深空测控通信大天线技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测是人类在新世纪的三大航天活动之一。深空测控通信系统完成对深空探测器测控及通信。论文密切结合总装预研项目“S/Ka测控通信系统研究”中关键技术之一“窄波束天线捕获”需求,以实现粗略轨道预报下的窄波束大天线的快速捕获为出发点,对深空测控通信大天线相关技术展开研究。作者的主要工作和创造性成果可概括为以下几个方面:
     ①研究了基于物理光学法的大反射面天线辐射场计算方法,并利用Matlab实现了计算软件包。对几种常用于天线仿真设计的电磁计算方法及相应的商用软件进行了分析,并总结出了适用于本文的天线设计方法。利用Matlab实现了基于物理光学法的大天线辐射场计算软件包。最后将基于Matlab代码的计算结果与通用反射面天线GRASP软件的仿真结果进行比较分析,两种仿真结果相符,表明了本文开发的计算软件包的正确性及可靠性。为本文后续的研究提供了基础。
     ②研究了阵列天线馈电大反射面天线系统的灵敏度、效率、噪声等性能参数,提出了基于电小喇叭阵列馈电改善大反射面天线性能的思路。基于二维阵列的结构分析,对适合用于反射面馈电的六边形阵进行了研究。针对深空测控的应用,分别研究了基于电大喇叭阵列馈电和电小喇叭阵列馈电的大反射面天线性能。仿真和分析结果表明:利用阵列天线对反射面馈电可以改善大反射面天线灵敏度及可视范围;电小喇叭阵列馈电的反射面天线与电大喇叭阵列馈电的反射面大天线相比,具有更广的可视范围及更高的孔径效率。
     ③针对深空测控通信中地面站窄波束天线捕获深空探测器的难题,提出了一种电波束扫描和机械扫描相结合的多波束-螺旋快速扫描捕获方法。从反射面天线偏馈扫描原理出发,利用物理光学法对偏馈反射面方向图进行分析,对共焦面馈源阵列中每个馈源照射反射面形成的次级远场方向图计算,利用间接共轭场匹配技术综合出多个正交的波束,形成了具有更广的可视范围多波束反射面天线,以更大螺距进行螺旋扫描。仿真和分析结果表明:多波束—螺旋扫描在较粗预报范围能快速对指定空域完成扫描、捕获探测器;利用共轭场匹配技术综合的多波束不但能改善天线的可视范围,而且获得了更高的增益,改善了链路中信号的信噪比,为更远的深空探测提供可能。
     ④为了改善深空测控通信中大口径窄波束天线的扫描范围,提出了一种基于粒子群算法(PSO)的阵列馈电波束综合的方法。在深入研究PSO算法特性的基础上,提出了先利用物理光学法计算共焦面馈电阵每个馈源照射反射面的次级远场方向图并进行存储,再用PSO对馈电阵列的权值进行优化,对各个馈源产生的次级方向图加权综合出期望方向图的思想。仿真和分析结果表明:基于PSO优化方法与传统共轭场匹配方法相比,更能精确指向期望方向、控制旁瓣电平、综合出期望方向图、扩大深空测控通信天线的可视范围。
     ⑤研究了深空测控通信中天线组阵技术,提出了一种适用大规模平板阵的快速来波方向(DOA)估计方法。研究了现有深空测控通信系统中大天线及天线组阵的技术与特点,探讨了大规模平板阵在深空探测中的应用。提出了一种利用新颖的平行阵结构、基于传播因子方法的快速DOA估计方法。仿真和分析结果表明:该算法可以实现快速而精确的DOA估计,适用于大规模阵及实时DOA估计。
     ⑥研究了大反射面天线馈源阵列技术,主要设计一种有EBG结构的六边形馈电阵列。首先设计了加扼流槽电小喇叭馈源,仿真和实测结果表明扼流槽结构可使圆锥喇叭主瓣平坦、主瓣边缘变化陡峭,更适用于组阵。在深入研究EBG结构的带隙特性及抑制表面波特性的基础上,设计了一种基于EBG结构的六边形微带天线阵列馈源结构,并对其性能进行了实测和分析。结果表明:EBG结构可以有效抑制天线阵元之间的互耦,改善天线匹配及圆极化特性;基于EBG结构的六边形馈源阵列较无EBG结构性能有较大提高,更适用作反射面天线的焦平面馈电阵。
Deep-space exploration is one of the three space activities in the new century. Deep-space telemetry, tracking & command (TT&C) and communication system is to complete the TT&C and communication for Deep-space spacecraft. Related tightly to the pre-research project entitled“S/Ka TT&C and Communication System Research”, this dissertation presents a systematic investigation into the technique of large antennas for deep-space TT&C and communication, which started with capturing spacecraft using narrow beam-width large antenna under a rough orbit forecast in little time. The major contributions of the dissertation on this subject can be summarized as follows:
     ①The software package for calculating the radiation field of large reflector antenna using Matlab is developed, which based on physical optics. After a brief review of several computational electromagnetic methods and the corresponding commercial software commonly used in antenna design, the method of antenna analysis in this dissertation is addressed. The software package based on physical optics for calculating the radiation field of large reflector antenna is developed with Matlab. The accuracy comparison is carried out between our package and commercial software-General Reflector Antenna Software Package (GRASP). These simulation results show the accuracy of our software package is consistent with commercial software. This package provides the basis for follow-up research.
