星载分布式InSAR系统的误差分析与DEM精度提高方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载分布式干涉合成孔径雷达(InSAR)系统是近年来兴起的一种新体制雷达系统,它把卫星编队技术和星载SAR技术紧密结合在一起,通过多颗卫星编队飞行、协同工作来进行地形高程测量。相对于其它地形高程测量手段和传统InSAR系统,星载分布式InSAR系统具有测高精度高、生存和抗干扰能力强、周期短、成本低等优势,是目前国内外研究的热点,尤其是第一个星载分布式InSAR系统-德国TanDEM-X系统的成功在轨运行,更是将这一新体制雷达系统的研究推向高潮。本文瞄准这一前沿课题,系统地研究了星载分布式InSAR系统的测高原理、全链路误差模型和DEM精度提高方法。其中,第二章和第三章主要是误差的传播和误差的建模及影响分析,第四章和第五章是DEM精度提高方法研究。各章具体内容安排如下:
     第二章研究了星载分布式InSAR系统与传统InSAR系统测高原理的异同点,并证明了其测高误差敏感度之间的近似等价性。从新系统三维定位原理出发,系统地分析了其误差敏感度,并与传统InSAR系统测高原理及其误差敏感度进行了对比分析,证明了新系统与传统InSAR系统测高误差敏感度的近似等效性,给出了近似条件。
     第三章研究了星载分布式InSAR系统的综合误差模型。根据新系统的三维定位原理,引出系统的一级误差源,对各误差源的误差特性进行了深入分析,以此为基础得到系统的全链路误差模型和综合误差模型,基于全数字仿真系统对误差模型进行了仿真验证;研究了系统的关键误差-干涉基线误差和波束同步误差对系统性能的影响规律,并利用全数字信号仿真系统进行了仿真验证。
     第四章研究了星载分布式InSAR系统DEM产品的校正问题。首先讨论了经典干涉定标方法定标精度较低的原因,提出四种改善定标精度的策略,在此基础上提出一种干涉定标优化方法,给出了地面定标器的布放规则;分析了目前常用的三种基于地面控制点的DEM校正方法的优缺点,提出一种基于星载分布式InSAR系统综合误差模型的DEM校正方法,该方法利用误差模型的约束,可有效消除系统误差的影响,同时抑制控制点误差的传播;针对全球无缝拼接高精度DEM的迫切需求,研究了基于多幅相邻DEM交叠区域的系统误差联合校正方法,该方法可同时对多幅DEM进行校正,得到无缝拼接的大场景DEM数据,同时,可以对没有控制点支撑的DEM进行校正。
     第五章研究了星载分布式InSAR系统干涉基线和波束同步方案的优化设计方法。为了减小各干涉参数误差的影响,分析了传统最优基线概念的不足之处,全面地研究了干涉参数误差、垂直有效基线长度、沿航迹基线长度和测高精度、系统总相干系数及信号处理难度之间的关系,提出了一种干涉基线优化设计的工程化方法,在保证干涉处理顺利进行的同时降低了干涉参数误差的误差传递系数,提升了DEM产品的精度;针对单星多普勒中心频率估计误差,提出了基于椭圆轨道的全零多普勒方法,并在此基础上提出一种适用于椭圆轨道的偏航导引方法,这两种方法可以通过对卫星姿态的调整使得雷达回波多普勒中心频率为零,前者同时利用偏航导引和俯仰导引,后者仅利用偏航导引达到相同效果,有效地消除了多普勒中心频率过大及其估计误差对单站SAR成像的影响;针对波束同步误差,提出一种最大相干波束同步方法,相对于传统波束同步方法,该方法对双星分别进行导引,降低了卫星姿态、波束指向工程实现的协同难度,可有效提高系统相干系数和多视处理时的独立视数,消除干涉时刻配准误差带来的影响,同时由于单双站多普勒中心频率同时为零,可以提高信号处理的效率,最终提升DEM精度。
Spaceborne distributed interferometric synthetic aperture radar (InSAR) is a novel remote sensing system, which is an integration of the the spaceborne SAR and satellite formation flying technology. The system fulfills the three-dimensional terrain mapping by formation flying and cooperation of several satellites. Because of its advantages such as high vertical accuracy, strong survival capability and antijamming ability, short scanning cycle and low cost, the novel InSAR system has been one of the research hotspot around the world, especially the successful launch of the first spaceborne distributed InSAR system– TanDEM-X, makes the new system a new upsurge. Aiming at the novel system, the three-dimensional localization principles, the total error model, the DEM precision improvement methods are studied systematically. Here the chapter 2 and chapter 3 analyze the transference and the influence of parameter error, the chapter 4 and chapter 5 analyzes the DEM precision improvement methods. The work demonstrated in this thesis is expected to support the realization of future InSAR system. The research in each chapter is arranged as following:
     The three-dimensional localization and altimetry principles and the error sensitivity of the spaceborne distributed InSAR system are studied in chapter 2. The localization and altimetry principles of the new system are compared with the height measurement principles of two traditional InSAR systems as well as the error sensitivity. The equivalence among three model’s error sensitivity is also proved in this chapter.
