柔顺直线导向与缓冲机构设计问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕自动武器站系统的轻量化、小型化这一重要问题,以高精度、高动态性能、高缓冲效能的新型集成式柔顺缓冲机构为研究目标,针对柔顺直线导向与缓冲机构的设计问题进行深入研究,论文的主要研究工作如下:
     (1)自动武器站运动学模型和误差分析是论文的研究基础,分析了自动武器站系统工作原理、系统组成及其各部分的基本功用,运用齐次坐标变换原理,建立了光电搜跟单元与武器随动单元的运动学关系模型,分析了自动武器站指向误差成因机理,借助旋转矩阵理论建立了垂直度误差与武器站火力线指向精度的关系模型,提出了武器站机械结构的优化设计、制造与装配的精度要求,为柔顺缓冲机构设计奠定了基础。
     (2)针对缓冲系统参数优化目标的理论问题,分析了缓冲器在速度阶跃激励下的冲击响应和最大储能能力变化规律,提出了自动武器站摇架缓冲系统响应特性要求:最大后坐力、最大后坐位移和快速复位能力,推导出相应的加速度峰值、位移峰值、稳态振幅等特性的数学表达式,分析了不同约束条件下和不同阻尼比范围内的单自由度缓冲系统冲击响应的特性,建立了缓冲系统参数优化设计目标的数学模型,利用该模型获得了同时满足三个性能指标的最佳刚度、阻尼参数,为柔顺缓冲机构提供优化设计目标。
     (3)为解决柔顺直线导向与缓冲机构的构型设计问题,分析了各种柔顺梁单元的运动学特性,采用模块化方法构建了各种柔顺梁和柔顺直线导向机构的拓扑结构型式,提出了大位移柔顺缓冲机构的设计约束和设计原则,设计了具有导向功能和缓冲功能的改进型Roberts柔顺缓冲机构和多折叠柔顺梁缓冲机构,具有结构对称、工作行程大、导向精度高的特点,该方法为柔顺缓冲机构设计提供快速有效的设计手段,解决了柔顺机构设计过程中依赖于设计者的经验和灵感的问题。
     (4)针对导向刚度与缓冲刚度的理论计算问题,提出了对称简化方法,根据结构的对称性,利用半结构模型建立了柔顺直线导向与缓冲机构的导向刚度、缓冲刚度力学模型,分析了侧边直梁弹性变形和剪切内力对导向刚度、缓冲刚度的影响,建立了基于能量法的直梁、柔曲梁柔顺单元的力-位移特性分析方法,基于位移叠加原理推导了精确的导向刚度和缓冲刚度系数理论计算公式;选用性能优越的金属橡胶作为特定阻尼器,分析了金属橡胶的非线性缓冲刚度特性,建立了柔顺缓冲机构与金属橡胶阻尼的组合力学模型,为综合动力学特性与缓冲效能分析提供理论基础。
     (5)为了提高动力学建模与参数计算准确度,将柔顺梁分布质量的动能计入系统的总动能,采用瑞利能量法求解了柔顺悬臂梁单元、固定导向柔顺梁单元、圆弧柔顺梁单元、侧边直梁单元的集中质量参数计算公式。建立了以柔顺梁单元为主要特征的柔顺直线导向与缓冲机构的动力学模型,推导出一阶固有频率与各参量之间的关系式,通过有限元仿真分析验证了理论计算的准确性,并分析了各设计参数对于固有频率的影响,对优化结构参数、提高柔顺缓冲机构的固有频率、运动精度和改善性能具有重要意义。
     (6)建立了柔顺缓冲机构实验测试系统,进行了柔顺缓冲机构进行静态力学性能测试、模态实验和金属橡胶阻尼器非线性刚度测试与阻尼系数辨识,完成了柔顺缓冲机构与金属橡胶构成的组合型缓冲系统的仿真与实弹射击测试,对论文各章节提出的研究方法和结论进行了验证。
Concerning the development of Automatic Weapons Station (AWS) with lightweight and miniaturization, this objective of this paper is to develop a integrated compliant buffer mechanisms with high dynamic performance, high precision, high efficiency and to research the design problem of compliant linear motion and buffer mechanisms, this thesis is composed of the following content:
     The kinematic model and working principle are the research base of this paper, the composition and structure function of AWS and its working principle are analyzed. Based on homogeneous transformation principle,the kinematic mode of opto-electrical acquisition, tracking system and weapon servo system is established .The pointing error of AWS including the cause of formation are analyzed, relational models between three squareness errors and pointing error of AWS are completed based on rotation matrix theory, and accuracy requirements are presented for the structure optimization design,manufacturing and assembly of the AWS,those are to provide a basement for the compliant buffer mechanism design.
     Based on the dynamic model of shock damper system, the transient response and maximum energy storage of several buffers under speed step excitation are analyzed. According to shock response limit, three performance indexes of shock damper system are presented: peak acceleration, peak displacement, steady state amplitude. The mathematical expressions of three performance indexes are developed and response characteristics in different damping ratio range are analyzed, the optimization mathematical model for shock damper system is built, the optimum stiffness, damper parameter suitable for three performance indexes at same time are obtained, those are to provide a optimization object for the compliant buffer mechanism.
     Based on the performance analysis of different compliant beam element, topological structure of compliant beam and compliant linear-motion are designed by using the modular method, making sure that the maximum guiding stroke and highest guiding precision are obtained in the specified area of compliant mechanism, design constraints and design principles of large stroke compliant buffer mechanism are analyzed , modified Roberts compliant buffer mechanism and multi-folded flexible beam compliant buffer mechanism are designed with guiding function and shock damper function, these mechanisms have advantages of the structure axially symmetric, large stroke , high linear motion precision. This method is to provide a design means to design the structure configuration of the compliant buffer mechanisms directly, quickly, and effectively, and to solve the problem of depending on the experience of designers in design processing of compliant mechanism.