     ②The performance of reflector antenna system using a focal-plane array, such as sensitivity, efficiency and noise, was analyzed. The antenna performance in terms of efficiency, sentivity and field of view, using a focal-plane array in place of a standard single-mode feed, can be greatly improved. Numerical simulations were performed to compare the large reflector antenna performance between the utilization of an electrically small horn array and an electrically large horn array when beam steering. These simulation results show that the reflector antenna using focal-plane array of electrical-small horn has wider field of view and higher aperture efficiency, comparing with electrically large horn array.
     ③A novel multi-beam spiral scanning method of antennas in deep-space TT&C and communication is proposed. Physical optics was used to compute the far pattern of the antenna for excitation of the individual array elements in focal-plane array. Multiple closely overlapping beams were synthesized with indirect conjugate field matching technique. The simulation results show that, combined with spiral scanning method, the multi-beam reflector antenna can accomplish the desired area scanning in less time under raw obit forecast and the array gain in multi-beam reflector antenna can extend the range of deep-space exploration.
     ④Particle swarm optimization (PSO) is used to synthesis the pattern of the parabolic reflector antenna using a focal-plane array in deep-space exploration. Physical optics was used to compute the far pattern of the reflector antenna for excitation of the individual array elements in focal-plane array, and then stored. Various scanning patterns were synthesized for deep-space TT&C and communication with PSO. These simulated results show that the patterns synthesized with PSO have wider scanning ability, more accurate direction, and lower side lobe, comparing with conjugate field match method.
     ⑤After a detail review of large antennas and array technique in deep-space TT&C and communication, a new computationally efficient algorithm based propagator method for two-dimensional (2-D) direction-of-arrival (DOA) estimation is proposed, which uses two parallel uniform linear arrays. The algorithm takes advantage of the special structure of the array which enables 2-D DOA estimation without pair matching. Simulation results show that the proposed algorithm achieves very accurate estimation at lower computational cost. It’s desired in real time and huge planar array DOA application.
     ⑥The array feed technology for large reflector antenna is investigated. A hexagonal feed array of microstrip antenna with EBG is proposed. A horn with choke was designed. Simulated and experimental results show that the choke structure can improve the horn with a flatter main lobe, a steeper edge and a symmetrical pattern. Taking it combining array, mutual coupling can be smaller. After an in-depth study of EBG structure to suppress mutual coupling between antennas, a hexagonal feed array of microstrip antenna with EBG for reflector antenna was designed. A seven elements array was tested. The results show that the EBG structure can suppress the antenna array mutual coupling between elements, as well as improving the matching and circular polarization performance of antenna. The hexagonal array with EBG is competent for the focal-plane of reflector antenna.
引文
[1]欧阳自远,李春来,邹永廖,等.深空探测的进展与我国深空探测的发展战略[J].中国航天, 2002, 13(12): 28-32.
    [2]栾恩杰.神舟五号与我国航天发展战略[C] .中国科学人文论坛,2003 ,11.
    [3]张乃通,李晖,张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报, 2007, 28(4): 786-793.
    [4]中国科学院空间领域战略研究组.中国至2050年空间科技发展路线图[M],北京:科学出版社,2009.
    [5]中国科学院空间科学项目中长期发展规划研究课题组. 2006美国航空航天局战略计划[R].2007.
    [6] G. Bush. A Renewed Spirit of Discovery. 2004.1.
    [7] National Aeronautics and Space Administration. The Vision for Space Exploration[R]. 2004. 2.
    [8] National Aeronautics and Space Administration. The New Age of Exploration: NASA’s Direction for 2005 and Beyond[R]. 2005.
    [9]中国科学院空间科学项目中长期发展规划研究课题组.空间科学规划:美国航空航天局科学项目部2007—2016[R]. 2008.
    [10] ESA Publications Devision. The Aurora Programme[R]. 2004.
    [11]中国科学院空间科学项目中长期发展规划研究课题组.宇宙憧憬: 2015-2025欧洲空间局空间科学发展规划[R]. 2007.