     The error problem of the spaceborne distributed InSAR system is studied in chapter 3. Based on the three-dimensional localization equations, the first order error sources of the new system are derived, and the property of every single error is analyzed in detail, then the total error model of the new system is set up. Computer simulation experiment is carried out to demonstrate the validity of the total error model. Key error of the new system are discussed here, the influences introduced by the interferometric baseline error and the illumination synchronization error are analyzed theoretically and demonstrated by computer simulation.
     Chapter 4 focuses on the calibration problems of the new system’s DEM product. Firstly, the reasons that conventional parameter calibration algorithms for InSAR system has a low accuracy are analyzed, four ways which can improve the calibration accuracy is presented, then an optimized parameter calibration algorithm is proposed, and the basic principles of disposing calibrators are given. Secondly, three typical DEM calibration algorithms based on the ground control points (GCPs) are analyzed, a new DEM calibration algorithm based on the total error model is brought forward, because of the using of the total error model, the algorithm can eliminate the systematic error and suppress the height error of GCPs efficiently. Finally, considering the urgently requirement of the high accuracy global mosaic DEM, a joint calibration method which uses the superposed areas of the adjacent DEMs information is proposed to calibrate several DEMs simultaneously, its product is a mosaic DEM of the whole big scene. The method can calibrate the DEM of scene which has no GCPs, the computer simulation results demonstrate the availability of the method.
     The optimization design of the system is studied in chapter 5. To minimize the influences of the interferometric parameters error, the limitation of the conventional concept of the optimal baseline is analyzed, and the relationships between the interferometric parameters error and the vertical accuracy, the perpendicular effective baseline and the vertical accuracy as well as the difficulty of the signal processing, the along track baseline and the total coherence are studied, then a interferometric baseline optimization method is proposed. Focusing on the estimation error of the doppler centriod, an elliptic orbit total zero doppler steering method is proposed, furthermore a novel yaw steering method is proposed, those two methods can decrease the doppler centroid to zero by adjusting the attitude of the satellite, the former must adjust the yaw and the pitch attitude at one time, while the latter only need adjusting the yaw attitude, the two methods can restrain the estimation error of the doppler centriod by reducing the doppler centriod to zero. Focusing on the illumination synchronization error, based on the two methods presented ahead, a maximum coherence illumination synchronization method is proposed. Compared with the traditional method, the new method steers the two satellites respectively and decreas the difficulty of attitude and beam-steering cooperation between the two satellites. The new method can enhance the coherence and the number of the independent looks for interferometric phase estimation, and eliminate the influences introduced by the error of interferometric coregistration time and improve the processing efficiency. Because of the zero doppler centroid, at last, the new method can upgrade the DEM precision.
引文
[1] Rogers A E, Ingalls R P. Venus: Mapping the Surface Reflectivity by Radar Interferometry[J]. Science, 1969, 65: 197-199.
    [2]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [3] Zebker H A, Goldstein R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observation[J]. Journal of Geophysical Research, 1986,91:4993-4999.
