多频带/超宽带印刷天线及锥削缝隙阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代雷达、电子对抗和无线通信等无线电技术的飞速发展和电子设备的不断升级,迫切需要天线具有多频带、宽频带和小型化等特性。印刷天线和锥削缝隙天线作为优良的天线形式,已经成为天线领域的重要研究方向。本文结合科研课题,以多频带、超宽带印刷天线及阵列为设计目标,对多频带/超宽带印刷天线、锥削缝隙天线及阵列进行了深入研究。作者的主要研究成果可概括为:
     1.对多频带印刷天线进行了研究。针对WLAN或WiMAX无线通信系统的指标要求,设计了四种应用于无线通信系统的多频带印刷天线,包括具有分形结构特点、覆盖WLAN和WiMAX频带的多频宽带印刷单极天线;具有良好全向辐射特性的“G”形单极天线;采用寄生贴片和金属通孔实现小型化的弯折单极天线;利用弯折的辐射缝隙,采用共面带线馈电的小型化印刷缝隙天线。根据设计结果,制作了这四种多频带印刷天线的实验模型,测试结果表明,这四种天线均具有良好的电性能。
     2.对超宽带印刷天线实现陷波特性的方法进行了研究。为了抑制超宽带无线通信系统与WLAN或vWiMAX系统之间的潜在干扰,设计了四种具有陷波特性的超宽带印刷天线,包括采用“L”形缝隙及弯折线技术的陷波超宽带单极天线;具有Sierpinski垫片结构的分形陷波缝隙天线;利用多条弧形并联条带实现双陷波及多陷波特性的印刷单极天线。根据设计结果,制作了这四种陷波超宽带印刷天线的实验模型,测试结果表明,这四种天线均具有良好的陷波超宽带性能。
     3.对超宽带巴伦的设计方法进行了研究。针对锥削缝隙天线结构的特点,设计了一种结构简单的微带线-平行板线巴伦;采用具有部分圆形和椭圆形的微带开路支节,提出了一种微带线-槽线巴伦,实现了宽频带阻抗匹配特性。在此基础上,提出了一种具有陷波特性的微带线-槽线巴伦,可抑制频段共用引起的潜在干扰。根据设计结果,制作了几种巴伦的实验模型,实测结果表明,几种巴伦均具有较好的超宽带或陷波特性。
     4.对超宽带锥削缝隙天线进行了研究。首先,设计了一种对踵Vivaldi天线;其次,通过分析辐射区域与阻抗匹配的关系,提出了一种采用新型辐射曲线的微带线馈电锥削缝隙天线;采用波纹边缘和陷波超宽带巴伦,设计了一种小型化锥削缝隙天线。最后,提出了一种改善锥削缝隙天线高频端辐射特性的方法。文中还制作了几种锥削缝隙天线的实验模型,并进行了实验测试。
     5.对超宽带锥削缝隙阵列进行了研究。首先,阐述了锥削缝隙阵列的设计方法,根据无限阵列的单元耦合分析结果,设计了微带线馈电的锥削缝隙阵列天线单元;其次,基于锥削缝隙有限阵列的单元耦合分析结果,通过增加边缘金属宽度减小了边缘截断效应的影响;最后,结合超宽带馈电网络,分别设计制作了维8单元锥削缝隙阵列和二维8×8单元锥削缝隙阵列,实测结果表明,两个锥削缝隙阵列均具有良好的超宽带性能。
Modern antennas with multiband, wideband and miniature characteristics have been drawn more and more attention due to the development of modern radar, electronic warfare and wireless communication and the upgrading of electronic equipments. As two kinds of antennas with good performance, planar printed antennas and tapered slot antennas (TSAs) become important research topics in antenna area. As a main part of a research project, this dissertation is mainly concerned with the design of printed antennas and TSA arrays. The multiband printed antennas, the band-notched ultra-wideband printed antennas, as well as the tapered slot antennas and arrays have been investigated systematically. The author's major contributions are as follows:
     1. Four multiband printed antennas are studied. According to the requirements of WLAN or WiMAX, a broadband coplanar waveguide-fed (CPW-fed) printed monopole antenna with fractal slots covering2.4/5GHz WLAN and3.5GHz WiMAX bands, a G-shaped printed monopole antenna with good omni-directional radiation patterns at the higher bands, a compact printed monopole antenna using a metal via and parasitic patch and a compact coplanar strip-fed (CPS-fed) printed slot antenna are designed. The prototypes of the proposed antennas are also fabricated. The measured results show that these four antennas have good multiband characteristics.
     2. Four ultra-wideband (UWB) printed antennas with band-notched characteristics are studied. In order to restrain the potential interference on UWB system from the others, such as WLAN or WiMAX, a rectangle monopole antenna with a L-shaped slot and a meandered strip, a slot antenna with a Sierpinski-shaped slot, a printed monopole antenna with two or three metal strip are proposed, respectively. At the same time, the equivalent models for each antenna are also introduced. The prototypes of these band-notched UWB antennas are also fabricated. The measured results show that these antennas have good band-notched UWB characteristics.
     3. Three ultra-wideband baluns are proposed and studied. Firstly, a low-loss microstrip-to-parallel strip balun is presented, which is used for the antipodal Vivaldi antenna. Secondly, the modified wideband microstrip-to-slotline balun is introduced, in which a microstrip open stub, composed of a quarter circular patch, a quarter ellipse patch and a polygon strip, is used to improve the impedance matching at the lower operating band. Based on the design of microstrip-to-slotline balun, a straight strip is also employed to obtain the desired band-notched characteristic. The proposed baluns are fabricated. The measured results indicated that these baluns have good ultra-wideband or band-notched characteristics.
     4. Several ultra-wideband TSAs are investigated. Firstly, an antipodal Vivaldi antenna is introduced covering1-12.5GHz frequency band. By analyzing the relationship between radiation areas and impedance matching of the TSA, a novel radiation flare curve is then proposed for improving the impedance matching in the lower band. A compact Vivaldi antenna with aperiodic corrugated edges is also introduced. Finally, a method for improving TSA's radiation patterns at the higher band is investigated. Additionally, the prototypes of the proposed TSAs are fabricated and measured.