    [12] Council of the European Union, Resolution on the European Space Policy[R]. 2007.
    [13]魏雯.俄联邦2006-2015年航天计划概述(上) [J].中国航天, 2006,(11):33-36.
    [14]魏雯.俄联邦2006-2015年航天计划概述(下) [J].中国航天, 2006,(12) :24-26.
    [15]中国载人航天工程网.俄罗斯公布2040年前航天发展计划[M/OL]..2008. http://www.cmse.gov.cn/video/show.php?itemid=1163.
    [16] Japan Aerospace Exploration Agency. JAXA Vision[R]. 2005,
    [17]中国国务院新闻办公室.中国的航天[R],2000
    [18]杨士中,杨力生,谭晓衡,等.多飞行器测控技术的研究[J].宇航学报,2002,23(6):12-18.
    [19] D. Faramaz, P. Luitjens. Technical Advances in Deep-Space Communication and Tracking [J]. Proceedings of the IEEE, 2007, 95(10):1898-1901.
    [20] G. Lanyi, D. Bagri, J. Border. Angular Position Determination of Spacecraft by Radio Interferometry [J]. Proceedings of the IEEE, 2007, 95(11): 2193-2201.
    [21] J. Prestage, G. Weaver. Atomic Clocks and Oscillators for Deep-Space Navigation and Radio Science [J]. Proceedings of the IEEE, 2007, 95(11): 2235-2247.
    [22] G. Calzolari, M. Chiani, F. Chiaraluce, et al. Channel Coding for Future Space Missions: New Requirements and Trends [J]. Proceedings of the IEEE, 2007, 95(11): 2157-2170.
    [23] K. Andrews, D. Divsalar, S. Dolinar, et al. The Development of Turbo and LDPC Codes for Deep-Space Applications [J]. Proceedings of the IEEE, 2007, 95(11): 2142-2156.
    [24] E. Vassallo, R. Martin, R. Madde, et al. The European Space Agency’s Deep-Space Antennas [J]. Proceedings of the IEEE, 2007, 95(11): 2111-2131.
    [25] F. Davarian, L. Popken. Technical Advances in Deep-Space Communications and Tracking [J]. Proceedings of the IEEE, 2007, 95(11): 2108-2156.
    [26] R. Madde, T. Morley, M. Lanucara, et al. A Common Receiver Architecture for ESA Radio Science and Delta-DOR Support [J]. Proceedings of the IEEE, 2007, 95(11): 2215-2223.
    [27] G. Sessler, R. Abello, N. James, et al. GMSK Demodulator Implementation for ESA Deep-Space Missions[J]. Proceedings of the IEEE, 2007, 95(11): 2132-2141.
    [28] S. Shambayati. Ka-Band Telemetry Operations Concept: A Statistical Approach [J]. Proceedings of the IEEE, 2007, 95(11): 2171-2179.
    [29] G. Boscagli, P. Holsters, E. Vassallo, et al. PN Regenerative Ranging and Its Compatibility With Telecommand and Telemetry Signals[J]. Proceedings of the IEEE, 2007, 95(11): 2224-2234.
    [30] J. Berner, S. Bryant, P. Kinman. Range Measurement as Practiced in the Deep Space Network [J]. Proceedings of the IEEE, 2007, 95(11): 2202-2214.
    [31] R. Schulze, R. Wallis, R. Stilwell, et al. Enabling Antenna Systems for Extreme Deep-Space Mission Applications[J]. Proceedings of the IEEE, 2007, 95(10): 1976-1985.
    [32] R. Reinhart, S. Johnson, T. Kacpura, et al. Open Architecture Standard for NASA’s Software-Defined Space Telecommunications Radio Systems [J]. Proceedings of the IEEE, 2007, 95(10): 1986-1993.
    [33] Biswas, B. Moision, W. Roberts, et al. Palomar Receive Terminal (PRT) for the Mars Laser Communication Demonstration (MLCD) Project [J]. Proceedings of the IEEE, 2007, 95(10): 2045-2058.
    [34] M. Calhoun, S. Huang, R. Tjoelker. Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays [J]. Proceedings of the IEEE, 2007, 95(10): 1931-1946.
    [35] H. Hemmati, A. Biswas, D. Boroson. Prospects for Improvement of Interplanetary Laser Communication Data Rates by 30 dB [J]. Proceedings of the IEEE, 2007, 95(10): 2082-2092.
    [36] R. Cesarone, D. Abraham, L. Deutsch. Prospects for a Next-Generation Deep-Space Network [J]. Proceedings of the IEEE, 2007, 95(10): 1902-1915.