    [4] Madsen S N, Zebker H A, Martin J. Topographic Mapping using Radar Interferometry: Processing Techniques[J]. IEEE Transaction on Geoscience and Remote Sensing,1993,31(1):246-256.
    [5] Ghiglia D C, Romero L A, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. Journal of the Optical Society of America, 1994,11(1):107-117.
    [6] Zebker H A, Madsen S N, Martin J, et al. The TOPSAR interferometric radar topographic mapping instrument[J]. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5):933-940.
    [7] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364:138-142.
    [8] Rosen P A, Hensley S, Zebker H A, et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIC-R radar interferometry[J]. Journal of Geophysical Research, 1996, 101(E10):23109-23126.
    [9] Massonnet D, Holzer T, Vadon H. Land subsidence caused by the East Mesageothermal field, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997,24(8):901-904.
    [10] Zebker H A, Rosen P. On the derivation of coseismic displacement field using differential radar interferometry: the landers earthquake[J]. Journal of Geophysical Research, 1994,99(B10):19617-19634.
    [11] Garestier F, Toan T L. Forest Modeling For Height Inversion Using Single-Baseline InSAR/Pol-InSAR Data[J]. IEEE Transaction on Geoscience and Remote Sensing. 2010, 48(3):1528-1539.
    [12] Goldstein R M, Engelhardt H, Kamb B. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream[J]. Science, 1993,262:1525-1530.
    [13] Rignot E, Jezek K C, Sohn H G. Ice flow dynamics of the Greenland ice sheet from SAR interferometry[J]. Geophysical Research Letters. 1995,22(5):575-578.
    [14] Rignot E. Tidal motion, ice velocity, and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry[J]. Journal of Glaciology, 1996,42(142):476-485.
    [15] Marom M, Shemer L, Thoenton E B. Energy density directional spectra of a nearshore wave field measured by interferometric synthetic aperture radar[J]. Journal of Geophysical Research, 1991,96(B12):22125-22134.
    [16] Ainsworth T L. InSAR Imagery of surface currents, wave fields, and fronts[J]. IEEE Transaction on Geoscience and Remote Sensing. 1995, 33(5):1117-1119.
    [17] Wegmuller U, Werner C L. SAR interferometric signatures of forest[J]. IEEE Transaction on Geoscience and Remote Sensing. 1995, 33(5):1153-1161.
    [18] Wegmuller U, Werner C L. Retrieval of vegetation parameters with SAR interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing. 1997, 35(1):18-24.
    [19]魏钟铨等,合成孔径雷达卫星[M],北京:科学出版社,2001.
    [20]袁孝康,星载合成孔径雷达导论[M],北京:国防工业出版社,2003.
    [21]舒宁,雷达遥感原理[M],武汉:武汉测绘科技大学出版社,2003.
    [22]王超,张红,刘智,星载合成孔径雷达干涉原理[M],北京:科学出版社,2002.
    [23] Larson W J. Wertz J R. Space Mission Analysis and Design[M], Microocosm, Inc. and Klewer Academic Publishers, second edition, 1992.
    [24] Space Sensor Study[M], Available from Major Ronald Delpa, SAMC/XR, 180 Skynet Way, Suite 2234, Los Angeles Air Force Base, E1 Sequndo, Ca 90245-4687.
    [25] Rosen P A, Hensley S, etc. Synthetic Aperture Radar Interferometry[C], Proceedings of the IEEE,2000, 88(3):333-382.
    [26] Richard B, Philipp H. Synthetic Aperture Radar Interferometry[J]. Inverse Problems. 14 1998, R1-R54.
    [27]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M],北京:科学出版社,2005
    [28]李志林,朱庆.数字高程模型[M],武汉:武汉大学出版社,2003.
    [29] Li F K, Goldstein R M. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars[J]. IEEE Transaction on Geoscience and Remote Sensing. 1990,28(1):88-97
    [30] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. International Journal of Remote Sensing. 1988,9(5):857-872.
    [31] Riccardo L, et al. Generation of digital elevation models by using SIR-C&X-SAR multifrequency two-pass Interferometry: the Etna case study[J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(5) : 1097-1114
    [32] Zebker H A, et al. Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar[J]. IEEE Transaction on Geoscience and Remote Sensing,1994, 32(4) : 823-836.