     5. The ultra-wideband tapered slot arrays are studied. Based on the design methods of tapered slot array and the analysis of element coupling in an infinite tapered slot array, a microstrip-fed TSA element is designed. After analyzing the coupling of TSA elements in a finite array, a method for reducing the truncation effects is proposed. Combining with the low-loss ultra-wideband feed networks, the1×8-and8×8-element tapered slot arrays are designed and fabricated. The measured results show that both tapered slot arrays have good ultra-wideband characteristics.
引文
[1]J. L. Volakis, R. C. Johnson, H. Jasik, eds., Antenna Engineering Handbook (Fourth edition), New York:McGraw-Hill,2007.
    [2]K. Fujimoto and J. R. James, eds., Mobile Antenna System Handbook (Second edition), Norwood, MA:Artech House,2001.
    [3]T. A. Milligan, Modern Antenna Design (Second Edition), John Wiley & Sons, Inc., Hoboken, New Jersey,2005.
    [4]J. D. Taylor, Ultra-Wideband Radar Technology, Florida:CRC Press LLC,2001.
    [5]魏文元,宫德明,陈必森,天线原理,北京:国防工业出版社,1985.
    [6]王元坤,李玉权,线天线的宽频带技术,西安:西安电子科技大学出版社,1995.
    [7]First Report and Order.445,12th Street, S. W. Washington, DC.20554, USA: Federal Communications Commission (FCC),14 February 2002.
    [8]阮成礼,超宽带天线理论与技术,哈尔滨:哈尔滨工业大学出版社,2006.
    [9]H. Arslan, Z. N. Chen and M. D. Benedetto, Ultra Wideband Wireless Communication, John Wiley & Sons. Inc., Hoboken, New Jersey,2006.
    [10]李海英,杨汝良,超宽带雷达的发展、现在及应用,遥感技术与应用,vol.16,no.3,pp.178-183,Sep.2001.
    [11]Z. N. Chen and M. Y. W. Chia, Broadband Planar Antennas Design and Applications, John Wiley & Sons, Inc., Hoboken, New Jersey,2005.
    [12]http://www.usb.org/developers/wusb/
    [13]J. Anguera, E. Martinez, C. Puente, C. Borja, and J. Soler, Broad-Band Dual-Frequency Microstrip Patch Antenna With Modified Sierpinski Fractal Geometry, IEEE Transactions on Antennas and Propagation, vol.52, no.1, pp.66-73, Feb.2004.
    [14]Kin-Lu Wong, Compact and Broadband Microstrip Antennas, John Wiley&Sons, Inc.,2002.
    [15]S. Maci and G. Biffi Gentili, Dual-Frequency Patch Antennas, IEEE Antennas and Propagation Magazine, vol.39, no.6, pp.13-20, Dec.1997.
    [16]R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, London,2001.
    [17]C. T. P. Song, P. S. Hzll, H. Ghafouri-Shiraz, and D. Wake, Triple band planar inverted F antennas for handheld devices, Electronics Letters, vol.27, pp.58-60, Oct.2000.
    [18]Y. X. Guo, and H. S. Tan, New Compact Six-band Internal Antenna, IEEE Antennas and Wireless Propagation Letters, vol.3, pp.295-297,2004.
    [19]R. A. Bhatti, Y. T. Im and S. O. Park, Compact PIFA for Mobile Terminals Supporting Multiple Cellular and Non-Cellular Standards, IEEE Transactions on Antennas and Propagation, vol.57, no.9, pp.2534-2540,2009.
    [20]D. U. Sim and J. I. Choi, A Compact Wideband Modified Planar Inverted F Antenna (PIFA) for 2.4/5-GHz WLAN Applications, IEEE Antenna and Wireless Propagation Letters, vol.5, pp.391-394,2006.
    [21]Y. J. Cho, Y. S. Shin and S. O. Park, Internal PIFA for 2.4/5 GHz WLAN Applications, Electronics Letters, vol.42, no.1, pp.8-10, Jan.2006.
    [22]J. Janapsatya, K. P. Esselle, and T. S. Bird, A Dual-band and Wideband Planar Inverted-F Antenna for WLAN Applications, Microwave and Optical Technology Letters, vol.50, no.1, pp.138-141,2008.
    [23]C. H. Wu and K. L. Wong, Ultrawideband PIFA with a Capacitive Feed for Penta-Band Folder-Type Mobile Phone Antenna, IEEE Transactions on Antennas and Propagation, vol.57, no.8, pp.2461-2464,2009.
    [24]J. F. Li, B. H. Sun, S. L. Zuo and Q. Z. Liu, Design of Combined PIFAs with High Port-to-Port Isolation for GSM/DCS and WLAN mobile Phones, Electronics Letters, vol.45, no.11, pp.532-533, May 2009.
    [25]P. W. Chan, H. Wong and E. K. N. Yung, Wideband Planar Inverted-F Antenna with Meandering Shorting Strip, Electronics Letters, vol.44, no.6, pp.395-396, March 2008.
    [26]R. A. Bhatti and S.-O. Park, Octa-band Internal Monopole Antenna for Mobile Phone Applications, Electronics Letters, vol.44, no.25, pp.1447-1448, Dec.2008.
    [27]Y. J. Cho, Y. S. Shin and S. O. Park, Internal PIFA for 2.4/5 GHz WLAN Applications, Electronics Letters, vol.42, no.1, pp.8-10, Jan.2006.
    [28]P. Ciais, R. Staraj, G. Kossiavas and C. Luxey, Compact Internal Multiband Antenna for Mobile Phone and WLAN Standards, Electronics Letters, vol.40, no.15, pp.920-921, July 2004.
    [29]K.G. Thomas and M. Sreenivasan, A Simple Dual-Band Microstrip-fed Printed Antenna for WLAN Applications, IET Microwaves, Antennas & Propagation, vol.3, no.4, pp.687-694,2009.
    [30]K. G. Thomas and M. Sreenivasan, Compact Triple Band Antenna for WLAN/ WiMAX Applications, Electronics Letters, vol.45, no.16, pp.811-813, June 2009.
    [31]R. K. Raj, M. Joseph, B. Paul and P. Mohanan, Compact Planar Multiband Antenna for GPS, DCS,2.4/5.8 GHz WLAN Applications, Electronics Letters, vol.41, no.6, pp.290-291, March 2005.
    [32]C.-M. Wu, C.-N. Chiu and C.-K. Hsu, A New Nonuniform Meandered and Fork-Type Grounded Antenna for Triple-band WLAN Applications, IEEE Antenna and Wireless Propagations Letters, vol.5, pp.346-348,2006.