    [37] Y. Vodonos, B. Conboy, D. Losh, et al. Advances in Ground Transmitters for the NASA Deep Space Network [J]. Proceedings of the IEEE, 2007, 95(11): 1947-1957.
    [38] J. Wilson, E. Wintucky, K. Vaden, et al. Advances in Space Traveling-Wave Tubes for NASAMissions [J]. Proceedings of the IEEE, 2007, 95(11): 1958-1967.
    [39]石书济.深空探测与测控通信技术[J].电讯技术, 2001, 41(2):1-4.
    [40]叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学, 2006, 8(10):13-18.
    [41]刘嘉兴.向技术极限挑战-深空测控通信的目标[J].电讯技术, 2008, 4:1-7.
    [42]刘嘉兴.走向深空-测控通信的发展方向[J].电讯技术, 2006, 6:1-8.
    [43]姜昌.月球探测中通信跟踪( C&T)技术遇到的新问题[J].遥测遥控, 2009,27(5):1-7.
    [44]曹海林,杨力生,杨士中.一种新型超宽带杯形单极子天线设计[J].重庆大学学报(自然科学版),2009,32(3):328-331.
    [45] W. Rusch, P. Potter. Analysis of Reflector Antenna [M]. New York: Academic Press, 1970.
    [46] V. Galindo, R. Mittra. A New Series Representation for the Radiation Integral with Application to Reflector Antennas [J]. IEEE Transactions on Antennas and Propagation, 1977, 25:631–641.
    [47] Y. Rahmat-Samii, V. Galindo-Israel. Shaped Reflector Antenna Analysis Using the Jacobi-Bessel Series [J]. IEEE Transactions on Antennas and Propagation, 1980, 28(4): 425–435.
    [48] Y. Rahmat-Samii, R. Mittra, V. Galindo-Israel. Computation of Fresnel and Fraunhofer Fields of Planar Apertures and Reflector Antennas by Jacobi-Bessel Series-A Review[J]. J. Electromagnetics, 1981, 1(2): 155–185.
    [49] W. Imbriale, P. Ingerson, W. Wong. Large Lateral Feed Displacements in A Parabolic Reflector [J]. IEEE Transactions on Antennas and Propagation, 1974, 22:742–745.
    [50] W. Imbriale, R. Hodges. Linear-Phase Approximation in the Triangular Facet Near-Field Physical Optics Computer Program [R]. TDA PR 42-102, 1990:47–56.
    [51] S. Lee, R. Mittra. Fourier Transform of A Polygonal Shape Function and Its Application in Electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 1983, 31(1):99–103.
    [52]杨可忠.特殊波束面天线技术[M].北京:人民邮电出版社, 2009.
    [53] W. Stutzman, G. Thiele. Antenna Theory and Design [M]. 2nd ed. New Jersey: John Wiley & Sons, 2006.
    [54]王长清.现代计算电磁学基础[M].北京:北京大学出版社, 2005.
    [55]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社, 2006.
    [56]林昌禄,聂在平编.天线工程手册[M].北京:电子工业出版社.2002.
    [57] R. F. Harrington. Field Computation by Moment Methods[M]. New York: Wiley-IEEE Press. 1993.
    [58]左群声,金林,胡明春,等译.无线通信天线手册[M].北京:国防工业出版社,2004.
    [59] J. Jin. The Finite Element Method in Electromagnetics [M], 2nd. ed. New Jersey: Wiley-IEEE Press. 2002.
    [60] Taflove, C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M], 3rd ed. Massachusetts:Artech House Publishers.2005.
    [61] K.Kunz, R.Luebbers. The Finite Difference Time Domain Method for Electromagnetics[M]. Boca Raton: CRC Press. 1993.
    [62] W. Yu, R. Mittra, T.Su, Y. Liu, X. Yang . Parallel Finite-Difference Time-Domain Method [M]. Massachusetts: Artech House. 2006.
    [63] S. Silver. Microwave Antenna Theory and Design [M]. New York:McGraw-Hill, 1949.
    [64] J. Kraus, R. Marhefka. Antennas: For All Applications [M], 3rd ed, New York: McGraw-Hill, 2001.
    [65] C. Balanis. Modern Antenna Handbook [M]. New Jersey:Wiley, 2008.
    [66] J.Volakis. Antenna Engineering Handbook [M],4th ed. New York:McGraw-Hill,2007.
    [67] C.Balanis. Antenna Theory Analysis and Design [M],3rd ed. New Jersey New York: Wiley, 2005.
    [68] W. Imbriale, Spaceborne Antennas for Planetary Exploration[M], New Jersey, JohnWiley & Sons, 2006
    [69] Scott, Modern Methods of Reflector Antenna Analysis and Design, Massachusetts: Artech House, 1993..