    [33] Zebker H A, et al. The TOPSAR Interferometric radar topographic mapping instrument[J]. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5) : 933-940.
    [34]黄海风,分布式星载SAR干涉测高系统技术研究[D],国防科技大学博士学位论文,2005.
    [35]孙造宇,星载分布式InSAR信号仿真与处理研究[D],国防科技大学博士学位论文,2007.
    [36]张永胜,星载分布式InSAR概念系统结构与误差研究[D],国防科技大学博士学位论文,2007.
    [37] Shen Y S, et al. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview[C]. Proceedings of SPIE, 4152:167-178.
    [38] Iwashashi, Tsutomu T, Hirokazu. Satellite technology for environmental observation[J]. Mitsubishi Electric Advance, 1996, 74(3):8-10.
    [39] Linnehan, Robert, Perlovsky, Mutz. Detecting multiple slow-moving targets in SAR images[J]. 2004 Sensor Array and Multichannel Signal Processing Workshop, 2004:643-647.
    [40] Martin L W. Satellite-constellation design[J]. Computing in Science&Engineering, 1989,1(1):58-66.
    [41] Folta, David, Newman, et al. Design and implementation of satellite formations and constellations[J]. Advances in the Astronautical Sciences, 1998, 100(1):57-70.
    [42] Paxton, Larry J, Yee, Jeng-Hwa. Use of small satellites in the NASA Earth Science Enterprise(ESE) Earth Observing System(EOS) [J]. Acta Astronautica, 2000, 46(2):365-374.
    [43] Gonzalez J H, Bachmann M, Krieger G, Fiedler H. Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors[J]. IEEE Transaction on Geoscience and Remote Sensing. 2010. 48(2).
    [44] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: A Satelliete Formation for High-Resolution SAR Interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341.
    [45] Amiot T, Krieger G, Douchin F, Werner M, Fjortoft R. TerraSAR-L Interferometric Cartwheel: Digital Elevation Model Performance Estimation[J], International Conference on Radar Systems. October ,2004, Toulouse. France.
    [46] Massonnet D. Capabilities and Limitations of the Interferometric Cartwheel[J]. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(3) : 506-520
    [47] Forcade J. Mission Analysis And Orbit Control Of Interferometric Wheel Formation Flying[C], Proceedings of the 18th International Symposium on Space Flight Dynamics, October 2004
    [48] Fiedler H, Krieger G, Jochim F, Kirschner M, Moreira A. Analysis of Bistatic Configurations for Spaceborne SAR Interferometry[C]. European Conference on Synthetic Aperture Radar.2002, Berlin, Germany. 29-32.
    [49] Krieger G, Wendler M. Comparison of the Interferometric Performance for Spaceborne Parasitic SAR Configurations[C]. European Conference on Synthetic Aperture Radar.2002, Berlin, Germany. 467-470.
    [50] Krieger G, Fiedler H, Hajnsek I, Eineder M, Werner M, Moreira A. TanDEM-X: Mission Concept and Performance Analysis[J]. CEOS SAR CAL/VAL Workshop, Adelaide, Australien,2005, 4890-4893.
    [51] A. Moreira, G. Krieger, I. Hajnsek, et al. TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry[C]. Proceedings of the International Geoscience & Remote Sensing Symposium, Sept. 2004:1000-1003.
    [52] Krieger G, Moreira A. TanDEM-X: mission concept, product definition and performance prediction[C]. European Conference on Synthetic Aperture Radar., May 2006, Dresden Germany.
    [53] Fiedler H, Krieger G. The TanDEM-X mission design and date acquisition plan[C]. European Conference on Synthetic Aperture Radar., May 2006, Dresden Germany.
    [54] Faller N, Weber M. TerraSAR-X and TanDEM-X: Revolution in Spaceborne Radar[C]. International Geoscience & Remote Sensing Symposium. July 2007, Barcelona.
    [55] Nies H. Loffeld O, Natroshvili K, Kalkuhl M. The Bistatic Aspect of the TanDEM-X Mission[C], International Geoscience & Remote Sensing Symposium. July 2007, Barcelona.