    [33]T. H. Kim and D. C. Park, CPW-fed Compact Monopole Antenna for Dual-band WLAN Applications, Electronics Letters, vol.41, no.6, pp.291-293. March 2005.
    [34]T. N. Chang and J.-H. Jiang, Meandered T-shaped Monopole Antenna, IEEE Transactions on Antennas and Propagation, vol.57, no.12, pp.3976-3978, Dec. 2009.
    [35]W.-C. Liu and J.-K. Chen, Dual-Band Twin Stepped-Patch Monopole Antenna for WLAN Application, Electronics Letters, vol.45, no.18, pp.929-931, March 2009.
    [36]H. Wang and M. Zheng, Triple-Band Wireless Local Area Network Monopole Antenna, IET Microwaves, Antennas & Propagation, vol.2, no.4, pp.367-372, 2008.
    [37]S. C. Kim, S. H. Lee, and Y.-S. Kim, Multi-Band Monopole Antenna Using Meander Structure of Handheld terminals, Electronics Letters, vol.44, no.5, pp.331-332, Feb.2008.
    [38]G. L. Xin and J. P. Xu, Wideband Miniature G-Shaped Antenna for Dual-Band WLAN Applications, Electronics Letters, vol.43, no.24, pp.1330-1332, Nov. 2007.
    [39]V. Deepu, K. R. Rohith, J. Manoj, M. N. Suma, K. Vasudevan, C. K. Aanandan and P. Mohanan, Compact Uniplanar Antenna for WLAN applications, Electronics Letters, vol.43, no.2, pp.70-72, Jan.2007.
    [40]C.-Y. Huang and P.-Y. Chiu, Dual-band Monopole Antenna with Shorted Parasitic Element, Electronics Letters, vol.41, no.21, pp.1154-1155, Oct.2005.
    [41]H.-D. Chen, J.-S. Chen and Y.-T. Cheng, Modified Inverted-L Monopole Antenna for 2.4/5 GHz Dual-band Operations, Electronics Letters, vol.39, no.22, pp.1567-1568, Oct.2003.
    [42]G. Augustin, S. V. Shynu, P. Mohanan, C. K. Aanandan and K. Vasudevan, Compact Dual-band Antenna for Wireless Access Point, Electronics Letters, vol.42, no.9, pp.502-503, April 2006.
    [43]K. C. Hwang, Dual-wideband Monopole Antenna Using a Modified Half-Sierpinski Fractal Gasket, Electronics Letters, vol.45, no.10, pp.487-489, May 2009.
    [44]J. Zhu and G. V. Eleftheriades, Dual-Band Metamaterial-Inspired Small Monopole Antenna for WiFi Applications, Electronics Letters, vol.45, no.22, pp.1104-1106, Oct.2009.
    [45]D. Llorens, P. Otero and C. C. Penalosa, Dual-band Single CPW Port, Planar-slot Antenna, IEEE Transactions on Antennas and Propagation, vol.51, no.1 pp.137-139, Jan.2003.
    [46]C. T. P. Song, P. S. Hall, H. Ghafouri-Shiraz, Multiband Multiple Ring Monopole Antennas, IEEE Transactions on Antennas and Propagation, vol.51, no.4. pp.722-729, Apr.2003.
    [47]H. Ma, Q.-X. Chu, and Q. Zhang, Compact Dual-Band Printed Monopole Antenna for WLAN Applications, Electronics Letters, vol.44, no.14, pp.834-835, July 2008.
    [48]K. Seol, J. Jung and J. Choi. Multi-Band Monopole Antenna with Inverted U-Shaped Parasitic Plane, Electronics Letters, vol.42, no.15, pp.844-845, June 2006.
    [49]Y. J. Cho, S. H. Hwang and S. O. Park, Printed Antenna with Folded Non-Uniform Meander Line for 2.4/5 GHz WLAN Bands, Electronics Letters, vol.41, no.14, pp.786-788, July 2005.
    [50]W.-C. Liu and H.-J. Liu, Compact Triple-Band Slotted Monopole Antenna with Asymmetrical CPW Grounds, Electronics Letters, vol.42, no.15, pp.840-842, July 2006.
    [51]W.-C. Liu and C.-F. Hsu, Dual-band CPW-fed Y-shaped monopole antenna for PCS/WLAN Application, Electronics Letters, vol.41 no.7, pp.390-391, March 2005.
    [52]W.-C. Liu and C.-M. Wu, Broadband Dual-frequency CPW-fed Planar Monopole Antenna with Rectangular Notch, Electronics Letters, vol.40, no.11, pp.642-643, May 2004.
    [53]W.-C. Liu, Broadband Dual-frequency Meandered CPW-fed Monopole Antenna, Electronics Letters, vol.40, no.21, pp.1319-1320, Oct.2004.
    [54]Yoshikazu Yoshimura, A Microstripline Slot Antenna, IEEE Transactions on Microwave Theory and Technique, pp.760-762, Nov.1972.
    [55]Y.-F. Lin, P.-C. Liao, P.-S. Cheng, H.-M. Chen, C. T. P. Song and P. S. hall, CPW-fed Capacitive H-shaped Narrow Slot Antenna, Electronics Letters, vol.41, no.17, pp.940-942, Aug.2005.
    [56]J.-W. Wu, H.-M. Hsiao, J.-H. Lu and S.-H. Chang, Dual Broadband Design of Rectangular Slot Antenna for 2.4 and 5 GHz Wireless Communication, Electronics Letters, vol.40, no.23, pp.1461-1463, Feb.2004.
    [57]W. C. Liu and W. R. Chen, CPW-fed Compact Meandered Patch Antenna for Dual-band Operation, Electronics Letters, vol.40, no.18, pp.1094-1095, Sep. 2004.
    [58]J.-Y. Sze, C.-I. G. Hsu and J.-J. Jiao, CPW-fed Circular Slot Antenna with Slit Back-patch for 2.4/5 GHz Dual-band Operation, Electronics Letters, vol.42, no.10, pp.563-564, May 2006.
    [59]Y.-C. Lin and K.-J. Hung, Design of Dual-band Slot Antenna with Double T-match Stubs, Electronics Letters, vol.42, no.8, pp.438-439, April 2006.
    [60]H. G. Schantz, A Brief History of UWB Antennas, IEEE Aerospace and Electronic Systems Magazine, vol.19, no.4, pp.22-26,2004.