     According to the structural symmetry, the theoretical model of guiding and buffering stiffness is completed by using the method of half model. The effect of elastic deformations of side beam and shear stresses on the guiding and buffering stiffness is analyzed. Force-displacement characteristic of straight compliant beam and arc compliant beam are analyzed also based on the energy method. Accurate theoretical calculation formulations of guiding and buffering stiffness are derived based on the principle of iterative displacement; it can be used for dynamical modeling and analysis. For the accuracy of dynamics modeling, kinetic energy of compliant beam mass is included in the system total kinetic energy. The calculation formulations for lumped mass parameter of cantilever beam, fixed-guided beam, arc compliant beam, side beam are derived based the method of Rayleigh energy. The multi-degree lumped parameter dynamical model of compliant linear-motion and buffer mechanism with the compliant straight beam are built, and the relationship between first order natural frequency and structure parameter are analyzed, it can be used for improving natural frequency, motion precision and performance.
     The composition of experiment setup is introduced, and force-displacement testing, modal testing, non-linear stiffness testing and damper identification of metal-rubber are completed. Shooting test for the composed shock damper system with compliant buffer mechanism and metal-rubber are accomplished, the accuracy and effective of research method and results are validated.
引文
[1]毛保全,于子平,邵毅.车载武器技术概论[M].北京:国防工业出版社,2009.
    [2]中国人民解放军国防科技大学.12.7mm高平机枪射击测试报告[R].2010.
    [3]高跃飞.火炮反后座装置设计[M].北京:国防工业出版社,2009.
    [4]国家自然科学基金委员会工程与材料科部.学科发展战略研究报告(2006-2010)-机械与制造学科[R].科学出版社,2006.
    [5] L.L.Howell.Compliant Mechanisms[M]. NewYork:John Wiley&Sons,2002.
    [6] Larry L. Howel(l余跃庆译).柔顺缓冲机构学[M].北京:高等教育出版社.2007.
    [7] I.Her.Methodology for Compliant Mechanisms Design[D].Indiana:Purdue University.1986:19-95.
    [8] Trease B,Moon Y,Kota S. Design of large-displacement compliant joints[J].ASME Journal of Mechanical Design,2005,127(4):788-798.
    [9]宗光华,裴旭,于靖军,毕树生.一种新型柔性直线导向机构及其运动精度分析[J].光学精密工程,2008, 16(4),630-635.
    [10]贾永前,杨明华,杜庆洋.自动武器站相关技术与发展趋势[J].兵工学报,2010,3 1(6):48-51.
    [11]任永亮,范大鹏.自动武器站发展对我国火控武器的影响[J].武器装备自动化,2008,27(10):11-14.
    [12]中国人民解放军国防科技大学.通用自动武器站项目建议书[R],2009.
    [13]李辉,某车载自动武器站的初步研究[D].南京:南京理工大学硕士学位论文.2009.
    [14] Wahlde R.Application of an Inertial Reticle System to an Objective Personal Weapon[R].Army Research Laboratory.1996.
    [15] Timothy L.The Inertial Reticle Technology (IRT) Applied to a .50-cal. M2 Heavy-Barrel Machine Gun Firing from a High-Mobility Multipurpose Wheeled Vehicle (HMMWV)[R]. Army Research Laboratory.2000.
    [16] Timothy L.The Inertial Reticle Technology (IRT) Applied to a Remington 700 Sniper Rifle[R]. Army Research Laboratory.2000.
    [17] Timothy L.The Inertial Reticle Technology (IRT) Applied to an M16A2 Rifle Firing From a Fast Attack Vehicle[R]. Army Research Laboratory.2000.
    [18] Krista M.Is the Common Remotely Operated Weapons Station an Improvement over a Traditionally Manned Weapon[D]. US Army Command and General Staff College.2007.
    [19] Richter M. Operational Manning Considerations for Spartan Scout and Sea Fox Unmanned Surface Vehicles (USV)[D]. Monterey ,California. NavalPostgraduate School. 2006.
    [20] Gayle W. Analysis of Operational Manning Requirements and Deployment Procedures for Unmanned Surface Vehicles Aboard US Navy Ships[D]. Monterey ,California. Naval Postgraduate School. 2006.
    [21] Chester Topolski.Common Remotely Operated Weapon Station (CROWS),National Defense Industrial Association National Defense Industrial Association Small Arms Systems Symposium[C].Atlantic City,NJ,2002.
    [22] Swinton R.A Remotely Operated Firing System for Small Arms Weapons[R]. Weapons system division Aeronautical and Martime Research Labortory.1995:1-31.
    [23] Anthony J. Sebasto.Lightweight Remotely Operated Weapon Systems,NDIA International Infantry & Joint Services Small Arms System Annual Symposium[C]. U.S. Army Armament Research.2005.
    [24]李化耀.某遥控特种机械的动力学建模仿真与分析[D].南京:南京理工大学.2008.
    [25]许艳.某机电系统总体设计及动态分析[D].南京:南京理工大学.2006.
    [26]陈占峰,毛保全,邵毅,史少华.CAN总线在自动武器站数据传输中的应用[J].火炮发射与控制学报. 2008,3: 41-45.
    [27]王海捷,吴其军,马玉聪.基于田口方法的大口径机枪遥控枪塔的稳健性研究[J].兵工自动化, 2008,27(5):24-31.
    [28]王传有,邵毅,毛保全,李兵伟,纪兵.某型自动武器站架座有限元分析[J].兵工自动化,2009,28(7):36-40.
    [29]毛保全,房学龙,纪兵,王传有,李磊.基于模糊综合评价法的自动武器站火力打击能力评价[J].兵工自动化,2009,28(7):84-86.
    [30]毛保全,王传有,邵毅,房学龙.某型自动武器站射击密集度仿真与优化[J].装甲兵工程学院学报,2010,24(2):36-41.
    [31]徐振辉,毛保全,赵俊严,杨明华.自动武器站功能融合设计思想[J].装甲兵工程学院学报,2010,24(1):53-58.
    [32]纪兵,毛保全.自动武器站武器系统人机界面初步设计[J].兵工自动化,2009,28(7):89-93.
    [33]汪玉,华宏星.舰船现代冲击理论及应用[M].北京:科学出版社,2005.
    [34]王文睿.炮舱结构在冲击载荷作用下的振动特性分析[D].西安:西北工业大学.2007.
    [35]孙亮.自行火炮炮塔动静态特性分析[D].南京:南京理工大学.2007.