    [70] Y. Rahmat-Samii. Useful Coordinate Transformations for Antenna Applications [J]. IEEE Transactions on Antennas and Propagation, 1979, 27:571–574.
    [71] W. Imbriale. Large Antennas of the Deep Space Network [M]. New Jersey:Wiley, 2003.
    [72] J. Fisher. Phased Array Feeds for Low Noise Reflector Antennas[R]. in NRAO Electronics Division Internal Report, 1996, number 307.
    [73] S. Blank, W. Imbriale. Array Feed Synthesis for Correction of Reflector Distortion and Vernier Beamsteering [J]. IEEE Transactions on Antennas and Propagation, 1988,36(10):1351-1358.
    [74] J. Huang, V. Jamnejad. A Microstrip Array Feed for Land Mobile Satellite Reflector antennas [J]. IEEE Transactions on Antennas and Propagation, 1989, 37:153-158.
    [75] Singh, G. Kumar. EMCP Microstrip Antennas as Feed for Satellite Receiver[C]. IEEEAntennas and Propagation Society International Symposium Digest, 1996, 2: 1274-1277.
    [76] Gaensler, N. McClure-Griffths, J. Dickey, A. Green. The Southern Galactic Plane Survey, New Views of the Deep South[C]. in Proceedings of the URSI General Assembly XXVII, August 2002.
    [77] The Parkes Multibeam Receiver[EB/L]. http://www.atnf.csiro.au/research/multibeam overview.html, January 2004.
    [78] K. Yngvesson, J. Johansson and Y. Rahmat et al. Realizable Feed-element and Optimum Apecture Efficiengcy in Multibeam Antenna System [J]. IEEE Transactions on Antennas and Propagation, 1988, 36(11): 1637-1642.
    [79] M. Britcliffe, D. Hoppe, and V. Vilnrotter. Focal-Plane Array Receiver Systems for Space Communications [R]. IPN Progress Report, NASA,2007, 42-170:1-18.
    [80] J. Fisher, R. Bradley. Full-Sampling Array Feeds for Radio Telescopes [J]. Proceedings of the SPIE, 2000, 4015:308–319.
    [81] Ivashina, M. Vaate, R. Braun, J. Bregman. Focal Plane Arrays for Large Reflector Anennas: First Results of A Demonstrator Project [J]. Proceedings of the SPIE, 2004,5489:1127–1138.
    [82] B. Jeffs, K. Warnick. Spectral Bias in Adaptive Beamforming with Narrowband Interference [J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1373-1382.
    [83] K. Warnick and B. Jeffs, Beam efficiency and system temperature for a focal plane array[R], Brigham Young University, 2007.
    [84] C. Hansen, K. Warnick, B. Jeffs, et al. Interference Mitigation Using A Focal Plane Array [J]. Radio Science, 2005, 40(5): 1-13.
    [85] Poulsen, B. Jeffs, K. Warnick, et al. Programmable Real-Time Cancellation of Glonass Interference with the Green Bank Telescope [J]. The Astronomical Journal, 2005, 130: 2916-2927.
    [86] J. Nagel, K. Warnick, B. Jeffs, et al. Experimental Verification of RFI Mitigation with A Focal Plane Array Feed [J]. Radio Science, 2007, 42(6): 1-8.
    [87] K. Warnick, B. Jeffs. Efficiencies and System Temperature for A Beamforming Array [J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7(1): 565-568.
    [88] B. Jeffs, K. Warnick, J. Landon, et al. Signal Processing for Phased Array Feeds in Radio Astronomical Telescopes [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(5): 635-646.
    [89] B. Jeffs, L. Li, K. Warnick. Auxiliary Assisted Interference Mitigation for Radio Astronomy Arrays[J], IEEE Transaction on Signal Processing, 2005,53(2): 439–451.
    [90] K. Bahadori, S. Rahmat. An Array-Compensated Spherical Reflector Antenna for A VeryLarge Number of Scanned Beams [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3547-3554.
    [91] V. Vilnrotter D. Lee and R. Mukai et al. Uplink Array Experiment with the Mars Global Surveyor Spacecraft [R]. IPN Progress Report, NASA,2006, 42-166:1-14.
    [92] M. Kehn, L. Shafai. Characterization of Dense Focal Plane Array Feeds for Parabolic Reflectors in Achieving Closely Overlapping or Widely Separated Multiple Beams [J]. Radio Science, 2009, 44: 1-25.
    [93] B. Saka, E. Yazgon. Pattern Optimization of A Reflector Antenna with Planar-Array Feeds and Cluster Feeds [J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1):93-97.
    [94] D. Peterson, D. Middleton. Sampling and Reconstruction of Wave-Number Limited Functions in N-Dimentional Eucildeam Spaces[J]. Inf. Control,1962,5:279-323.