    [61]钟顺时,梁仙灵,延晓荣,超宽带平面天线技术,电波科学学报,vo1.22,no.2,pp.308-315,2007.
    [62]V. Rumsey, Frequency Independent Antennas, Academic Press, New York,1966.
    [63]J. Liang, C. C. Chiau, X. Chen and C. G. Parini, Printed circular disc monopole antenna for ultra-wideband applications, Electronics Letters, vol.40, no.20, pp.1246-1247, Sep.2004.
    [64]D.-H. Kwon and Y. J. Kim, Suppression of Cable Leakage Current for Edge-fed Printed Dipole UWB Antenna Using Leakage-Blocking Slot, IEEE Antennas and Wireless Propagation Letters, vol.5, pp.183-186,2006.
    [65]K. P. Ray and Y. Ranga, Ultra-wideband Printed Modified Triangular Monopole Antenna, Electronics Letters, vol.42, no.19, pp.1081-1082, Sept.2006.
    [66]J. Liang, L. Guo, C. C. Chiau, X. Chen and C. G. Parini, Study of CPW-fed Circular Disc Monopole Antenna for Ultra Wideband Applications, IET Microwaves, Antennas & Propagation, vol.152, no.6, pp.520-526, Dec.2005.
    [67]X. L. Liang, S. S. Zhong and W. Wang, Elliptical Planar Monopole Antenna with Extreme-wideband, Electronics Letters, vol.41, no.6, pp.441-442, Aug.2006.
    [68]K. Y. Yazdandoost and R. Kohno, Ultra Wideband Antenna, IEEE Communications Magazine, vol.42, no.6, pp. S29-S32, June 2004.
    [69]B. Sanz-Izquierdo, P. R. Young, Q. Bai and J. C. Batchelor, Compact UWB Monopole for Multilayer Applications, Electronics Letters, vol.42, no.1, pp.5-7, Jan.2006.
    [70]H. M. Jafari, M. J. Deen, S. Hranilovic and N. K. Nikolova, A study of Ultrawideband Antennas for Near-field Imaging, IEEE Transactions on Antennas and Propagation, vol.55, no.4, pp.1184-1188, April 2007.
    [71]H. K. Kan, W. S. T. Rowe and A. M. Abbosh, Compact Coplanar Waveguide-fed Ultra-wideband antenna, Electronics Letters, vol.43, no.12, pp.654-656, June 2007.
    [72]S. M. Hu, C. L. Law and W. B. Dou, A Balloon-shaped Monopole Antenna for Passive UWB-RFID Tag Applications, IEEE Antennas and Wireless Propagation Letters, vol.7, pp.366-368,2008.
    [73]F. Viani, L. Lizzi, R. Azaro and A. Massa, A Miniaturized UWB Antenna for Wireless Dongle Devices, IEEE Antennas and Wireless Propagation Letters, vol.7, pp.714-717,2008.
    [74]Z. N. Chen, T. S. See and X. M. Qing, Small Printed Ultrawideband Antenna with Reduced Ground Plane Effect, IEEE Transactions on Antennas and Propagation, vol.55, no.2, pp.383-388, Feb.2007
    [75]H.-W. Liu and C.-F. Yang, Miniature Broadband Antenna for WLAN/WiMAX and Lower-band UWB Applications, Electronics Letters, vol.45, no.24, pp.1201-1203, Nov.2009.
    [76]Z.-A. Zheng and Q.-X. Chu, CPW-fed Ultra-wideband Antenna with Compact Size, Electronics Letter, vol.45, no.12, pp.593-594, June 2009.
    [77]J. Jung, H. Lee and Y. Lim, Compact Band-notched Ultra-wideband Antenna, Electronics Letter, vol.44, no.6, pp.391-392, March 2008.
    [78]E. S. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, and K. Dangakis, Circular and Elliptical CPW-Fed Slot and Microstrip-Fed Antennas for Ultrawideband Applications, IEEE Antennas and Wireless Propagation Letters, vol.5, pp.294-297,2006.
    [79]T.-G. Ma, C.-H. Tseng, An Ultrawideband Coplanar Waveguide-fed Tapered Ring Slot Antenna, IEEE Transactions on Antennas and Propagation, vol.54, no.4, pp.1105-1110, April 2006.
    [80]C.-Y. Huang and D.-Y. Lin, CPW-fed Bow-tie Slot Antenna for Ultra-wideband communications, Electronics Letter, vol.42, no.19, pp.1073-1074, Sep.2006.
    [81]M. Koohestani and M. Golpour, Very Ultra-wideband Printed CPW-fed Slot Antenna, Electronics Letter, vol.45, no.21, pp.1066-1067, Oct.2009.
    [82]D. D. Krishna, M. Gopikrishna, C. K. Aanandan, P. Mohanan and K. Vasudevan, Ultra-wideband Slot Antenna for Wireless USB Dongle Applications, Electronics Letter, vol.44, no.18, pp.1057-1058, Aug.2008.
    [83]C. Fumeaux, D. Baumann and R. Vahldieck, Finite-Volume Time-Domain Analysis of a Cavity-Backed Archimedean Spiral Antenna, IEEE Transactions on Antennas and Propagation, vol.54, no.3, pp.844-851, March 2006.
    [84]F. Merli, J.-F. Zurcher, A. Freni and A. K. Skrivervik, Analysis, Design and Realization of a Novel Directive Ultrawideband Antenna, IEEE Transactions on Antennas and Propagation, vol.57, no.11, pp.3458-3466, Nov.,2009.
    [85]P. J. Gibson, The Vivaldi aerial,9th Europe Microwave Conference, Brighton, U. K.,pp.101-105,1979.
    [86]E Gazit., Improved design of the Vivaldi antenna, IEE proceedings:Microwaves, Antennas and Propagation, vol.135, no.2, pp.89-92,1988.
    [87]J. D. S. Langley, P. S. Hall and P. Newham, Novel Ultrawide-Bandwidth Vivaldi Antenna with Low CrossPolarisation, Electronics, vol.29, no.23, pp.2004-2005, 1993.
    [88]S. N. Prasad and S. Mahapatra, A Novel MIC Slot-Line Antenna, European Microwave Conference, pp.120-124, Sept.1979.
    [89]T. L. Korzeniowski, D. M. Pozar, D. H. Schaubert and K. S. Yngvesson, Imaging System at 94 GHz using Tapered Slot Antenna Elements, Conference on Infrared and Millimeter Waves, Paper# W6.3, Dec,1983.