    [36]杜春江,钱林方,徐亚栋,陈龙.炮塔体结构分析与优化[J].系统仿真学报,2009,21(15):4899-4902.
    [37]张小安,贾建援.火炮随机激励对天线指向精度的影响[J].电子机械工程,2004,20(4):1-4.
    [38]贾坤荣.火炮关键零部件发射应力分析[D].西安:西北工业大学,2004.
    [39]陈龙淼,林方.炮塔在发射载荷作用下的动态仿真分析[J].系统仿真学报,2008,20(23):6557-6560.
    [40]徐诚,王亚平.火炮与自动武器动力学[M].北京:北京理工大学出版社,2006.
    [41]毛保全,邵毅.火炮自动武器优化设计[M].北京:国防工业出版社,2007.
    [42]中国人民解放军国防科技大学.轻型自动武器站项目建议书[R],2009.
    [43]范国滨,贾建援,陈贵敏,赵景.机械振动对光学系统指向精度的影响[J].中国机械工程,2005,16(2):104-108.
    [44]李占国,李艳明,宋林森.光学瞄具冲击系统弹性阻尼设计仿真[J].长春理工大学学报,2006,29(1):96-99.
    [45]车双良,刘朝晖,黄静.火炮后坐冲击振动对测控设备的影响分析[J].光电工程,2001,28(4):69-71.
    [46]郭光海,韩普祥.航炮发射对设备影响的试验研究[J].直升机技术,2005,143(3):24-27.
    [47]黄运华,李芾,傅茂海.车辆缓冲器特性研究[J].中国铁道科学,2005,26(1):96-99.
    [48]黄运华,李芾,付茂海,廖小平.新型铁道车辆液气缓冲器动态特性[J].交通运输工程学报,2005,5(4):1-4.
    [49]丁旭杰,非线性隔振抗冲器的设计与建模研究[D].上海:上海交通大学博士论文,2008.
    [50] C.M.Harris,A.G.Piersol.(刘树林等译)冲击与振动手册[M].北京:中国石化出版社,2007.
    [51]周文亮,王强.冲击隔离发展浅谈[J].噪声与振动控制,2002,10(5):22-25.
    [52]腾昱棠.磁流变冲击缓冲器的结构设计与模糊控制研究[D].南京:南京理工大学硕士学位论文,2006.
    [53]陈振辉.具有磁流变阻尼的直线进给系统动力学特性研究[D].广州:广东工业大学,2008.
    [54]刘勇,周瑾,徐龙祥.一种小位移大阻尼力磁流变阻尼器的设计与研究[J].机械工程与自动化,2009,154(3):29-32.
    [55] J.David Carlson.Magnetorheological fluids-ready for real-time motion control[J]. Lord Corporation,Materials Division, North Carolina, USA , 2001
    [56]徐赵东,李爱群.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学, 2005.22(2):101-107.
    [57] D.C.Batterbee,N.D.Sims.Design and performance optimization ofmagnetorheological oleopneumatic landing gear[J].Smart structure and Materials,2005,5760.
    [58] C.James.Innovative Designs for Magneto-Rheological Dampers[D]. Virginia :Virginia Polytechnic Institute and State University,2001.
    [59]廖昌荣,陈伟民,余森,黄尚廉.磁流变阻尼器件设计中若干技术问题探讨[J].功能材料与器件学报, 2001,7(4):345-349.
    [60]侯保林.某火炮磁流变缓冲阻尼器的设计与分析[J].兵工学报,2006,27(4):613-616.
    [61]李良军.磁流变冲击阻尼器在火炮反后坐装置中的应用研究[D].南京:南京理工大学硕士学位论文,2006.
    [62]丁文镜.减振理论[M],北京:清华大学出版,1988.
    [63] K.A.Afimiwala,R.W.Mayn,Optimum Design of an Impact Absorber[J].Journal of Engineering for Industry,1974(96):124-130.
    [64] V.M.Ryaboy.Shock Isolation by a Low-Damped Multi-Degree-of-Freedom Mechanical System[J].Journal of Sound and Vibration,1996(197):381-385.
    [65] V.V.Gureskii, M.Z.Kolovskii, L.S.Mazin. On the limiting capabilities of shockisolation[J].Mechanics of solids,1970,(6):17-22.
    [66] V.D.Manoilenko, L.Rutman.An Elastic Analogy for the Optimal Control of an Isolated Object when the Peak Load is Minimized[J].Mechanics of Solids,1974,(3):3-11.
    [67] D.V.Balandin.On Maximum Energy of Mechanical Systems under shock Disturbances[J].Shock and Vibration,1993,(1):135-144.
    [68]杨平,抗大冲击非线性耦合型缓冲器参数的优化设计探讨[J].现代机械,2001(4):42-46.
    [69]王东升.振动、冲击环境下支架减振器刚度优化设计[J],航天器环境工程,2006,4(23):86-89.
    [70]江国和,沈荣嬴,吴广明.舰船设备冲击隔离系统优化设计计算[J],噪声与振动控制,2003,12(6):25-28.
    [71]张小华,江国和.基于遗传算法的水下爆炸冲击隔离系统的极限性能分析[J],噪声与振动控制,2005,4(2):7-10
    [72]张小华,江国和,尹立国,沈荣瀛.遗传算法在冲击隔离系统优化设计的应用[J],华东船舶工业学院学报(自然科学版),2004,1118(13):125-131.
    [73]成志清,D.Pilkey Walter. D.小波函数在最佳冲击隔离中的应用(英文) [J].南京航空航天大学,2001,18(1):1-4.
    [74]伍先俊,朱石坚.几种普通元件构成隔冲器参数的优化设计[J].振动与冲击,2005,24(5):71-75.
    [75]丁旭杰,汪玉,沈荣瀛,华宏星.线性冲击隔离系统的抗冲击性能及参数优化研究[J].振动与冲击,2007,26(9):83-86.
    [76]王建国,汪玉.减振抗冲技术现状和发展方向浅论[J].噪声与振动控制,2006,26(3):11-13.
    [77]张萌,张振山,张文群.快速复位型冲击隔离器设计理论研究[J].振动与冲击,2009,28(10):8-12.
