] Y. L. Zheng, M. Sazegar, H. Maune, and etc., Compact substrate integrated waveguidetunable filter based on ferroelectric ceramics, IEEE Microwave and WirelessComponents Letters, Sep.2011, vol.21, no.9, pp.477-479.
    [104] M. Hoft and T. Shimamura, Design of symmetric trisection filters for compactlow-temperature co-fired ceramic realization, IEEE Transactions on MicrowaveTheory and Techniques, Jan.2010, vol.58, no.1, pp.165-175.
    [105] Z. C. Hao and J. S. Hong, Ultra-wideband bandpass filter using multilayerliquid-crystal-polymer technology, IEEE Transactions on Microwave Theory andTechniques, Sept.2008, vol.56, no.9, pp.2095-2100.
    [106] S. Oshima, K. Wada, R. Murata, and Y. Shimakata, Multilayer dual-band bandpassfilter in low-temperature co-fired ceramic substrate for ultra-wideband applications,IEEE Transactions on Microwave Theory and Techniques, March2010, vol.58, no.3,pp.614-623.
    [107] W. Shen, W. Y. Yin, and X. W. Sun, Miniaturized dual-band substrate integratedwaveguide filter with controllable bandwidths, IEEE Microwave and WirelessComponents Letters, Aug.2011, vol.21, no.8, pp.418-420.
    [108] G. S. Huang, C. H. Wu, and C. H. Chen, LTCC balun bandpass filters usingdual-response resonators, IEEE Microwave and Wireless Components Letters, Sept.2011, vol.21, no.9, pp.483-485.
    [109] V. K. Velidi and S. Sanyal, Sharp roll-off lowpass filter with wide stopband usingstub-loaded coupled-line hairpin unit, IEEE Microwave and Wireless ComponentsLetters, June2011, vol.21, no.6, pp.301-303.
    [110] A. Torabi and K. Forooraghi, Miniature harmonic-suppressed microstrip bandpassfilter using a triple-mode stub-loaded resonator and spur lines, IEEE Microwave andWireless Components Letters, May2011, vol.21, no.5, pp.255-257.
    [111] R. Ghatak, P. Sarkar, R. K. Mishra, and D. R. Poddar, A compact UWB bandpass filterwith embedded sir as band notch structure, IEEE Microwave and WirelessComponents Letters, May2011, vol.21, no.5, pp.261-263.
    [112] X. Luo, J. G. Ma, and E. P. Li, Wideband bandpass filter with wide stopband usingloaded bcmc stub and short-stub, IEEE Microwave and Wireless Components Letters,July2011, vol.21, no.7, pp.353-355.
    [113] R. Gomez-Garcia, J. Munoz-Ferreras, and M. Sanchez-Renedo, Signal-Interferencestepped-impedance-line microstrip filters and application to duplexers, IEEEMicrowave and Wireless Components Letters, Aug.2011, vol.21, no.8, pp.421-423.
    [114] G. Macchiarella and S. Tamiazzo, Design techniques for dual-passband filters, IEEETransactions on Microwave Theory and Techniques, Nov.2005, vol.53, no.11, pp.3265-3271.
    [115] R. J. Cameron, M. Yu, and Y. Wang, Direct-coupled microwave filters with single anddual stopbands, IEEE Transactions on Microwave Theory and Techniques,2005, vol.53, no.11, pp.3288-3279.
    [116] X. Guan, Z. Ma, P. Cai, and etc., Synthesis of dual-band bandpass filters usingsuccessive frequency transformations and circuit conversions, IEEE Microwave andWireless Components Letters,2006, vol.16, no.3, pp.110-112.
    [117] J. Lee and K. Sarabandi, A synthesis method for dual-passband microwave filters,IEEE Transactions on Microwave Theory and Techniques, June2007, vol.55, no.6,pp.1163-1170.
    [118] J. Lee and K. Sarabandi, Design of triple-passband microwave filters using frequencytransformations, IEEE Transactions on Microwave Theory and Techniques, Jan.2008,vol.56, no.1, pp.187-193.
    [119] Y. P. Zhang and M. Sun, Dual-band microstrip bandpass filter usingstepped-impedance resonators with new coupling schemes, IEEE Transactions onMicrowave Theory and Techniques, Oct.2006, vol.54, no.10, pp.3779-3785.