    [90]K. Yngvesson, J. Johansson and E. Kollberg, A New Integrated Slot Element Feed Array for Multibeam Systems, IEEE Transactions on Antennas and Propagation, vol.34, no.11, pp.1372-1376, Nov.1986.
    [91]K. S. Yngvesson, D. H. Schaubert, T. Korzeniowski, E. Kollberg, T. Thungren and J. Johansson, Endfire Tapered Slot Antennas on Dielectric Substrates, IEEE Transactions on Antennas and Propagation, vol.33, no.12, pp.1392-1400, Dec. 1985.
    [92]R. Janaswamy and d. H. Schaubert, Analysis of the Tapered Slot Antenna, IEEE Transactions on Antennas and Propagation, vol.35, no.9, pp.1058-1065, Sep. 1987.
    [93]K. S. Yngvesson, T. L. Korzeniowski, and Y.-S. Kim, et al., The tapered slot antenna-A New Integrated Element for Millimeter-Wave Applications, IEEE Transactions on Microwave Theory and Techniques, vol.37, no.2, pp.365-374, Feb.1989.
    [94]S. Sugawar, Y. Maita, K. Adachi, K. Mori and K. Mizuno, A MM-wave Tapered Slot Antenna with Improved Radiation Pattern, IEEE Microwave Symposium Digest, vol.2, pp.959-962, June 1997.
    [95]A. Mokraoui and R. Aksas, Scattered Field Improvement of Tapered Slot Antenna Using a Parabolic-shaped slot, Microwave and Optical Technology Letters, vol.44, no.4, pp.331-334, Feb.2005.
    [96]M. C. Greenberg and K. L. Virga, Characterization and Design Methodology for the Dual Exponentially Tapered Slot Antenna, IEEE AP-S International Symposium, vol.1, pp.88-91, July 1999.
    [97]M. C. Greenberg, K. L. Virga, and C. L. Hammond, Performance Characteristics of the Dual Exponentially Tapered Slot Antenna (DETSA) for Wireless Communications Applications, IEEE Transactions on Vehicular Technology, vol.52, no.2, pp.305-312, March 2003.
    [98]S. Nikolaou, G. E. Ponchak, J. Papapolymerou and M. M. Tentzeris, Conformal Double Exponentially Tapered Slot Antenna (DETSA) on LCP for UWB Applications, IEEE Transactions on Antennas and Propagation, vol.54, no.6, pp.1663-1669, June 2006.
    [99]D. M. Pozar, Microwave Engineering, Second Edition, John Wiley & Sons, New York,1998.
    [100]K.V. Puglia, Electromagnetic Simulation of Some Common Balun Structures, IEEE Microwave Magazine, vol.3, no.3, pp.56-61, Sep.2002.
    [101]V. Trifunovic and B. Jokanovic, Review of Printed Marchand and Double Y Baluns:Characteristics and application, IEEE Transactions on Microwave Theory and Techniques, vol.42, no.8, pp.1454-1462, Aug.1994.
    [102]S.-G. Mao, C.-T. Hwang, R.-B. Wu, et al.. Analysis of Coplanar Waveguide-to-Coplanar Stripline Transitions, IEEE Transactions on Microwave Theory and Techniques, vol.48, no.1, pp.23-29, Jan.2000.
    [103]J. B. Knorr, Slot-line Transitions, IEEE Transactions on Microwave Theory and Techniques, pp.548-554, May 1974.
    [104]B. Schuppert, Microstrip/Slotline Transitions:Modeling and Experimental Investigation, IEEE Transactions on Microwave Theory and Techniques, vol.36, no.8, pp.1272-1282, Aug.1988.
    [105]K. U-yen, E. J. Wollack, and J. Papapolymerou, et al., A Broadband Planar Magic-T Using Microstrip-slotline Transitions, IEEE Transactions on Microwave Theory and Techniques, vol.56, no.1, pp.172-177, Jan.2008.
    [106]W.-H. Tu, and K. Chang, Wide-band Microstrip-to-Coplanar Stripline/Slotline Transitions, IEEE Transactions on Microwave Theory and Techniques, vol.54, no.3, pp.1084-1089, March 2006.
    [107]S.-G. Mao, C.-T. Hwang, R.-B. Wu, et al., Analysis of Coplanar Waveguide-to-Coplanar Stripline Transitions, IEEE Transactions on Microwave Theory and Techniques, vol.48, no.1, pp.23-29, Jan.2000.
    [108]D. E. Anagnostou, M. Morton, J. Papapolymerou and C. G. Christodoulou, A 0-55-GHz Coplanar Waveguide to Coplanar Strip Transition, IEEE Transactions on Microwave Theory and Techniques, vol.56, no.1, pp.1-6, Jan.2008.
    [109]B. Jokanovic, A. MarinCic and B. Kolundiija, Analysis of the Parasitic Effects in Double-Y baluns, IEE Proceedings-Microwaves, Antennas and Propagation, vol.148, no.4, pp.239-245, Aug.2001.
    [110]J. Venkatesan and W. R. Scott, Investigation of the Double-Y Balun for Feeding Pulsed Antennas, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proc. SPIE, vol.5089, pp.830-840, April 2003.
    [111]J. Venkatesan and W. R. Scott, Measured Patterns of a Resistive V-dipole Fed with a Double-Y Balun, Microwave and Optical Technology Letters, vol.48, no.2, pp.380-383, Feb.2006.
    [112]J. Venkatesan, Novel Version of the Double-Y Balun:Microstrip to Coplanar Strip Transition, IEEE Antennas and Wireless Propagation Letters, vol.5, pp.172-174, 2006.
    [113]王乃彪,超宽频带锥削槽天线及阵列的设计与实现,西安电子科技大学博士学位论文,2010.
    [114]S. Sugawara, Y. Maita, K. Adachi, K. Mori and K. Mizuno, Characteristics of a MM-Wave Tapered Slot Antenna with Corrugated Edges, IEEE MTT-S International Microwave Symposium Digest, vol.2, pp.533-536, June 1998.
    [115]J. B. Rizk and G. M. Rebeiz, Millimeter-Wave Fermi Tapered Slot Antennas on Micromachined Silicon Substrates, IEEE Transactions on Antennas and Propagation, vol.50, no.3, pp.379-383, March 2002.