    [78]张萌,张振山,张文群.主动式冲击隔离的快速回复性理论研究[J],振动与冲击.2010,29(1):69-73.
    [79]中国科学技术协会.2008-2009机械工程(机械制造)学科发展报告[M].北京:中国科技出版社,2009.
    [80]中国机械工程学会生产工程分会.机械制造科技发展研究报告[M].北京:中国科学技术出版社,2008.
    [81]王国彪,赖一楠,范大鹏,杨华勇,王时龙.新型精密传动机构设计与制造综述[J].2010,21(16):1891-1896.
    [82] I.Her, A.Midha.A compliance number concept for compliant mechanisms and type synthesis[J].ASME Journal of Mech. Trans. Auto. Design, 1987,109(3):348-355.
    [83] A.Midha, L. L. Howell.On the nomenclature, classification and abstractions of compliant mechanism[J]. Journal of Mechanical Design,1994,116(1):270-279.
    [84]汪俊熙.柔顺缓冲机构可控轨迹输出的柔顺缓冲机构设计方法研究[D].上海:上海交通大学硕士学位论文.2006.
    [85] J.M.Derderian.The Pseudo-Rigid-Body Model Concept and Its Application to MicroCompliant Mechanisms[D].M.S.Thesis of Brigham Young University,1996:20-42.
    [86] G.M.Roach,S.M.Lyon,L.L.Howell.A Compliant Overrunning Ratchet and Pawl Clutch With Centrifugal Throw-out[C].Istenbul:Proceedings of the ASME Design Engineering Technical Conferences,1998,214-226.
    [87] G.M.Roach,L.L.Howell.Compliant Overrunning Clutch With Centrifugal Throw-out.U.S.Patent 6,148,979,2000
    [88] B.D.Jensen,L.L.Howell,D.B.Gunyan.The Design and Analysis of Compliant MEMS Using the Pseudo-Rigid-Body Model[J].ASME international Mechanical Engineering Congress and Exposition,1997:119-126.
    [89] B.D.Jensen,L.L.Howell,L.G.Salmon.Design of Two-link,In-plane,Bistable Compliant Micro-mechanisms[J].ASME Trans.on Mechanical Design.1999,121(3):416-423
    [90] M.S.Baker,S.M.Lyon,L.L.Howell.A Linear Displacement BistableMicromechanism[C].Proceedings of the 26th Biennial Mechanisms and Robotics Conference,2000:76-90
    [91] G.K.Ananthasuresh,S.Kota,Y.Gianchandani.A Methodical Approach to the Design of Compliant Micromechanisms[C].Solid-State Sensor and Actuator Workshop.Hilton Head Island.1994:189-192
    [92] V.D.Larsen,O.Sigmund,S.Bouwstra.Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio[C]. San Diego:Proceeding of the 9th Annual International Workshop on Micro Electro Mechanical Systems,1996, 365-371.
    [93] D.Clements.Implementing Compliant Mechanisms in Micro-Electro-Mechanical Systems (MEMS)[D].M.S.Thesis of Brigham Young University.2000:61-89.
    [94] A.Midha,M.D.Murphy,L.L.Howell.Compliant Constant-force Mechanism and Devices Formed Therein,U.S.Patent 5,649,454,1995
    [95] G.K.Ananthasuresh,S.Kota.Designing Compliant Mechanisms[J],Mechanical Engineering,1995,117(11):93-96.
    [96] M.B.Parkinson,B.D.Jensen,G.M.Roach,Optimization-Based Design of a Fully-Compliant Bistable Micromechanism[C].Proceedings of the 26th Biennial Mechanisms and Robotics Conference,2000:146-159.
    [97] A.Midha,L.L.Howell.On the Nomenclature,Classification and Compliant Mechanism[J].ASME Trans.on Mechanical Design,1994,116(2):270-279.
    [98] G.K.Ananthasuresh,L.L.Howell.Case Studies and a Note on the Degrees-of-Freedom in Compliant Mechanisms[J].ASME Trans.on Transmissions and Automation,1996,182(3):1-12.
    [99]谢先海,罗峰武,廖道训.柔顺机构自由度的一种计算方法[J].华中理工大学学报.2000,28(2):40-41.
    [100]李团结.柔性机构的结构拓扑特征及其自由度分析[J].机械科学与技术.2003,22(1):107-109.
    [101]陈知泰,余跃庆,杜兆才.柔顺机构自由度的一种简化计算方法[J].北京工业大学学报,2005,31(3):226-230.
    [102]陈贵敏,李端玲.平面柔顺机构的自由度[J],机械工程学报,2010,46(13):48-52.
    [103] L.L.Howell,A.Midha.A Method for the Design of Compliant Mechanism WithSmall-Length Flexural Pivots[J].ASME Trans.on Mechanical Design,1994,116(1):280-289.
    [104] L.L.Howell,A.Midha.Evaluation of Equivalent Spring Stiffness for Use in a Pseudo Rigid Body Model of Large Deflection Compliant Mechanisms[J].ASME Trans.on Mechanical Design,1996,118(1):126-140.
    [105] A.Midha,L.L.Howell.Limit positions of compliant mechanisms using the pseudo-rigid-body model concept[J] . Mechanism and Machine Theory,2000,35:99-115.
    [106]邱丽芳,翁海珊,柳林,南铁玲.不完全分布柔度的全柔性机构的研究[J].北京科技大学学报,2007,29(增刊2):156-158
    [107]李海燕,张宪民,彭惠青.大变形柔顺机构驱动特性研究[J].机械科学与技术.2004,23(9):1040-1043.
    [108] L.L.Howell,A.Midha.Parametric Deflection Approximations for End Loaded Large Deflection Beams in Compliant Mechanisms[J].ASME Trans.on Mechanical Design,1995,117(3):156-165.
    [109] S.M.Lyon,L.L.Howell,G.M.Roach.Modeling Flexible Segments with Force and Moment End Loads via the Pseudo-Rigid-Body Model[C].Proceedings of the 2000 Design Engineering Technical Conferences,2000:124-138.