    [56] Younis M, Metzig R, et al. Performance Prediction and Verification for the Synchronization Link of TanDEM-X[C], International Geoscience & Remote Sensing Symposium. July 2007, Barcelona.
    [57] Zink M, Krieger G, Fiedler H, Moreira A. The TanDEM-X Mission: Overview and Status[J].May 2009, IEEE Radar conference,1:5.
    [58] http://www.dlr.de/blogs/en/desktopdefault.aspx/tabid-5919/9754_read-196/.
    [59] Krieger G, et al. Interferometric SAR Mission Employing Formation Flying[C]. Proceedings of the IEEE. 2010, 98(5):816.843
    [60] Mora O, Agusti O, Bara M, Broquetas A. Direct Geocoding for Generation of Precise Wide-area Elevation Models with ERS SAR Data[J], ESA Special Publication, ESA Publications Division c/o ESTEC, 2000, 478:449-455.
    [61] Nico G. Exact closed-form geolocation for SAR interferometry[J], IEEE Transaction on Geoscience and Remote Sensing, 2002, 40: 220-222.
    [62]刘吉英,基于特征信息建模的高精度目标定位[D],国防科学技术大学硕士学位论文,2006.
    [63] Sansosti E. A Simple and Exact Solution for the Interferometic and Stereo SAR Geolocation Problem[J], IEEE Transaction on Geoscience and Remote Sensing, 2004, 15(8): 1625-1634.
    [64] Krieger G, Fiedler H, Mittermayer J, Papathanassiou K, Moreira A. Analysis of multistatic configurations for spaceborne SAR interferometry[J]. IEEE, Proceedings of Radar Sonar Naving, June 2003.150(3).
    [65]汤子跃,张守融,双站合成孔径雷达系统原理[M],北京:科学出版社,2003.
    [66] Zhang X L, et al. The Analysis of Time Synchronization Error in Bistatic SAR System[C], International Geoscience & Remote Sensing Symposium. 2005, Seoul, Korea.
    [67] Krieger G, Cassola M R, Younis M, Metzig R. Impact of Oscillator Noise in Bistatic and Multistatic SAR[C], International Geoscience & Remote Sensing Symposium. 2005, Seoul, Korea.
    [68]张秋玲,郑卫平,王岩飞.分布式卫星InSAR系统中天线指向误差分析[J].测试技术学报,2004, 18(2):151-155.
    [69]张秋玲,冯宏川,王岩飞.分布式卫星InSAR信号的相关性分析[J].数据采集与处理,2005,20(1):70-74.
    [70]张永胜,杨凤凤,孙造宇,梁甸农.星载寄生式InSAR系统相关性及相对测高精度分析[J].遥感学报,2007,11(6):796-802
    [71] Zeng B, Zhang X L, Huang S J. The Influence of Time and Frequency Synchronism to the ATI Interferometric Phase in the Distributed Satellite SAR System[J]. IEEE, 2006: 2235-2239.
    [72]郝继刚,张育林.广义卡尔曼滤波在分布式航天器相对轨道确定中的应用[C].分布式微型航天器新概念及其应用技术研讨会,北京香山,2004:126-132.
    [73]易东云,朱炬波,谷德丰等.基于样条模型的星间相对定位与定姿[C].分布式微型航天器新概念及其应用技术研讨会,北京香山,2004:375-385.
    [74] Nies H, Loffeld O, Gebhardt U, Peters V. Orbit Estimation of the Interferometric Cartwheel Using an Extended Linearized Kalman Filter[J]. IEEE, 2003.
    [75] Lu X D, Song F M, Song J J. Analyzing on Phase Error for Single Pass Interferometric SAR[C]. International Conference on Microwave and Millimeter Wave Technology Proceedings. 2002.
    [76] Shimada M. Correction of the Satellite’s State Vector and the Atmospheric Excess Path Delay in SAR Interferometry-Application to Surface Deformation Detection. Geoscience and Remote Sensing Symposium[C], Proceedings of the International Geoscience & Remote Sensing Symposium. July 2000. 5: 2236-2238.