    [120] B. Wu, C. H. Liang, P. Y. Qin, and Q. Li, Compact dual-band filter using defectedstepped impedance resonator, IEEE Microwave and Wireless Components Letters, Oct.2008, vol.18, no.10, pp.674-676.
    [121] M. L. Chuang, M. T. Wu, and S. M. Tsai, Dual-band filter design using L-shapedstepped impedance resonators, IET Microwave Antennas and Propagation,2009, vol.4, no.7, pp.855-862.
    [122] M. Makimoto and S. Yamashita, Bandpass filters using parallel coupledstriplinestepped impedance resonators, IEEE Transactions on Microwave Theory andTechniques, Dec.1980, vol.28, no.12, pp.1413-1417.
    [123] W. S. Chang and C. Y. Chang, Analytical design of microstrip short-circuit terminatedstepped-impedance resonator dual-band filters, IEEE Transactions on MicrowaveTheory and Techniques, July2011, vol.59, no.7, pp.1730-1739.
    [124] C. W. Tang and P. H. Wu, Design of a planar dual-band bandpass filter, IEEEMicrowave and Wireless Components Letters, July2011, vol.21, no.7, pp.362-364.
    [125] M. H. Weng, H. W. Wu, and Y. K. Su, Compact and low loss dual-band bandpass filterusing pseudo-interdigital stepped impedance resonators for WLANs, IEEE Microwaveand Wireless Components Letters, March2007, vol.17, no.3, pp.187-189.
    [126] J. W. Baik, L. Zhu, and Y. S. Kim, Dual-mode dual-band bandpass filter using balunstructure for single substrate configuration, IEEE Microwave and WirelessComponents Letters, Nov.2010, vol.20, no.11, pp.613-615.
    [127] Y. C. Li, H. Wong, and Q. Xue, Dual-mode dual-band bandpass filter based on astub-loaded patch resonator, IEEE Microwave and Wireless Components Letters, Oct.2011, vol.21, no.10, pp.525-527.
    [128] S. Sun and W. Menzel, Novel dual-mode balun bandpass filters using singlecross-slotted patch resonator, IEEE Microwave and Wireless Components Letters, Aug.2011, vol.21, no.8, pp.415-417.
    [129] J. X. Chen, T. Y. Yum, J. L. Li, and Q. Xue, Dual-mode dual-band bandpass filterusing stacked-loop structure, IEEE Microwave and Wireless Components Letters, Sept.2006, vol.16, no.9, pp.502-504.
    [130] S. Sun, A dual-band bandpass filter using a single dual-mode ring resonator, IEEEMicrowave and Wireless Components Letters, June2011, vol.21, no.6, pp.298-300.
    [131] J. Wang, L. Ge, K. Wang, and W. Wu, Compact microstrip dual-mode dual-bandbandpass filter with wide stopband, Electronics Letters, Feb.2011, vol.47no.4, pp.263-265.
    [132] L. Athukorala and D. Budimir, Compact dual-mode open loop microstrip resonatorsand filters, IEEE Microwave and Wireless Components Letters, Nov.2009, vol.19, no.11, pp.698-700.
    [133] K. J. Song and Q. Xue, Novel broadband bantlpass filters using Y-shaped dual-modemicrostrip resonators, IEEE Microwave and Wireless Components Letters, Sept.2009,vol.19, no.9, pp.548-550.
    [134] B. Wu, C. H. Liang, Q. Li, and P. Y. Qin, Novel dual-band filter incorporating defectedSIR and microstrip SIR, IEEE Microwave and Wireless Components Letters, June2008, vol.18, no.6, pp.392-394.
    [135] P. K. Singh, S. Basu, and Y. H. Wang, Miniature dual-band filter usingquarter-wavelength stepped impedance resonators, IEEE Microwave and WirelessComponents Letters, Feb.2008, vol.18, no.2, pp.88-90.
    [136] M. H. Weng, R. Y. Yang, Y. C. Chang, and etc., Design of a multilayered dual-bandbandpass filter with transmission zeros, Microwave and Optical Technology Letters,Aug.2008, vol.50, no.8, pp.2010-2013.
    [137] C. F. Chen, T. Y. Huang, and R. B. Wu, Design of dual-and triplepassband filters usingalternately cascaded multiband resonators, IEEE Transactions on Microwave Theoryand Techniques, Sept.2006, vol.54, no.9, pp.3550-3558.