    [116]T. G. Lim, H. N. Ang, I. D. Robertson and B. L. Weiss, Tapered Slot Antenna Using Photonic Bandgap Structure to Reduce Substrate Effects, Electronics Letters, vol.41, no.7, pp.393-394, March 2005.
    [117]N.-W. Chen, C.-T. Chuang, J.-W. Shi, A W-Band Linear Tapered Slot Antenna on Rectangular-Grooved Silicon Substrate, IEEE Antennas and Wireless Propagation Letters, vol.6, pp.90-92,2007.
    [118]A. Kerkhoff and H. Ling, Design of a Planar Monopole antenna for Use with Ultra-Wideband (UWB) Having a Band-Notched Characteristic, IEEE Antennas and Propagation Society International Symposium, vol.1, pp.830-833, June 2003.
    [119]H. G. Schantz, G. Wolenec and E. M. Myszka III, Frequency Notched UWB Antennas, IEEE Conference on Ultra Wideband Systems and Technologies, pp.214-218, Nov.2003.
    [120]W.-S. Lee, D.-Z. Kim, K.-J. Kim and J.-W. Yu, Wideband Planar Monopole Antennas with Dual Band-notched Characteristics, IEEE Transactions on Microwave Theory and Techniques, vol.54, no.6, pp.2800-2806, June 2006.
    [121]K. S. Ryu and A. A. Kishk, UWB Antenna with Single or Dual Band-notcheds for lower WLAN Band and Upper WLAN Band, IEEE Transactions on Antennas and Propagation, vol.57, no.12, pp.3942-3950, Dec.2009.
    [122]Y. Zhang, W. Hong, C. Yu, J.-Y. Zhou and Z.-Q. Kuai, Design and Implementation of Planar Ultra-Wideband Antennas with Multiple Notched Bands Based on Stepped Impedance Resonators, IET Microwaves, Antennas & Propagation, vol.3, no.7, pp.1051-1059, Oct.2009.
    [123]L.-N. Zhang, S.-S. Zhong, X.-L. Liang and C.-Z. Du, Compact Omnidirectional Band-notch Ultra-wideband Antenna, Electronics Letters, vol.45, no.13, pp.659-660, June 2009.
    [124]Q.-X. Chu and Y.-Y. Yang, A Compact Ultrawideband Antenna with 3.4/5.5 GHz Dual Band-notched Characteristics, IEEE Transactions on Antennas and Propagation, vol.56, no.12, pp.3637-3644, Dec.2008
    [125]Q.-X. Chu and Y.-Y. Yang,3.5/5.5 GHz Dual Band-notch Ultra-wideband Antenna, Electronics Letters, vol.44, no.3, pp.172-174, Jan.2008.
    [126]J. Kim, C. S. Cho and J. W. Lee,5.2 GHz Notched Ultra-Wideband Antenna Using Slot-Type SRR, Electronics Letters, vol.42, no.6, pp.315-316, March 2006.
    [127]Y.-Y. Yang, Q.-X. Chu and Z.-A. Zheng, Time Domain Characteristics of Band-notched Ultrawideband Antenna, IEEE Transactions on Antennas and Propagation, vol.57, no.10, pp.3426-3430, Oct.2009.
    [128]M. Ojaroudi, G. Ghanbari, N. Ojaroudi and C. Ghobadi, Small Square Monopole Antenna for UWB Applications with Variable Frequency Band-notch Function, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.1061-1064,2009.
    [129]C. R. Medeiros, J. R. Costa and C. A. Fernandes, Compact Tapered Slot UWB Antenna with WLAN Band Rejection, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.661-664,2009.
    [130]K.-H. Kim, Y.-J. Cho, S.-H. Hwang, and S.-O. Park, Band-Notched UWB Planar Monopole Antenna with Two Parasitic Patches, Electronics Letters, vol.41, no.14, pp.783-785, July 2005.
    [131]N. Choi, C. Jung, J. Byun, F. J. Harachiewicz, M.-J. Park, Y.-S. Chung, T. Kim and B. Lee, Compact UWB Antenna with I-Shaped Band-notch Parasitic Element for Laptop Applications, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.580-582,2009.
    [132]J.-W. Jang and H.-Y. Hwang, An Improved Band-Rejection UWB Antenna with Resonant Patches and a Slot, IEEE Antennas and Wireless Propagation Letters, vol.8, pp.299-302,2009.
    [133]R. Zaker, C. Ghobadi and J. Nourinia, Novel Modified UWB Planar Monopole Antenna with Variable Frequency Band-notch Function, IEEE Antennas and Wireless Propagation Letters, vol.7, pp.112-114,2008.
    [134]N. Farrokh-Heshmat, J. Nourimia and C. Ghobadi, Band-Notched Ultra-Wideband Printed Open-Slot Antenna Using Variable On-Ground Slits, Electronics Letters, vol.45, no.21, pp.1060-1061, Oct.2009.
    [135]M. A. Antoniades and G. V. Eleftheriades, A Compact Multiband Monopole Antenna with a Defected Ground Plane, IEEE Antennas and Wireless Propagation Letters, vol.7, pp.652-655,2008.
    [136]I.-J. Yoon, K. Kim, H. K. Yoon, Y. J. Yoon and Y.-H. Kim, Ultra-Wideband Tapered Slot Antenna with Band Cutoff Characteristic, Electronics Letters, vol.41, no.11, pp.629-630, May 2005.
    [137]S. Tu, Y.-C. Jiao, Y. Song and Z. Zhang, A Novel Miniature Stripline FED Antenna with Band-notched Function for UWB Applications, Progress In Electromagnetics Research Letters, vol.10, pp.29-38,2009.
    [138]H. A. Wheeler, The Radiation Resistance of an Antenna in an Infinite Array or Waveguide, Proceedings of the IRE, pp.487-488, vol.36, April 1948.
    [139]H. A. Wheeler, Simple Relations Derived from a Phased-Array Antenna Made of an Infinite Current Sheet, IEEE Transactions on Antennas and Propagation, vol.13, no.4, pp.506-514,1965.
    [140]R. C. Hansen, Phased Array Antennas, Chapter 7, New York, Wiley-Interscience, 1998.
    [141]R. C. Hansen, Current Induced on a Wire:Implications for Connected Arrays, IEEE Antennas and Wireless Propagation Letters, vol.2, pp.288-289,2003.
    [142]R. C. Hansen, Linear Connected Arrays, IEEE Antennas and Wireless Propagation Letters, vol.3, pp.154-156,2004.