    [77]张光明,张晓玲,黄顺吉.分布式卫星InSAR中姿态变化对测高的影响[J].电子科技大学学报. 2003.8, Vol.4, No.4: 375-379.
    [78]张光明,曾斌,黄顺吉.分布式卫星的环绕对InSAR测高精度的影响[J].电子与信息学报. 2004.1, Vol.26, No.1: 157-162.
    [79]何峰,梁甸农,刘建平.星载双基地SAR干涉测高误差分析[J].系统工程与电子技术, 2005, 21(6): 570-576.
    [80] Geudtner D, Zink M. Interferometric calibration of the X-SAR system on the Shuttle Radar Topography Mission (SRTM-SAR) [C]. The 4th IARSCE, Sym. On Remote and Sens, 1999 Ottawa, Canada.
    [81] Knedlik S, Loffeld O. Analysis of difference maximum a posteriori estimation approaches for interferometric parameter calibration[C]. Preceedings of the International Geoscience & Remote Sensing Symposium. 2001, Sydney, Australia.
    [82] Knedlik S, Loffeld O. Baseline estimation and prediction referring to the SRTM[C]. Proceedings of the International Geoscience & Remote Sensing Symposium. 2002, Toronto, Canada.
    [83] Knedlik S, Loffeld O, Hein A, et al. A novel approach to accurate baseline estimation[C]. Proceedings of the International Geoscience & Remote Sensing Symposium. 1999, Hamburg, Germany.
    [84] Mallorqi J J, Rosado I, Bara M. Interferometric calibration for DEM enhanceing and system characterization in singal pass SAR interferometry[C]. Proceedings of the International Geoscience & Remote Sensing Symposium. 2001, Sydney, Australia.
    [85] Mallorqi J J, Bara M, Broquestas A. Calibration requirements for airborne SAR interferometry SAR image analysis[C], Modeling and TechniquesⅢ, Proceedings SPIE, 2000, Sendai, Japan, 4173:267-278.
    [86]王彦平,彭海良,云日升.机载干涉合成孔径雷达定标中的定标器布放[J].电子与信息学报, 2004, 26(1):89-94.
    [87]王彦平.机载干涉SAR定标模型与算法研究[D].中国科学院电子所博士论文.北京,2003.
    [88]李品,王东进,陈卫东.基于定标器高程差的InSAR参数定标[J].中国科学技术大学学报,2009,26(1):91-96.
    [89]李品,张冬晨,王东进,陈卫东.InSAR系统差分干涉定标的研究[J].中国科学技术大学学报,2009,39(5):460-465.
    [90]汪金华,李品,陈卫东.基于遗传算法的InSAR系统干涉定标方法[J].中国科学技术大学学报,2010,40(2):133-139.
    [91]李品.InSAR系统的定标方法研究[D].中国科学技术大学博士论文.合肥.2008.
    [92] Shewchuk J R. Lecture Notes on Delaunay Mesh Generation[M]. Berkeley, CA. Department of Electrical and Computer Science, University of California at Berkeley, 1999.
    [93] Erxleben J, Elder K, Dacis R. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains[C], Hydrological Processes.2002. 16(18):3627-3649.
    [94] Gonzalez J H, Bachmann M, Fiedler H, Huber S, Krieger G, Wessel B, Zink M. Development of TanDEM-X DEM Calibration Concept [C]. European Microwave Conference. Oct 2007,1743-1746.
    [95] Gonzalez J H, Bachmann M, Fiedler H, Krieger G, Zink M. TanDEM-X DEM Calibration Concept and Height References [C]. European Conference on Synthetic Aperture Radar, June 2008, Friedrichshafen, Germany.
    [96] Wessel B, Gruber A, Gonzalez J H, Bachmann M, Wendleder A. TanDEM-X:DEM Calibration Concept [C]. International Geoscience & Remote Sensing Symposium. July, 2008 Boston, Massachusetts, U S A.
    [97] Schwerdt M, Brautigam B, Bachmann M, Doring B. TerraSAR-X Calibration Results[C]. International Geoscience & Remote Sensing Symposium. July, 2008 Boston, Massachusetts, U S A,2:205-208.