    [95] J. Mayhan. Nulling Limitations for a Multiple-Beam Antenna [J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6):769-779.
    [96] B. Rao, Bifocal Dual Reflector Antenna[J], IEEE Transactions on Antennas and Propagation, 1974, 22(5):711-714.
    [97] R. Jorgensen and P. Balling, Contoured-beam Synthesis by Adjusting the Aperture Phase in a Reflector Antenna[C], Int. Symp. Dig. URSI , 1983
    [98]郑为民,舒逢春,张冬.用于深空跟踪测量的VLBI软件相关处理技术[J].宇航学报,2008,29(1): 18-23.
    [99]刘嘉兴.载人航天USB测控系统及其关键技术[J].宇航学报,2005,26(6): 743-747.
    [100]黎孝纯,于瑞霞,闫剑虹.星间链路天线扫描捕获方法[J].空间电子技术,2008,26(7):5-11.
    [101]孙小松,杨涤,耿云海,等.中继卫星天线指向控制策略研究[J].航空学报, 2004, 25(4): 376-380.
    [102]翟政安,唐朝京.星间天线捕获与跟踪策略[J].宇航学报, 2009,30( 05):1947-1952.
    [103] L. Harry. Optimum Array Processing [M]. New Jersey, John Wiley & Sons, 2002.
    [104] C. Sayer. Complete Wireless Design [M]. New York, McGraw-Hill, 2001.
    [105] J. Robinson, Y. Rahmat-Samii. Particle Swarm Optimization in Electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52:397–407.
    [106] N. Jin, Y. Rahmat-Samii. Parallel Particle Swarm Optimization and Finite-Difference Time-Domain (PSO/FDTD) Algorithm for Multiband and Wide-Band Patch Antenna Designs[J]. IEEE Transactions on Antennas and Propagation,2005, 53:3459–3468.
    [107] F. Yang, X. Zhang, X. Ye, Y. Rahmat-Samii. Wide-band Eshaped Patch Antennas for Wireless Communications [J]. IEEE Transactions on Antennas and Propagation,2001,49:1094–1100.
    [108] M. Benedetti, R. Azaro, D. Franceschini, et al. PSO-Based Real-Time Control of PlanarUniform Circular Arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5: 545-548.
    [109] K. Mahmoud, M. Eladawy, R. Bansal, et al. Analysis of Uniform Circular Arrays for Adaptive Beamforming Applications Using Particle Swarm Optimization Algorithm [J]. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 2008, 18(1):42–52.
    [110] N. Pathak, P. Nanda, G. Mahanti. Synthesis of Thinned Multiple Concentric Circular Ring Array Antennas using Particle Swarm Optimization [J]. Journal of Infrared Millimeter and Terahertz Waves, 2009, 30(7):709-716.
    [111] Li. W. T, Shi X. W, Xu L, et al. Improved GA and PSO Culled Hybrid Algorithm for Antenna Array Pattern Synthesis [J]. Progess in Electromagnetics Research, 2008, 80:461-476.
    [112]王允良.飞行器总体参数优化的进化算法及其应用研究[D].西北工业大学博士论文,2006.
    [113] M. Lovbjerg,T. Rasmussenand, T. Krink. Hybrid Particle Swarm Optimiser with Breeding and Subpopulations [C]. the Tenth International Conference on Genetic Algorithms, Califonia,2001:469–476.
    [114]陈腾博.星载有限电扫描天线阵列馈源的研究[D].西安电子科技大学博士论文,2007.
    [115] J. Kennedy, R. Eberhart. Swarm Intelligence [M]. San Diego, Academic Press, 2001.
    [116] Y. Shi, R. Eberhart. A Modified Particle Swarm Optimizer[C]. IEEE World Congress on Computational Intellgience,1998: 69-73.
    [117] Y. Shi, R. Eberhart. Fuzzy Adaptive Particle Swarm Optimization[C]. Proceedings of Congress on Evolutionary Computation,Seoul, Korea,2001.
    [118] H. Fan, Y. Shi. Study of Vmax of the Particle Swarm Optimization Algorithm[C]. Proceedings of the Workshop on PSO.Indianapolis:Purdue School of Engineering and Technology, INPUI,2001.
    [119] M. EI-Hawary, A. EI-Gallad, A. Sallam,et al. Enhancing the Particle Swarm Optimization Via Proper Parameters Selection[J].Proceedings of the 2002 IEEE,2002: 792-797.
    [120] E. Vassallo, R. Martin, R. Madde, et al. The European Space Agency’s Deep-Space Antennas [J], Proceedings of the IEEE, 2007,95(11):2111-2131.