    [110] B.T.Edwards,B.D.Jensen,L.L.Howell.A Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms[J].ASME Trans.on Mechanical Design,2001,123(3):466-472.
    [111] H.H.Pham, I.M.Chen,H.C.Yeh.Micro-motion selective-actuation XYZ flexure parallel mechanism design and modeling[J]. Journal of Micromechatronics,2005,3 (1):51-73.
    [112] A.Saxena,S.N.Kramer.A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments[J].ASME Journal of Mechanical Design,1998,120(3):392-400.
    [113] L.Saggere,S.Kota.Synthesis of Planar,Compliant Four-Bar Mechanisms forCompliant-Segment Motion Generation[J].ASME Journal of Mechanical Design.2001,123(4):535-541.
    [114] S.M.Lyon.M.L.Scott,L.L.Howell.A simplied Pseudo-Rigid-Body Model forFixed-Fixed Flexible Segments[C].Canada:Proceedings of ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference Montreal,2002:687-~701
    [115] Hai Jun Su,A load independent pseudo-rigid-body 3R model for determining large deflection of beams in compliant mechanisms[C]. New York:Proceedings of 2008 ASME International Design Engineering Technical Conferences &Computers and Information in Engineering Conference,2008:109-121.
    [116]冯忠磊,余跃庆,王雯静.模拟柔顺机构中柔顺杆件末端特征的2R伪刚体模型[J],机械工程学报,2011,47(1):36-40.
    [117]冯忠磊.柔顺机构的2R伪刚体模型研究[D].北京:北京工业大学硕士学位论文,2010.
    [118] Yuen Kuan Yong,Tien-Fu Lu.The effect of the accuracies of flexure hinge equations on the output compliances of planar micro-motion stages[J]. Mechanism and Machine Theory, 2008,43:347-363.
    [119] W.Jae,Dae Gab Gweon, S.Kee Moont.Optimal design of a flexure hinge based XYθwafer stage[J]. Precision Engineering,1997,21:18-28.
    [120] Shorya Awtar,Alexander H. Slocum. Topology Evolution of High Performance XY Flexure Stages[C]. Porc. ASPE 2005 Annual Meeting. Norfolk, VA, Paper No.1802, 2005
    [121] Shorya Awtar.Synthesis and Analysis ofParallel Kinematic XY Flexure Mechanisms[D]. Massachusetts:Massachusetts Institute ofTechnology,2004.
    [122] L.LHowell,S.S.Rao,A.Midha.Reliability-Based Optimal Design of a Bistable Compliant Mechanism[J]. Journal of Mechanical Design,1994,116(1):1115-1121.
    [123]占金青,张宪民.基于基础结构法的柔顺机构可靠性拓扑优化[J].机械工程学报,2010,46(13):42-47.
    [124]李海燕,张宪民,彭惠青.柔顺机构的疲劳可靠性优化设计[J].中国机械工程,2004,15(23):2130-2133.
    [125]于靖军,裴旭,毕树生,宗光华,张宪民.柔性铰链机构设计方法的研究进展[J],机械工程学报,2010,46(13):1-8.
    [126] L.L.Howell,A.Midha.Parametric deflection approximations for end-loaded,large-deflection beams in compliant mechanisms[J].Journal of Mechanical Design,1995,117(1):156-165.
    [127]于靖军,毕树生,宗光华.空间全柔性机构位置分析的刚度矩阵法[J].北京航空航天大学学报,2002,28(3):323-326.
    [128] A.Etrick,S.Kota.An energy formulation for parametric size and shape optimization of compliant mechanisms[J].Journal of Mechanical Design,1999,121(2):229-234.
    [129] M.I.Frecker,G.K.Anthasuresh.Topological synthesis of compliant mechanisms using multi-criteria optimization[J].Journal of Mechanical Design,1997,119(2):238-245.
    [130] M.Y.Wang,S.Chen,X.Wang. Design of multimaterial compliant mechanisms using level-set methods[J].Journal of Mechanical Design,2005,127(5):941-956.
    [131] Zhou Hong,Ting Kunlun.Topological synthesis of compliant mechanisms using spanning tree theory[J].Journal of Mechanical Design,2005,127(4):753-759.
    [132] P.V.Hull,S.Canfield. Optimal synthesis of compliant mechanisms usingsubdivision and commercial fea[J].Journal of Mechanical Design,2006,128(2):337-348.
    [133] H.Slocum. Precision machine design[M].New York:Prentice-Hall Inc.,1992.
    [134] D.L.Blanding..Exact constraint : Machine design using kinematic principle[M].New York:ASME Press,1999.
    [135] L.Hale.Principles and techniques for designing precision machines[D].Massachusetts:Massachusetts Institute of Technology,1999.
    [136] S.Awtar,A.H.Slocum.Constant-based design of parallel kinematic XY flexure mechanisms[J].Journal of Mechanical Design,2007,129(8):816-830.
    [137] J.B.Hopkins,M.L.Culpepper.Synthesis of multi-degree of freedom,parallel flexure system concepts via freedom and constraint topology(FACT).Part I: Principles[J].Precision Engineering,2010,34(2):259-270.
    [138] J.B.Hopkins,M.L.Culpepper.Synthesis of multi-degree of freedom,parallel flexure system concepts via freedom and constraint topology(FACT).Part II:Practice[J].Precision Engineering,2010,34(2):271-278.
    [139] HOPKINS J B,CULPEPPER M L.Synthesis of multi-axis serial flexure systems[C].Monterey:Proc.of the 24th Annual Meeting of the American Society for Precision Engineering,2009.
    [140] Su Haijun,A screw theory approach for the conceptual design of flexible joints for compliant mechanisms[J].Journal ofMechanisms and Robotics,2009,1(4):04-10.
    [141] Yu Jingjun,Li Shouzhong,Pei Xu.Type synthesis principle and practice of flexure systems in the framework of screw theory part I:General methodology[C]. New York:2010 ASME International DesignEngineering Conference,2010:DETC2010-28783.
    [142] J.A.Kim.A conceptual approach to the computational synthesis of compliant mechanisms[D].Michigan:University of Michigan,2005.