    [98] Gonzalez J H, Bachmann M, Scheiber R, Andres C, Krieger G. TanDEM-X DEM Calibration and Processing Experiments with E-SAR[C]. International Geoscience & Remote Sensing Symposium. July, 2008 Boston, Massachusetts, U S A.
    [99] Gonzalez J H, Bachmann M, Fiedler H, Huber S, Krieger G, Zink M. DEM Calibration Concept for TanDEM-X[C]. International Geoscience & Remote Sensing Symposium. July 2007, 4487-4490.
    [100] Wessel B, Marschalk U, Gruber A, Huber M, Hahmann T, Roth A, Habermeyer M. Design of the DEM Mosaicking and Calibration Processor for TanDEM-X[C]. European Conference on Synthetic Aperture Radar, June 2008, Friedrichshafen, Germany.
    [101] Gruber A, Wessel B, Huber M. TanDEM-X DEM Calibration: Correction of systematic DEM Errors by Block Adjustment[C]. International Geoscience & Remote Sensing Symposium. July 2009, 2:761-764.
    [102] Hahmann, Roth A, Martinis S, Twele A, Gruber A. Automatic Extraction of Water Bodies from TerraSAR-X Data. International Geoscience & Remote Sensing Symposium. July, 2008 Boston, Massachusetts, U S A, 3:103-106.
    [103]徐华平,周荫清,李春升.星载干涉SAR中的基线问题[J].电子学报, 2003,3(3):437-439.
    [104]郑芳,马德宝,裴怀宁.合成孔径雷达干涉测量中的最优基线模型[J].现代雷达, 2005,27(3):9-11.
    [105] Raney R K. Doppler properties of radars in circular orbits[J]. International Journal of Remote Sensing, 1986, 7(9):1153-1162.
    [106] Fiedler H, Boerner E. Total Zero Doppler Steering---A New Method for Minimizing the Doppler Centroid[J]. Geoscience and Sensing Letters, 2005. 2,( 2):141-145.
    [107] Boerner E, Fiedler H. A new Method for Total Zero Doppler Steering[C]. Geoscience and Remote Sensing Symposium, International Geoscience & Remote Sensing Symposium. 2004. 1526-1529.
    [108] Fiedler H, Fritz T, Kahle R. Verification of the Total Zero Doppler Steering[C]. Radar’2008 International Conference on 2-5 Sept 2008.340-342.
    [109]王磊,干涉合成孔径雷达信号处理的研究[D].中国科学院博士学位论文,2001.
    [110] Gabriel A K, Goldstein R M. Crossed Orbit Interferometry: Theroy and Experimental Results From SIR-B[J], Int. J. Remote Sensing,1988, 9(5):857-872.
    [111] Eichel P H, Ghiglia D C, et al. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection[R]. Sandia National Labs Tech. Report, 1993.
    [112] Lanari R, et al. Generation of digital elevation models by using SIR-C&X-SAR multifrequency two-pass Interferometry: the Etna case study[J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(5) : 1097-1114.
    [113] Spagnolini U. 2-D phase unwrapping and instaneous frequency estimation[J], IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(5):579-589.
    [114]朱岱寅,朱兆达.利用线性相位模型提高干涉SAR图像相干性及改进相干性估计[J],电子学报,2005,33(9):1594-1598.
    [115] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988,23(4):713-720.
    [116] Takajo H, Takahashi T. Noniterative method for obtaining the exact solution for the normal equation in Least-Squares phase estimation for the phase difference[J]. J. Opt. Soc. Am, 1988, 5(11): 1818-1827
    [117] Xu W, Cumming I. A region-growing algorithm for InSAR phase unwrapping[J]. IEEE Transaction on Geoscience and Remote Sensing, 37(1): 124-134
    [118] Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR[J]. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(3): 728-738
    [119]谷德峰,易东云,朱炬波,孙蕾.分布式InSAR三维定位的闭合形式解及其精度分析[J].电子学报, 2007, 35(6):1026-1031.