    [138] L. C. Tsai and C. W. Huse, Dual-band bandpass filters using equallengthcoupled-serial-shunted lines and Z-transform techniques, IEEE Transactions onMicrowave Theory and Techniques, April2004, vol.52, no.4, pp.1111-1117.
    [139] C. Quendo, E. Rius, and C. Person, An original topology of dual-band filter withtransmission zeros, IEEE MTT-S International Microwave Symposium Digest,2003,vol.2, pp.1093-1096.
    [140] K. C. Yoon, T. S. Yun, H. Nam, and etc., Dual-band narrow bandwidth band-pass filterwith λg/2open stubs using the meta-materials technique, International Conference onElectromagnetics in Advanced Applications (ICEAA),2010, pp.236-239.
    [141] A. Griol, D. Mira, J. Marti, and J. L. Corral, Microstrip side-coupled ring bandapssfilters with mode coupling control for harmonics suppression, Electronics Letters,2004, vol.40, no.15, pp.943-945.
    [142] F. H. Guan, J. Z. Gu, and X. W. Sun, A bandpass filter with harmonic suppressionusing SIR and zigzag coupling, Microwave and Optical Technology Letters, Sept.2007, vol.49, no.9, pp.2071-2074.
    [143] A. Griol, J. Marti, and L. Sempere, Microstrip multistage coupled ring bandpass filtersusing spur-line filters for harmonic suppression, Electronics Letters,2001, vol.37, no.9, pp.572-573.
    [144] X. D. Huang and C. H. Cheng, A novel microstrip dual-mode bandpass filter withharmonic suppression, IEEE Microwave and Wireless Components Letters,2006, vol.16, no.7, pp.404-406.
    [145] L. Ren and H. Huang, Dual-band bandpass filter based on dual-planemicrostrip/interdigital DGS slot structure, Electronics Letters,2009, vol.45, no.21, pp.1077-1078.
    [146] L. Li and Z. F. Li, Compact quasi-elliptic lowpass filter using symmetric rectangularcoupled capacitors, Electronics Letters,2008, vol.44, no.2, pp.124-125.
    [147] K. C. Yoon and J. C. Lee, Design of a5.8GHz narrow band-pass filter with secondharmonic suppression using the open stubs, Microwave and Optical TechnologyLetters, July2008, vol.50, no.7, pp.1763-1766.
    [148] X. Y. Zhang and Q. Xue, Harmonic-suppressed bandpass filter based ondiscriminating coupling, IEEE Microwave and Wireless Components Letters, Nov.2009, vol.19, no.11, pp.695-697.
    [149] J. L. Li, S. W. Qu, and Q. Xue, Compact microstrip lowpass filter with sharp roll-offand wide stop-band, Electronics Letters,2009, vol.45, no.2, pp.110-111.
    [150] X. Y. Zhang and Q. Xue, High-selectivity tunable bandpass filters with harmonicsuppression, IEEE Transactions on Microwave Theory and Techniques, April2010,vol.58, no.4, pp.265-267.
    [151] S. Chaimool and P. Akkaraekthalin, A compact wideband bandpass filter usingmodified NB-SRRs with wide upper bandstop, Microwave and Optical TechnologyLetters, March2010, vol.52, no.3, pp.551-553.
    [152] J. Shi, J. X. Chen, and Q. Xue, A quasi-elliptic function dual-band bandpass filterstacking spiral-shaped CPW defected ground structure and back-side coupled striplines, IEEE Microwave and Wireless Components Letters,2007, vol.17, no.6, pp.430-432.
    [153] J. S. Park, J. S. Yun, and D. Alan, A design of the novel coupled-line bandpass filterusing defected ground structure with wide stopband performance, IEEE Transactionson Microwave Theory and Techniques,2002, vol.50,no.9, pp.2037-2043.
    [154] K. L. Lau, K. M. Luk, and K. F. Lee, Wideband U-slot microstrip patch antenna array,IEE Proceedings of Microwave Antennas Propagation, Feb.2001, vol.148, no.1, pp.41-44.
    [155] Y. Song, Y. C. Jiao, N. B. Wang, and F. S. Zhang, An8-elelment Tapered Slot AntennaArray with a Bandwidth in Excess of16.5:1, Progress In Electromagnetics ResearchSymposium Proceedings, March2010, pp.891-894.