    [143] S. Kota, J. Hetrick, Z. Li, L. Saggere.Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications[J].ASME/IEEE Transactions in Mechatronics,1999,4(4):396-408.
    [144]贾建援,赵剑,王洪喜,大挠度后屈曲倾斜梁结构的非线性力学特性[J].机械工程学报,2009,45(2):139-143.
    [145] John Winterflood.High performance vibration isolation for gravitational wave detection[D]. Australia:University of Western Australia,2001.
    [146] B.A. Samuel, A.V. Desai, M.A. Haque.Design and modeling of a MEMS pico-Newton loading sensing device[J].Sound and ActuatorsA,2006,127:155-162.
    [147]陈知泰.柔顺机构的动力学研究[D].北京:北京工业大学硕士学位论文.2005.
    [148] Z.Li,S.Kota.Dynamic Analysis of Compliant Mechanisms[C]. California:Proceedings of ASME 2002 Design Engineering Technical Conferences,2002:1-11.
    [149] Zhang Xianmin.Dynamic and input tuning analysis of a piezodriven 3-DOF micro-positioning stage utilizingflexure hinges[C].New York:2006 ASME International Design Engineering Conference,2006.
    [150] Yu Yueqing,L.L.Howell,C.P.Lusk. Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model[J].Journal of Mechanical Design,2005,127(4):760-765.
    [151]成立峰柔性铰链柔顺机构的动力学问题研究[D].北京:北京工业大学硕士学位论文.2007.
    [152]王华伟柔顺机构的动力学分析与设计[D].北京:北京工业大学硕士学位论文.2005.
    [153]陈知泰,余跃庆,杜兆才,张绪平.柔顺机构柔顺关节的动应力分析[J].机械设计,2006, 23(6):41-45.
    [154]王雯静,余跃庆.大变形柔顺杆的柔顺机构应变分析[J].机械设计与研究,2009,25(3):33-36.
    [155]王雯静.柔顺机构动力学分析与综合[D].北京:北京工业大学.2008.
    [156]叶果.面向生物工程的精密定位机构及其动力学特性研究[D].北京:中国矿业大学,2011.
    [157] Mehdi Rezaei, Mohsen Tayefeh,Mohsen Bahrami.Dynamic Behavior Analysis of Compliant Micromechanisms[J]. Journal of Physics,2006,34:583-588.
    [158]丁晓红,陈晓阳,沈雪瑾.静电梳微谐振子直脚型结构的振动特性[J].机械设计与制造工程,2000,29(3):7-11.
    [159]曹炎.微机械中静电梳齿结构的静动力学研究[D].西安:西安电子科技大学,2006.
    [160]谢先海,廖道训.基于多刚体离散元模型的柔顺机构动力分析新方法[J].机械工程学报,2003,39(5):953-955.
    [161] Christine Vehar Jutte.Generalized synthesis methodology of nonlinear springs for prescribed load-displacement functions[D].Michigan:University of Michigan,2008.
    [162] Ercan M.Dede.Analysis, design, and optimization of structures with integral compliant mechanisms for mid-frequency response[D]. Michigan:University of Michigan,2007.
    [163] E.M. Dede,G.M.Hulbert.Mid-frequency response of structures with integral compliant mechanisms Verification and validation[J].Journal of sound and vibration,2008,313(2008):493-509.
    [164] R.A. Ibrahim.Recent advances in nonlinear passive isolators[J].Journal of sound and vibration,2008, 314(2008):371-452.
    [165] Erik Wolf.Development of seat shock isolation systems[D].Las Vegas:University of Nevada,2007.
    [166]刘丰林,汪绩宁,郑连清.O形线性缓冲器有限元分析与应用[J].机械工程学报,2009,45(4):244-248.
    [167]汪绩宁.精密火工品压药设备关键技术及气动压药机控制系统研究与应用[D].重庆:重庆大学,2008.
    [168]刘丰林,汪绩宁,刘荣.火工品压药系统缓冲器有限元分析与应用[J].兵工学报,2008,29(11):1309-1312.
    [169]郑连清,梁锡昌,刘丰林.赵国雄火工品药剂自动压药工艺的关键技术[J].机械工程学报,2006,42(6):146:150.
    [170] Tanakorn Tantanawat, Zhe Li, Sridhar Kota.Application of Compliant Mechanisms to Active Vibration Isolation Systems[C]. Salt Lake City: Proceedings of DETC 2004 International Design Engineering Technical Conference, 2004:1-7.
    [171]李鸣鸣.大行程纳米定位系统若干关键技术研究[D].上海:上海大学,2007.
    [172]吴鹰飞,周兆英.超精密定位工作台[J].微细加工技术,2002,2:41-47.
    [173]董吉洪,田兴志,李志来,王明哲.100nm步进扫描投影光刻机工件台、掩模台的发展[J].微纳科学与技术,2004,5:20-24.
    [174]唐小萍.亚微米线投影曝光机三维精密定位工件台控制系统研究[J].光电工程,1998,3:12-17.
    [175]川朱煌,尹文生,段广洪.光刻机超精密工件台研究[J].电子工业专用设备,2004,2:24- 27.
    [176]王立松,苏宝库,董申,张晶.大行程高精度两级定位工作台的控制方法研究[J].机械设计与制造,2001,4:71-72.
    [177] A.T.Elfizy,G.M.Bone,M.A.Elbestawi.Design and control of a dual-stage feed drive[J].MachineTool&Manufacture, 2005,45:153-165.
    [178]邱丽芳,吴国昌,李疆,翁海珊.全柔性微位移放大机构性能与参数关系[J].北京科技大学学报,2010,32(3):375-380.
    [179] Kevin Lin.Multi-axis compliant mechanism-based nanopositioner for multi-mode mechanical testing of carbon nanotubes[D]. Massachusetts:Massachusetts Institute of Technology,2006.
    [180]张永宇.V型电热硅微致动器性能及其应用研究[D].上海:上海大学,2006.
    [181]沈雪瑾.硅微单侧直脚谐振器与复合V型梁热致动器的机械性能研究[D].上海:上海大学,2007.
    [182]赵江铭,陈晓阳,王小静.大位移多折叠梁静电驱动器的设计及力学性能分析[J].机械强度,2007,29(1)5-11.