    [121] J. Baars, L.D’Addario, A. Thompson. Advances in Radio Telescopes[J]. Proceedings of the IEEE, 2009,97(8):1373-1376.
    [122] J. Baars, L. D’Addario, A. Thompson. Radio Astronomy in the Early Twenty-First Century[J]. Proceedings of the IEEE, 2009,97(8):1377-1381.
    [123] R. Prestage, K. Constantikes, T.Hunter, et al. The Green Bank Telescope [J]. Proceedings of the IEEE, 2009, 97(8):1382-1390.
    [124] B. Peng, C. Jin, Q. Wang, et al. Preparatory Study for Constructing FAST, the World’s Largest Single Dish [J]. Proceedings of the IEEE, 2009, 97(8):1391-1402.
    [125] S. Ellingson, T.Clarke, A.Cohen, et al. The Long Wavelength Array [J]. Proceedings of the IEEE, 2009, 97(8):1421-1430.
    [126] M. Vos, A. Gunst, Bnijboer. The LOFAR Telescope: System Architecture and Signal Processing [J]. Proceedings of the IEEE, 2009, 97(8):1431-1437.
    [127] J. Welch, D. Backer, L. Blitz, et al. The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI [J]. Proceedings of the IEEE, 2009, 97(8):1438-1447.
    [128] R. Perley, P. Napier, J. Jackson, et al. The Expanded Very Large Array [J]. Proceedings of the IEEE, 2009, 97(8):1448-1462.
    [129] Wootten, A. Thompson. The Atacama Large Millimeter/Submillimeter Array [J]. Proceedings of the IEEE, 2009, 97(8):1463-1471.
    [130] P. Dewdney, P. Hall, R. Schilizzi, et al. The Square Kilometre Array [J]. Proceedings of the IEEE, 2009, 97(8):1482-1496.
    [131] D. Deboer, R. Gough, J. Bunton, et al. Australian SKA Pathfinder: A High-Dynamic Range Wide-Field of View Survey Telescope [J]. Proceedings of the IEEE, 2009, 97(8): 1507-1521.
    [132] Ardenne, J. Bregman, W. Vancappellen, et al. Extending the Field of View With Phased Array Techniques: Results of European SKA Research[J]. Proceedings of the IEEE, 2009, 97(8):1531-1542.
    [133] J. Jonas. MeerKATV-The South African Array with Composite Dishes and Wide-Band Single Pixel Feeds [J]. Proceedings of the IEEE, 2009, 97(8):1522-1530.
    [134] C. Lonsdale, R. Cappallo, M. Morales, et al. The Murchison Wide field Array: Design Overview [J], Proceedings of the IEEE, 2009, 97(8):1497-1506.
    [135] F. Davarian. Uplink Arrays for the Deep Space Network [J]. Proceedings of the IEEE, 2007,95(10):1923-1930.
    [136] D. Bagri, J. Statman, M. Gatti. Proposed Array-Based Deep Space Network for NASA [J]. Proceedings of the IEEE, 2007, 95(10):1916-1922.
    [137] R. Navarro, J. Bunton. Signal Processing in the Deep Space Array Network[R]. The Interp lanetary Network Progress Report, 2004: 42-157.
    [138] W. Hurd. System concepts for transmit arrays of parabolic antennas for deep space uplinks[C]. 2005 IEEE Aerospace Conf., Big Sky, MT,2005.
    [139] D. Rogstad, A. Mileant, T. Pham. Antenna Arraying Techniques in the Deep Space Network [M]. New Jersey, JohnWiley and Sons, 2003.
    [140]李海涛,李宇华,匡乃雪.深空探测中的天线组阵技术[J].飞行器测控学报, 2004, 12:57-62.
    [141]王骞,于宏毅.深空网中的天线组阵技术及其发展[J].信息工程大学学报,Vol.10(3),2009,PP:365-368
    [142] Q.Ren, A.Wills. Fast Root MUSIC Algorithm[J]. Electronic. Letters. 1997,33:450-451.
    [143] S. Marcos, A. Marsal, M.Benidir. The Propagator Method for Source Bearing Estimation[J]. Signal Processing, 1995,42:121–138.
    [144] Q. Liu. Two-dimensional virtual ESPRIT Algorithm[J]. Electronic. Letters, 200, 37: 1052–1053.
    [145]刘剑,王廷伟,黄知涛,等.共轭传播算子测向算法[J].通信学报,2008,29(5):13-18.
    [146]韩英华,汪晋宽,宋昕.基于传播因子的分布式信源中心波达方向估计[J].东北大学学报(自然科学版),2006,127(2):165-168.
    [147] Y. Wu, G. Liao, H. So. A Fast Algorithm for 2-D Direction-of-arrival Estimation [J]. Signal Processing, 2003, 83:1827–1831.