    [156] H. Q. Xiang, X. Jiang, and S. M. Li, Design of a High Gain Low Sidelobe MicrostripAntenna Array at Ku-band, International Conference on Communications and MobileComputing, Jan.2009, pp.29-32.
    [157] W. P. M. N. Keizer, Fast Low-Sidelobe Synthesis for Large Planar Array AntennasUtilizing Successive Fast Fourier Transforms of the Array Factor,, IEEE Transactionson Antennas and Propagation, March2007, vol.55, no.3, pp.715-722.
    [158] C. Lin, F. S. Zhang, F. Zhang, and Z. B. Weng, A Compact Linearly Polarized AntennaArray with Low Sidelobe, International Conference on Microwave and MillimeterWave Technology (ICMMT), May2010, pp.384-387.
    [159] K. Chen, X. H. Yun, Z. S. He, and C. L. Han, Synthesis of Sparse Planar Arrays UsingModified Real Genetic Algorithm, IEEE Transactions on Antennas and Propagation,April2007, vol.55, no.4, pp.1067-1073.
    [160] L. Zhang, Y. C. Jiao, Z. B. Weng, and F. S. Zhang, Design of planar thinned arraysusing a Boolean differential evolution algorithm, IET Microwave Antennas andPropagation,2010, vol.4, no.12, pp.2172-2178.
    [161] B. P. Kumar and G. R. Branner, Design of unequally spaced arrays for performanceimprovement, IEEE Transactions on Antennas and Propagation, March1999, vol.47,no.3, pp.511-523.
    [162] D. G. Kurup, M. Himdi, and A. Rydberg, Synthesis of Uniform Amplitude UnequallySpaced Antenna Arrays Using the Differential Evolution Algorithm, IEEETransactions on Antennas and Propagation, Sept.2003, vol.51, no.9, pp.2210-2217.
    [163] L. Chen, X. W. Shi, T. L. Zhang, J. Z. Tong, and R. Li, Synthesis of an UnequallySpaced Array Using DEGL Algorithm, International Conference on Microwave andMillimeter Wave Technology (ICMMT), May2010, pp.140-143.
    [164]褚庆昕,微波网络讲义,西安:西安电子科技大学出版社,2006。
    [165]闫润卿,李英惠,微波技术基础,北京:北京理工大学出版社,1997。
    [166]吴万春,梁昌洪,微波网络及其应用,西安:西安电子科技大学出版社,2007。
    [167]甘本祓,吴万春,现代微波滤波器的结构与设计(上、下册),北京:科学出版社,1973。
    [168] J.-S. Hong and M. J. Lancaster, Microstrip Filters for Rf/Microwave Applications:New York, John Wiley&Sons,2001.
    [169]王元坤,李玉权,线天线的宽频带技术,西安:西安电子科技大学出版社,1995。
    [170]汪茂光,吕善伟,刘瑞祥,阵列天线分析与综合,成都:电子科大出版社,1989。
    [171]魏文元,宫德明,陈必森,天线原理,北京:国防工业出版社,1985。
    [172] J. L. Volakis, R. C. Johnson, H. Jasik, and etc., Antenna Engineering Handbook: NewYork, McGraw-Hill, Fourth edition,2007.
    [173] T. A. Milligan, Modern Antenna Design: New Jersey, John Wiley&Sons, Inc.,Second Edition,2005.
    [174] R. Storn and K. Price, Differential evolution-A simple and efficient adaptive schemefor global optimization over continuous spaces, University of California, Berkeley:ICSI,1995.
    [175] R. Storn and K. Price, Minimising the real functions of the ICEC’96contest bydifferential evolution, IEEE International Conference on Evolutionary Computations,1996, pp.842-844.
    [176] R. Storn, System design by constrained adaptation and differential evolution, IEEETransactions on Evolution Computation,1999, vol.3, pp.22-34.
    [177] J. L. Guo and J. Y. Li, Pattern synthesis of conformal array antenna in the presence ofplatform using differential evolution algorithm, IEEE Transactions on Antennas andPropagation,2009, vol.57, pp.2615-2621.
    [178] S. Das, A. Abraham, and A. Konar, Adaptive clustering using improved differentialevolution algorithm, IEEE Transactions on Systems,2008, vol.38, pp.218-237.