    [183]赵江铭,杨杰伟,孙俊杰,吴晓铃,陈晓阳.静电硅微多折叠梁谐振器设计和试验研究[J].中国机械工程,19(14):1669-1674.
    [184] Michal.W.Judy.Micromechanisms using sidewall beams[D].Berkeley:University of California at Berkeley,1994.
    [185] Rob Legtenberg,A.W.Groeneveld,M Elwenspoek.Comb-drive actuators for large displacements[J]. Journal Micromechanics and Microengineering,1996, 6:320–329.
    [186] Joel Rebello.Design and Analysis of a MEMS Vibration Sensor for Automotive Mechanical Systems[D].Toronto: University of Toronto,2009.
    [187] Victoria Steward.Modeling of a folded spring supporting MEMS gyroscope[D]. Worcester :Worcester Polytechnic Institute,2003.
    [188] N.B.Hubbard,W.W.Jonathan,A.Kennedy,L.Wilcox,L.L.Howell.a novel fully compliant planar linear-motion mechanism[C].Salt Lake City:ASME 2004 Design engineering technical conferences,2004.
    [189] Sitaraman V. Iyer.Modeling and Simulation of Non-idealities in a Z-axis CMOS-MEMS Gyroscope[D]. Pennsylvania:Carnegie Mellon University,2003.
    [190] W.C.Tang.Electrostatic comb-drive for resonant sensor and actuator applications[D].Berkeley:University of California,Berkeley,1990.
    [191] Gary Fedder.Simulation of microelectro mechanical systems[D]. Berkeley:University of California,Berkeley,1994.
    [192]赵江铭,沈雪瑾,张海霞,陈晓阳.弓型悬臂梁微静电谐振器力学建模[J].微纳电子技术, 2003,40(7):21-25.
    [193]郑艳萍,赵江铭,刘武发,陈晓阳.弓型梁静电硅微谐振器建模与实验[J].机械科学与技术,2007,26(10):1363-1365
    [194]袁磊,沈雪瑾,张鹏程,陈晓阳.基于ANSYS的之字型微谐振器的仿真分析[J].MEMS期间与技术,2005,5:233-236.
    [195]袁磊,沈雪瑾,赵江铭,陈晓阳.之字型支撑梁硅微谐振器机械性能分析[J].中国机械工程,2005,16(10):892-896.
    [196]袁磊.之字型硅微谐振器性能分析与研究[D].上海:上海大学学位论文,2005.
    [197] P.C. Tse, K.J. Lau, W.H. Wong, S.R.Reid.Spring stiffnesses of composite circular springs with extended flat contact surfaces under unidirectionalline-loading and surface-loading configurations[J].Composite Structures,2002,55:367-386.
    [198] P.C. Tse,S.R. Reid, K.J.Lau,W.H.Wong.Large deflections of composite circular springs with extended flat contact surfaces[J].Composite Structures,2004,63:253-260.
    [199] W.H.Wong,P.C.Tse,K.J.Lau,Y.F.Ng.Spring constant of fibre-reinforced plastics circular springs embedded with nickel–titanium alloy wire[J].Composite Structures,2004,65:319 -328.
    [200] P.C.Tse,C.T.Lung.Large deflections of elastic composite circular springs under uniaxial tension[J]. International Journal of Non-Linear Mechanics,2000,35:293-307.
    [201] A.B.Mackay.Large-Displacement Linear-Motion Compliant Mechanisms[D]. Brigham Young University,2007.
    [202] D.G.Smisth.Off-axis stiffness and piezoresistive sensing in large displacement linear motion microelecromechanical system[D]. Brigham Young University,2009.
    [203]聂旭涛.导引头伺服机构若干强度与动力学问题研究[D].长沙:国防科学技术大学,2008.
    [204]张文博.导引头伺服机构工作机理与先进测控方法研究[D].长沙:国防科学技术大学,2009.
    [205]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科学技术大学,2008.
    [206]张智永.光电稳定伺服机构的关键测控问题研究[D].长沙:国防科学技术大学,2006.
    [207]李岩,范大鹏.基于多体系统运动学理论的三轴转台装配误差建模分析[J].兵工学报, 2007, 28(8):981-987.
    [208]王永年,祝梁生,孙隆和.头盔显示/瞄准系统[M].北京:国防工业出版社, 1994.
    [209]李岩,范大鹏,张智永.视轴稳定平台的装配误差机理分析与仿真[J].中国惯性技术学报, 2007,15(1): 35-38.
    [210]李岩,范大鹏.基于装配误差的三轴转台定位误差分析[J].兵工学报.2007,28(8): 981-987(EI检索).
    [211]李岩,张智永,范大鹏.陀螺安装误差影响视轴稳定平台精度的机理分析[J].光电工程, 2007, 34(9): 10-15(EI检索).
    [212]李岩,范大鹏.多环架视轴稳定跟踪机构的运动学分析[J].应用光学,2007.28(6): 75-83.
    [213]李岩,范大鹏.光电稳定跟踪装置的综合精度评价技术研究[A].全国第六届精密工程学术研讨会, 2007.9. (第一作者)
    [214]范大鹏,张智永,范世珣,李岩.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程. 2006.14(4): 673-680.
    [215]张智永,范大鹏,范世珣.光电稳定跟踪装置的控制系统设计[J].光学精密工程, 2006,14(4):681-688.
    [216]范大鹏,张智永,范世珣,李岩.光电稳定跟踪装置的稳定机理分析研究[J].光学精密工程, 2006,14(4): 673-680.
    [217]罗护,范大鹏,张智勇,吴正洪.两轴陀螺稳定系统中陀螺安装的几种方法[J].兵工学报, 2005,26(3): 426-428.
    [218]范大鹏.《光电稳定伺服机构控制技术》专题文章导读[J].光学精密工程, 2006,14(4):673.
    [219]王春艳,王志坚.基于旋转矩阵理论的火炮定向精度分析[J].光学精密工程,2004,12(4):108-112.
    [220]芮筱亭,于海龙,何斌,陆毓琪,王公廉,杨富锋.舰炮振动分析的多体系统有限元传递矩阵法[J].兵工学报,2007,28(9):1037-1041.