    [148] S. Kikuchi, H. Tsuji, S. Akira. Pair-Matching Method for Estimating 2-D Angle of Arrival with A Cross-Correlation Matrix [J]. Antennas Wireless Propagation, 2006,5:35–40.
    [149] E. Al-ardi, R. Shubair, M. Al-mualla. Computationally Efficient High-Resolution DOA Estimation in Multipath Environment[J]. Electronic Letters, 2004, 40:908-910.
    [150] B. Li, C. Peng, S. Biswas. Association of DOA Estimation from two ULAs[J]. IEEE Trans. Instrum. Meas,2008,57:1094-1101.
    [151] J. Landon, M. Elmer, J. Waldron, et al. Phase Array Feed Callbration, Beamforming, and Imaging [J]. Astronomical Journal,2010, 139(3): 1154-1167.
    [152] H. L. Cao, L. S. Yang, X. H. Tan, et al. Computationally Efficient 2-D DOA Estimation Using Two Parallel Uniform Linear Arrays [J]. ETRI Journal, 2009, 31(6): 806-808.
    [153] M. Kehn, L. Shafai. Wideband Radiation Enhancement of Waveguide Arrays Operated as Feeds for Reflector Antennas Using Patch Array Covers [J]. Radio Science, 2010,45.
    [154] M. Kehn, L. Shafai. Improved Matching of Waveguide Focal Plane Arrays Using Patch Array Covers as Compared to Conventional Dielectric Sheets [J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10):3062-3076.
    [155] K. Chan, S. Rao. Design of high efficiency circular horn feeds for multibeam reflector applications [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(1):253–258.
    [156] H. L. Cao, X. H. Tan, H. Zeng, et al. Design and Construction of Conical Multimode Horn with A Choke [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006:900-904.
    [157]谢处方,饶克勤.电磁场与电磁波[M].北京:高等教育出版社,2000.
    [158] M. Deshpande and B. Das. Input Impedance of Coaxial Line to Circular Waveguide Feed [J]. IEEE Transaction on Microwave Theory and Techniques, 1977, 25(11):954-957.
    [159] B. Yopadhyaypk. Comments on“Input Impedance of Coaxial Line to Circular Waveguide Feed”[J]. IEEE Transaction on Microwave Theory and Techniques, 1979.27(3):284-285.
    [160]张钧.微带天线理论与工程[M].北京:国防工业出版社.1988.
    [161]李有权,付云起,张辉等.基于传输线模型的高阻表面反射相位分析[J].物理学报,2009,58(6):3949-3954.
    [162] E. Yablonocitch. Inhibited Spanteous Emission in Solid-State Physical and Electronics[J].Physical Review Letters,1987,58(20):2059-2062.
    [163] D. Sievenpiper, L J Zhang, R. Jimenez, et al. High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band [J].IEEE Transaction on Microwave Theory and Techniques,1999,47(11):2059-2074.
    [164] G. Goussetis, A. Feresidis, J. Vardaxoglou. Tailoring the AMC and EBG Characteristics of Periodic Metallic Arrays Printed on Grounded Dielectric Substrate [J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1):82-89.
    [165] P. Kovacs, Z. Raida, M. Martinez. Parametric Study of Mushroom-like and Planar Periodic Structures in Terms of Simultaneous AMC and EBG Properties [J]. Radio Engineering, 2008,17(4):19-24.
    [166] R. Ziolkowski. Design, Fabrication, and Testing of Double Negative Metamateials [J].IEEE Transactions on Antennas and Propagation, 2003, 51(7): 1516-1629.
    [167] F. Yang. Electromagnetic Band Gap Structures in Antenna Engineering[M]. New York:Cambridage University Press,2009.
    [168]张玉发,刘春恒,吕跃广,等. EBG结构在天线设计中的应用及发展动态[J].舰船电子工程, 2008, 28(1):21-29.
    [169]闫敦豹,付云起,张国华,等.EBG结构在微带天线阵中的应用[J].微波学报, 2005, 21:75-78.
    [170]顾莹莹.高阻抗表面EBG结构天线应用的研究[D].南京:东南大学,2006.
    [171] Ansoft Corporation. Left-handed metmetamaterial design guide[M/OL]. 2007. http://www.ansoft.com/metamaterial/index.cfm?src=news1107
    [172]樊明延,胡荣,郝清等.二维电磁带隙结果研究的新方法[J].红外与毫米波学报,2003, 22(2):127-131.
    [173] F. Yang, Y. Rahmat-Samii. Microstrip Antennas Integrated With Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design for Array Applications[J]. IEEE Transactions on Antennas and Propagation,2003,51(10): 2936-2946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700