    [143]R. C. Hansen, Dipole Arrays with Non-Foster Circuits, Proceeding IEEE International Symposium On Phased Array Systems and Technology, pp.40-44, 2003.
    [144]R. C. Hansen, Non-Foster and Connected Planar Arrays, Radio Science, vol.39, RS4004, pp.1-14,2004.
    [145]A. Neto and J. J. Lee,'Infinite Bandwidth' Long Slot Array Antenna, IEEE Transactions on Antennas and Propagation, vol.4, pp.75-78,2005.
    [146]A. Neto and J. J. Lee, Ultrawide-band Properties of Long Slot Arrays, IEEE Transactions on Antennas and Propagation, vol.54, no.2, pp.534-543, Feb.2006.
    [147]J. J. Lee, Effects of Metal Fences on the Scan Performance of an Infinite Dipole Array, IEEE Transactions Antennas and Propagation, vol.38, no.5, pp.683-692, May 1990.
    [148]J. J. Lee, S. Livingston, R. Koenig, D. Nagata and L. Lai, Compact Light Weight UHF Arrays Using Long Slot Apertures, IEEE Transactions Antennas and Propagation, vol.54, no.2, pp.2009-2015, Feb.2006.
    [149]J. J. Lee, S. Livingston, R. Koenig, D. Nagata, Lai and A. Neto, Long Slot Arrays-Part 2:Ultra Wideband Test Results, IEEE Antennas Propagation Society International Symposium, vol.1A, pp.586-589, July 2005.
    [150]C. E. Buam, Some Characteristics of Planar Distributed Sources for Radiating Transient Pulses, Sensor and Simulation Note #100, AFRL, March 1970.
    [151]C. E. Buam, Transient Arrays, Ultra-Wideband, Short-Pulse Electromagnetics 3, C. Baum, L. Carin and A. Stone, (eds.), New York, Plenum Press, pp.129-138, 1997.
    [152]D. T. McGrath and C. E. Buam, Scanning and Impedance Properties of TEM Horn Arrays for Transient Radiation, IEEE Transactions on Antennas and Propagation, vol.47, pp.469-473, March 1999.
    [153]N. Inagaki, Y. Isogai and Y. Mushiake, Ichimatsu Moyou Antnena— Self-Complementary Antenna with Periodic Feeding Points, IECE Transactions, vol.62, pp.388-395,1979.
    [154]M. P. Kesler, J. G. Maloney, and G. S. Smith, FDTD Analysis of Novel Antenna Array and Substrate Concepts, ICAP/JINA Conference on AP, Davos, Switzerland, April 2000.
    [155]P. Friederich et al., A New Class of Broadband Planar Apertures, Proc. Allerton Antenna Applications Symposium, pp.561-587. Sep.2001.
    [156]B. Munk, Finite Atenna Arrays and FSS, Chapter 6, New York, John Wiley& Sons Inc.2003.
    [157]R. C. Taylar, B. A. Munk and T. E. Durham, Wideband Phased Array Antenna and Associated Methods, United States Patent, no. US 6,512,487 B1, Jan.28 2003.
    [158]M. Kragalott, W. R. Pickles and M. S. Kluskens, Design of a 5:1 Bandwidth Stripline Notch Array from FDTD Analysis, IEEE Transactions on Antennas and Propagation, vol.48, no.11, pp.1733-1741, Nov.2000.
    [159]J. J. Lee and S. Livingston, Wideband Bunny-Ear Radiating Element, IEEE Antennas and Propagation Society International Symposium, vol.3, pp.1604-1607, 1993.
    [160]J. D. S. Langley, P. S. Hall and P. Newham, Balanced Antipodal Vivaldi Antenna for Wide Bandwidth Phased Arrays, IEE Procedings:Microwaves, Antennas and Propagation, pp.97-102, vol.143, no.2, April 1996.
    [161]J. P. Weem, Z. Popovic, and B. M. Notaros, Vivaldi Antenna Arrays for SKA, IEEE Antennas and Propagation Society International Symposium, vol.1, pp.174-177, 2000.
    [162]C. Wu and J. Litva, A Design of 120-Degree Vertical Polarized Sector Antenna Using Very Short Balanced Antipodal Vivaldi Antenna, IEEE Antennas and Propagation Society International Symposium, vol.2, pp.260-263,2002.
    [163]H. Loui, J. P. Weem and Z. Popovic, A Dual-Band Dual-Polarized Nested Vivaldi Slot Array with Multilevel Ground Plane, IEEE Transactions on Antennas and Propagation,, vol.51, no.9, pp.2168-2175, Sep.2003.
    [164]S.-G. Kim and K. Chang, A Low Cross-Polarized Antipodal Vivaldi Antenna Array for Wideband Operation, IEEE Antennas and Propagation Society International Symposium, vol.3, pp.2269-2272,2004.
    [165]S.-G. Kim and K. Chang, Ultra Wideband 8 to 40 GHz Beam Scanning Phased Array Using Antipodal Exponentially-Tapered Slot Antennas, IEEE MTT-S International Microwave Symposium Digest, vol.3, pp.1757-1760,2004.
    [166]Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen and K. Wu, A Novel Feeding Technique for Antipodal Linearly Tapered Slot Antenna Array, IEEE MTT-S International Microwave Symposium Digest, pp.1641-1643,2005.
    [167]Y. Q. Yang, C. M. Zhang, S. Lin and A. E. Fathy, Development of an Ultra Wideband Vivaldi Antenna Array, IEEE Antennas and Propagation Society International Symposium, vol.1A, pp.606-609,2005.
    [168]C. T. Rodenbeck, S.-G. Kim, W.-H. Tu, M. R. Coutant, S. Hong, M.-Y. Li, and K. Chang, Ultra-Wideband Low-Cost Phased-Array Radars, IEEE Transactions on Microwave Theory and Techniques, vol.53, no.12, pp.3697-3703, Dec.2005.
    [169]S. Hong, S.-G. Kim, M. R. Coutant, C. T. Rodenbeck and K. Chang, A Multiband, Compact, and Full-Duplex Beam Scanning Antenna Transceiver System Operating From 10 to 35 GHz, IEEE Transactions on Antennas and Propagation, vol.54, no.2, pp.359-367, Feb.2006.
    [170]M. W. Elsallal and D. H. Schaubert, Electronically Scanned Arrays of Dual-Polarized, Doubly-Mirrored Balanced Antipodal Vivaldi Antennas (DmBAVA) Based on Modular Elements, IEEE Antennas and Propagation Society International Symposium, pp.887-890,2006.