    [179] R. Storn, K. V. Price, and J. Lampinen, Differential Evolution-A Practical Approach toGlobal Optimization, Germany Springer-Verlag, Berlin,2005,
    [180]袁俊刚,孙治国,曲广吉,差异演化算法的数值模拟研究,系统仿真学报,2007,19卷:4646-4648(4784)。
    [181]周艳平,顾幸生,差分进化算法研究进展,化工自动化机仪表,2007,34卷,第3期:1-5。
    [182] B. C. Wadell, Transmission Line Design Handbook: Artech House,1991.
    [183] E.Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The facecentered cubic case employing nonspherical atoms, Physical Review Letters,1991, vol.67, no.17, pp.2295-2298.
    [184] J. I. Park, C. S. Kim, J. Kim, and e. al, Modeling of a photonic bandgap and itsapplication for the low-pass filter design, Asia-Pacific Microwave Conference(APMC),1999, vol.2, pp.331-334.
    [185] C. S.Kim, J. I. Park, A. Dal, and e. al, A novel1-D periodic defected ground structurefor planar circuits, IEEE Microwave Guided Wave Letters,2000, vol.10, no.4, pp.131-133.
    [186] H. Arslan, Z. N. Chen, and M. D. Benedetto, Ultra Wideband WirelessCommunication: New Jersey, John Wiley&Sons, Inc.,2006.
    [187] S. B. Cohn, A class of broadband three port TEM-mode hybrids, IEEE Transactionson Microwave Theory and Techniques, Feb.1968, vol.16, no.2, pp.110-116.
    [188] L. Young, Tables for cascaded homogeneous quarter-wave transformers, IEEETransactions on Microwave Theory and Techniques, April1959, vol.7, pp.233-238.
    [189] C. Feng, G. Zhao, X. F. Liu, and F. S. Zhang, Planar three-way dual-frequency powerdivider, Electronics Letters, Jan.2008, vol.44, no.2pp.133-134
    [190] S. Lee, S. Jung, and H. Y. Lee, Ultra-wideband CPW-to-substrate integratedwaveguide transition using an elevated-CPW section, IEEE Microwave and WirelessComponents Letters, Nov.2008, vol.18, no.11, pp.746-748.
    [191] B. Potelon, J. F. Favennec, C. Quendo, and etc., Design of a substrate integratedwaveguide (SIW) filter using a novel topology coupling, IEEE Microwave andWireless Components Letters, Sept.2008, vol.18, no.9, pp.596-598.
    [192] B. Liu, W. Hong, Z. C. Hao, and K. Wu, Substrate integrated waveguide180-degreenarrow-wall directional coupler, Proceedings of Asia-Pacific Microwave Conference,Dec.2005, vol.1, pp.559-561.
    [193] H. Uchimura, T. Takenoshita, and M. Fujii, Development of a laminated waveguide,IEEE Transactions on Microwave Theory and Techniques, Dec.1998, vol.46, no.12,pp.2438-2443.
    [194] L. F. a. K. C. C.H. Ho, Slot-coupled double-sided microstrip interconnects andcouplers, MTT-S International Microwave Symposium Digest,1993, vol.3, pp.1321-1324.
    [195] S. B. Cohn, Slot line on a dielectric substrate, IEEE Transactions on MicrowaveTheory and Techniques, Oct.1969, vol.17, no.10, pp.768-778.
    [196] B. Schuppert, Microstrip/Slotline Transitions: Modeling and ExperimentalInvestigation, IEEE Transactions on Microwave Theory and Techniques, Aug.1988,vol.36, no.8, pp.1272-1282.
    [197] W. R. Deal, J. Sor, Y. Qian, and T. Itoh, A broadband uniplanar quasi-Yagi active arrayfor power combining, IEEE Radio and Wireless Conference (RAWCON), Aug.1999,pp.231-234.
    [198] H. Yagi, Beam transmission of the ultra short waves, Proceedings of IRE, June1982,vol.16, pp.715-741.
    [199] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, Microstrip fed quasi-Yagi antenna withbroadband characteristics, Electronics Letters,1998, vol.34, no.23, pp.2194-2196.
    [200]任盛海,吴志忠,遗传算法在阵列天线方向图综合设计中的应用,电波科学学报,1996,11卷:62-67。
    [201] M. Shimizu, Determining the excitaion coefficients of an array using geneticalgorithms, IEEE Antennas and Propagation Society International Symposium,1994,pp.530-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700