    [120] Li J, Huang H F, Liang D N. Height-measure accuracy analysis of distributed spaceborne InSAR system[C]. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar. 650-654.
    [121]彭冬菊,吴斌.GPS星历对LEO星载GPS精密定轨精度的影响[J].天文学报, 2008, 49 (4):434-442.
    [122] Yunck T P, Wu S. Non-dynamic decimeter tracking of earth satellites using the global positioning system[C]. AIAA 24th Aerospace Sciences Meeting. Reno, NV, AIAA Paper86-0404, Jan 1986.
    [123] Yunck T P. Precise Tracking of remote sensing satellites with the global positioning system[J]. IEEE Transaction on Geoscience and Remote Sensing. 1990,28:108-116.
    [124] Svehla D, Rothacher M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters[J]. Advances Geoscience. 2002,1:1-10.
    [125]杨龙,董绪荣.利用GPS非差观测值的GRACE卫星精密定轨[J].宇航学报,2006, 27(3): 373-378.
    [126]谷德峰,涂先勤,易东云.利用SLR数据校准GPS精密定轨系统误差[J].国防科技大学学报, 2008, 30(6): 14-18.
    [127]林玉平,郭杭. GPS实时测量速度与加速度的载波相位方法[J].工程勘测. 2009,10:53-56.
    [128]陈远,于兴旺,叶聪云,张明. GPS多普勒观测值测速的精度分析[J].全球定位系统. 2008:31-38.
    [129] Loffeld O, Nies H, Peters V, Knedlik S. Models and Useful Relations for Bistatic SAR Processing[J],IEEE Transaction on Geoscience and Remote Sensing, 2004,42(10): 2031-2038.
    [130] Younis M, Metzig R, Krieger G. Performance Prediction of a Phase SynchronizationLink of Bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters. 2006,3(3):429-433.
    [131] Zebker H A, Chen K. Accurate Estimation of Correlation in InSAR Observations[J]. IEEE Geoscience and Remote Sensing Letters. 2005,2(2):124-127.
    [132] Wang T. Liao M S, Perissin D. InSAR Coherence-Decomposition Analysis[J]. IEEE Geoscience and Remote Sensing Letters. 2010, 7(1):156-160.
    [133]姚静,谷德峰,易东云,朱炬波.编队卫星空间状态与星间基线的建模与分析[J].中国空间科学技术, 2008, (6): 21-28.
    [134] Remco, Kroes, Oliver, Montenbruck, et al. Precise GRACE baseline determination using GPS[J]. GPS solutions. Sep 2005, 21-31.
    [135]张永胜,黄海风,梁甸农,朱炬波.星载分布式InSAR测高性能的理论及系统仿真评价方法[J].电子学报. 2008. 36(7): 1273-1278.
    [136] Performance Specification Digital Terrain Elevation Data (DTED). MIL-PRF-89020B[S], 23 May 2000.
    [137]路兴强,余安喜,王敏,梁甸农.小卫星分布式雷达仿真系统的集群技术实现[J].现代雷达. 2006(8): 1-3.
    [138] Zhang Y G, Zhai W S. A new method for Doppler cenrtoid estimation for spaceborne SAR based on chirp scaling algorithm[C]. International Geoscience & Remote Sensing Symposium. July 2007, Barcelona, Spain.
    [139] Dukhopelnikova I V. New difference Doppler centroid estimation method with high space resolution[C]. MRRS’2008, Kiev Ukraine, September 22-24, 2008.
    [140]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003:86-151.
    [141]孟云鹤,尹秋岩,戴金海. SAR卫星多普勒频移偏航导引补偿效果分析[J].中国空间科学技术, 2004,24(1):45-48.
    [142] Errico M D, Moccia A. Attitude and Antenna Pointing Design of Bistatic Radar Formations[J]. IEEE Transaction on Aerospace and Electronic Systems. 2003,39(3):949-960.
    [143] Wang W Q. Approach of Adaptive Synchronization for Bistatic SAR Real-Time Imaging[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007,45(9):2695-2700
    [144]黄海风,梁甸农.非合作式星载双站雷达波束同步设计[J].宇航学报. 2005, 26(5): 606-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700