    [171]L. Yang, C. W. Domier and N. C. Luhmann, Ka-Band True Time Delay E-plane Beam Scanning and Broadening Phased Array System Using Antipodal Elliptically-Tapered slot Antennas, IEEE Antennas and Propagation Society International Symposium, pp.2213-2216,2006.
    [172]S.-G. Kim, T.-Y. Yun and K. Chang, Two-Dimensional Beam-Scanning using Tapered Slot Antennas and Piezoelectric Transducers, Wiley InterScience, pp.331-337, 2006.
    [173]C. M. Zhang, M. Kuhn, M. Mahfouz and A. E. Fathy, Planar Antipodal Vivaldi Antenna Array Configuration for Low Cross-Polarization and Reduced Mutual Coupling Performance, IEEE Antennas and Propagation Society International Symposium, pp.725-728,2007.
    [174]H. Holter, Dual-polarized Broadband Array Antenna with BOR-elements, Mechanical Design and Measurements, IEEE Transactions on Antennas and Propagation, vol.55, no.2, pp.305-312, Feb.2007.
    [175]M. E. Cooley, D. H. Schaubert, N. E. Buris and E. A. Urbanik, Radiation and Scattering Analysis of Infinite Arrays of Endfire Slot Antennas with a Ground Plane, IEEE Transactions on Antennas and Propagation, vol.39, no.11, pp.1615-1625, Nov.1991.
    [176]D. H. Schaubert, J. A. Aas, M. E. Cooley, and N. E. Buris, Moment Method Analysis of Stripline-Fed Tapered Slot Antenna Arrays with a Ground Plane, IEEE Transactions on Antennas and Propagation, vol.42, no.8, pp.1161-1166, Aug. 1994.
    [177]D. H. Schaubert, A Class of E-Plane Scan Blindnesses in Single-Polarized Arrays of Tapered-Slot Antennas with a Ground Plane, IEEE Transactions on Antennas and Propagation, vol.44, no.7, pp.954-959, July 1996.
    [178]J. Shin and D. H. Schaubert, A Parameter Study of Stripline-Fed Vivaldi Notch-Antenna Arrays, IEEE Transactions on Antennas and Propagation, vol.47, no.5, pp.879-886, May 1999.
    [179]H. Holter, T.-H. Chio and D. H. Schaubert, Elimination of Impedance Anomalies in Single- and Dual-Polarized Endfire Tapered Slot Phased Arrays, IEEE Transactions on Antennas and Propagation, vol.48. no.1. pp.122-124, Jan.2000.
    [180]G. J. Wunsch and D. H. Schaubert, Full and Partial Crosswalls Between Unit Cells of Endfire Slotline Arrays, IEEE Transactions on Antennas and Propagation, vol.48, no.6, pp.981-986, June 2000.
    [181]H. Holter, T.-H. Chio and D. H. Schaubert, Experimental Results of 144-Element Dual-Polarized Endfire Tapered-Slot Phased Arrays, IEEE Transactions on Antennas and Propagation, vol.48, no.11, pp.1707-1718, Nov. 2000.
    [182]T.-H. Chio and D. H. Schaubert, Parameter Study and Design of Wide-Band Widescan Dual-Polarized Tapered Slot Antenna Array, IEEE Transactions on Antennas and Propagation, vol.48, no.6, pp.879-886, June 2000.
    [183]S. Kasturi and D. H. Schaubert, Effect of Dielectric Permittivity on Infinite Arrays of Single-Polarized Vivladi Antennas, IEEE Transactions on Antennas and Propagation, vol.54, no.2, pp.351-358, Feb.2006.
    [184]S. G. Kim, Phased Arrays and Microwave Applications using Piezoelectric Transducers, PH.D. Dissertation, Texas A&M University, USA, May 2005.
    [185]L. Yang, N. Ito, C. W. Dmier, N. C. Luhmann and A. Mase,18-40-GHz Beam-Shaping/Steering Phased Antenna Array System Using Fermi Antenna, IEEE Transactions on Microwave Theory and Techniques, vol.56, no.4, pp.767-773, April 2008.
    [186]吕英华,计算电磁学的数值方法, 北京:清华大学出版社,2006.
    [187]葛德彪,闫玉波.电磁波时域有限差分方法,西安:西安电子科技大学出版社,2002.
    [188]高本庆,时域有限差分法,北京:国防工业出版社,1995.
    [189]谢拥军,刘莹等,HFSS原理与工程应用,北京:科学出版社,2009.
    [190]哈林登,计算电磁的矩量法,中译本,北京:国防工业出版社,1981.
    [191]Zeland Software, Inc.,48890 Milmont Drive, Suite 105D, Fremont, CA 94538.
    [192]Sonnet Software, Inc.,1020 Seventh North Street, Suite 210, Liverpool, NY 13088.
    [193]Remcom Inc.,315 South Allen Street, Suite 222, State College, PA 16801.
    [194]CST GmbH. Computer Simulation Technology. Budinger Str.2a, D-64289 Darmstadt, Germany.
    [195]http://web.awrcorp.com/Usa/Products/Microwave-Office
    [196]EM Software and Systems, P.O. Box 1354, Stellenbosch,7599, South Africa.
    [197]Jaggard D. L. Fractal electrodynamics:wave interation with discretely self-similar structure, Electromagnetic Symmetry, C. Baum, H. Kritikos, Taylor and Francis publishers, Washington, D.C.,1995,231-281.
    [198]廖成恩,微波技术基础,西安:西安电子科技大学出版社,2004.
    [199]Y. Chen, The Design and Application of Broadband Antennas and Their Transmission Line Feed Structures, PH.D. Dissertation, Duke University, USA, Feb.2005.
    [200]N.-B. Wang, Y.-C. Jiao, Y. Song, L. Zhang, and F.-S. Zhang, A microstrip-fed logarithmically tapered slot antenna for wideband applications, Journal of Electromagnetic Waves and Applications, vol.23, no.10, pp.1335-1344,2009.
    [201]R. J. Mailloux,相控阵天线手册,中译本,北京:电子工业出版社,2007.
    [202]A. K. Syeda, Design of a Wideband Vivaldi Antenna Array and Performance Enhancement of Small Vivaldi Arrays Using Baffles, Master. Osmania University, India, April 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700