    [221]姚建军.机枪系统动力学仿真及动力稳健优化设计方法研究[D].南京:南京理工大学,2002.
    [222]朱蓉.89式12.7mm重机枪动力学仿真与优化D].南京:南京理工大学,2006.
    [223]许增海.12.7mm重机枪系统设计与实践[M].北京:国防工业出版社,1998.
    [224]赵静,姚养无.大口径机枪内弹道及导气室压力的计算[J].科技情报开发与经济,2006,16(24):198-201.
    [225]单树军,何琳.速度阶跃法计算冲击响应幅值的误差原因和适用条件研究[J].振动与冲击, 2007, 26(1):91-97.
    [226]单树军,何琳.冲击理想化为速度阶跃的适用范围及其误差[J].振动与冲击, 2005, 24(5): 49-52.
    [227]王锐.橡胶隔振器动力学性能及设计方法研究[D].武汉:华中科技大学,2007.
    [228]杨叔子,杨克冲.机械工程控制基础[M].武汉:华中科技大学出版社,2000.82-100.
    [229] Charles J. Kim, Yong-Mo Moon, Sridhar Kota.A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids[J]. Journal of Mechanical Design,2008,130:1-6.
    [230] Zhou Qing kun,Zhang Zhiyong,Fan Dapeng,Hong Huajie.Matching relationship between frequency characteristic and parasitic error of compliant linear buffer mechanism[J]Applied Mechanics and Materials,2010,34: 1941-1945.
    [231]刘鸿文,材料力学下册[M],北京:高等教育出版社,1991.
    [232] Fedder G.K,Clark K.H. Modeling and simulation of micro resonators withmeander suspensions[C]. Southampton:Proceedings of the 1st International Conference on Simulation and Design of Microsystems and Microstructures,1995:175-183.
    [233] J.S.Chae, H.Kulah, A.Salian, K.Najafi.A high sensitivity Silicon on Glass Lateralμg microaccelerometer[C].Texas:Third Annual Micro/NanoTechnology Conference, Nanospace 2000. Houston,2000:23-28.
    [234] J.S.Chae, H.Kulah, K.Najafi.A Hybrid Silicon on Glass Lateral Microaccelerometer with CMOS readout circuitry. Technical Digest[C]. Las Vegas:IEEE International Conference on Micro Electro Mechanical Systems, 2002:20-24.
    [235] B.Borovic,A.Q.Liu,D.Popa,H.Cai,F.L.Lewis,Open-loop versus closed-loop control of MEMS devices: choices and issues[J].Journal of Micromechanics and Microengineering ,2005,15:1917-1924.
    [236] J.W.Wittwer, L.L.Howell.Mitigating the Effect of Local Flexibility at the Built-In Ends of Cantilever Beams[J]. Journal of Applied Mechanics,2004,71:748-751.
    [237]杜柏松,项海帆,葛耀君,朱乐东.剪切效应梁单元刚度和质量矩阵的推导及应用[J],2008,27(4):503-508.
    [238]李燕斌,静电梳齿结构的MEMS分析和优化设计[D].武汉:华中科技大学,2008.
    [239]赵江铭,横向梳状硅微静电谐振器机械性能分析与实验研究[D].上海:上海大学,2006.
    [240]郑艳萍,赵江铭,曹遂军.对称变换在对称型微结构建模中的应用[J].郑州大学学报(工学版) ,2003,24(3):87-90.
    [241] Albert P Pisano. Resonant structure micromotors: historical perspective and analysis. Sensors and Actuators[J],1989,20(122) :83-89.
    [242] Albert P Pisano,Young H.Cho.Mechanical design issues in laterally2driven microstructures[J].Sensors and Actuators A: Physical,1990,23(123):1060-1064.
    [243] Tang.W.C.Nguyen T.H,JudyM.W. Electrostatic comb drive of lateral polysilicon resonators[J].Sensors and Actuators A: Physical,1990,21(123):328-331.
    [244]陈晓阳,宋晓珏,沈雪瑾.蟹脚型微谐振器的横向振动分析[]J.机械工程学报,2001,37(7):37-40.
    [245]丁晓红,陈晓阳,沈雪瑾.静电梳微谐振子直脚型结构的振动特性[J].机械设计和制造工程,2000,29(3):6-7.
    [246] Gary J.O’Brien.Angular rate and angular acceleration sensors with CMOS switched capacitor signal conditioning[D].Michigan: University ofMichigan,2004.
    [247]刘宗林.电容式微惯性器件设计理论与方法研究[D].长沙:国防科技大学,2004.
    [248]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [249]朱石坚.振动理论与隔振技术[M].北京:国防工业出版社,2006.
    [250]李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社,2006.
    [251]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社,2000.
    [252]刘习军,贾启芬,张文德.工程振动与测试技术[M].天津:天津大学出版社,1999.
    [253]师汉民.机械振动系统分析·测试·建模·对策.武汉:华中理工大学出版社,1999:9-56.
    [254]王华伟,余跃庆,王雯静,苏丽颖.平行导向柔顺机构动力学建模及其频率特性分析[J].机械设计与研究,2008,24(2):42-47.
    [255]黄进,谢先海.平行导向柔顺机构的加工制造与性能测试[J].实验技术与管理,2000,6(1):7-9.
    [256]于靖军,毕树生,宗光华.全柔性机器人机构结构动力学分析方法研究[J].机械工程学报,2004,40(8):54-58.
    [257]李中郢.金属橡胶构件的设计[M].北京:国防工业出版社, 2000
    [258]郭宝亭.金属橡胶阻尼器性能和在转子系统减振应用研究[D].北京:北京航空航天大学,2002.
    [259]董春芳.航空发动机用金属橡胶隔振器的理论及实验研究[D].哈尔滨:哈尔滨工业大学,2003.
    [260]敖宏瑞.金属橡胶干摩擦阻尼机理及应用研究[D].哈尔滨:哈尔滨工业大学,2003.
    [261]郭宝亭,朱梓根,崔荣繁,庞为,金属橡胶材料的理论模型研究[ J ].航空动力学报,2004,19(3):314-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700