太原西山岩溶地下水系统晋祠泉与兰村泉水化学成分差异及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兰村泉是太原市重要水源地,晋祠泉是山西省历史名泉,晋祠泉与兰村泉水化学差异及其控制因素的研究对太原西山岩溶地下水系统形成与演化研究具有重要的理论价值,同时对太原市市民的生产生活供水水质研究具有重要的现实意义。
     由于对太原西山岩溶地下水系统所赋存的含水介质系统的化学成分以及含水系统内的构造发育情况认识不足,对晋祠泉以及兰村泉的水化学特征的差异一直没有得到很好的解释。作者将研究区含水介质系统按化学成分进行重新划分,结合岩溶泉的构造控水条件,对前人已经得到的水化学资料进行重新解释,得出以下结论:
     太原西山地区奥陶系中统普遍发育四层石膏带,晋祠泉排泄口岩溶水主径流层位于峰峰组下段的第一、第二石膏带之间,石膏的大量溶解导致了晋祠泉SO_4~(2-)偏高,达到385.5mg/L(王丽丽,2004年),占阴离子总量的60%以上,同时石膏溶解产生的SO_4~(2-)、Ca~(2+)促进了脱白云岩化作用,最终导致晋祠泉水矿化度含量过高。下奥陶统与上寒武统碳酸盐岩以白云岩为主,亮甲山组白云石含量达到了80%,从汾河二库到兰村汾河出口处汾河下切到O1地层,白云石大量溶解后产生的Mg~(2+)/ Ca~(2+)比值较高的岩溶水的渗漏补给使兰村泉Mg~(2+)/ Ca~(2+)比值高于晋祠泉。
     位于西山岩溶地下水系统排泄区的平泉TFe含量偏高,达到2.5mg/L(2003年,李向全),通过对区域地质情况研究发现铁来源于含水层上部的C-P煤系地层中黄铁矿,黄铁矿氧化后进入煤系水系统,最后通过断裂带补给岩溶水,导致TFe含量偏高。通过对不同水源中~(34)S含量差异分析,得到平泉泉水中SO_4~(2-)主要来自石膏的溶解,有5%来自上覆煤系地层黄铁矿氧化后产生的酸性水,这与对TFe含量的分析相吻合。
     研究发现兰村泉水温(15.5℃)低于晋祠泉(21.25℃)(唐健生,1986年),兰村泉岩溶水的径流区含水层埋深较浅,根据地热增温率,径流岩层岩石温度低导致兰村泉水温低;而晋祠泉岩溶水在径流区奥陶系含水层上覆厚层的C-P煤系岩层与砂岩、泥岩碎屑岩层,地下水径流区含水层埋深较深,岩溶水流过的岩石温度较高,同时由于地下水流速较慢,水岩热交换趋于平衡,使晋祠泉水温偏高。
     最后根据对晋祠泉矿化度从1984~2001年变化的影响因素分析,得出矿化度主要受矿坑排水量以及地下水水位面下降的影响。矿坑排水量对岩溶水的矿化度变化起主要作用。通过对兰村泉NO_3~-含量的影响因素分析,得到NO_3~-主要受汾河的污染引起,来源是古交市市民生产、生活污水的排放。通过对比分析,得出人类的采煤活动大量排放的矿坑水以及人类大量抽取地下水是导致岩溶水水质变化的主要因素,因此要加强对矿坑排水量以及人工采水的规划管理。
Lancun spring is an important water source in Taiyuan, Jinci spring is a great spring in history of Shanxi Province. Research on hydrochemistry and its controlling factors between Jinci spring and Lancun spring plays an important role in the theoretical study of Taiyuan karst water system formation and evolution, while has important practical significance on public water supply .
     Because of insufficient understanding on karst water-bearing system chemical composition and structure, there has not been a very good explanation on hydrochemistry differences between Jinci spring and Lancun spring. Author redivides the water-bearing system of study area according to the hydrochemical constituents, and combines structure conditions of karst development, and then reinterprets hydrechemistry datas from predecessors. Conclusions being obtain:
     Four gypsums universally develop in the middle part of Taiyuan Xishan Ordovician stratum. The main karst water runoff layer of Jinci spring discharge area is located between the first and second gypsum belt at the lower part of Fengfeng team. A large number of dissolved gypsum led to high SO_4~(2–) contents to 385.5mg / L (Wanglili,2004)in Jinci spring, accounts for over 60% in anion totally, while SO_4~(2-) and Ca~(2+) produced by dissolved gypsum promoted the resolution of dolostone, which eventually led to high salinity of Jinci spring. Lower Ordovician and upper Cambrian carbonate rocks mainly contain dolomite, and dolomite contents in Liangjiashan group reach to 80%. From second reservoir to Lancun , Fen river cuts to O1 strata. A large number of dissolved dolomite produced higher Mg~(2+) / Ca~(2+) ratio karst water supply of Lancun spring , so Mg~(2+) / Ca~(2+) ratio of Lancun spring is higher than Jinci spring.
     Ping spring which located in Jinci spring discharge region has higher TFe contents to 2.5mg / L (2003,Li xiangquan). Study on the regional geological situation found that iron was from pyrite in the upper aquifer of the C-P coal measure strata. After oxidation, pyrite went into coal measures, which was a supply for karst water through fault, resulting in relatively high concentrations of TFe. Through analyzing ~(34)S contents differences of different water sources, The result suggest SO_4~(2-) in Ping spring mainly from dissolved gypsum, and 5% from the acidic water generated by oxidation of pyrite in the overlying coal measure strata, which is coincident with the analysis of TFe contents.
     Lancun spring has a lower water temperature (15.5℃) than Jinci spring (21.25℃)(Li xiangquan,2003). According to thermal warming base rate, shallow aquifer resulted low temperature in Lancun spring through affecting the temperature of rocks; while Jinci karst spring located in Ordovician aquifer with thick overlying C-P strata, and groundwater ran through deeper aquifer with high temperature rocks, and at the same time groundwater flew slow which led to water-rock heat exchange balance, consequently, Jinci spring had a higher temperature.
     Finally, based on influence fators analysis of Jinci spring salinity changes from 1984 to 2001, The result suggest salinity was mainly affected by pit surface displacement and groundwater level decline. Mine displacement played a major role in karst water salinity changes. According to influence factors analysis of NO_3~- content in Lancun spring, I think NO_3~- was mainly from Fen river which was polluted by production waste and domestic sewage caused by public in Gujiao City. By comparative analysis, The result suggest water emissions in coal mine , as well as a large number of groundwater extraction is the main factor which causes karst water quality to change. Consequently, planning and management of pit surface displacement and water exploitation should be strengthened.
引文
[1]赵永贵,蔡祖煌等.岩溶地下水系统的研究-以太原地区为例[M].北京:科学出版社, 1990:1-2,47,145-147,150-154,187,190.
    [2]王怀颖王瑞久太原西山岩溶地下水系统的地球化学特征[C].水文地球化学理论与方法的研究-中国地质学会首届全国水文地球化学学术讨论会论文选编,1982:57-61.
    [3]王怀颖王瑞久.岩溶地下水流系统和同位素地球化学研究[M].1993:1-39.
    [4]邹峡青.山西晋祠泉域水文地球化学特征及成因[J].中国煤田地质,1992,4(4):52-57.
    [5]唐健生,韩行瑞,李庆松,梁永平.山西岩溶大泉水文地球化学研究[J] .中国岩溶,1991,10(4):263-266.
    [6]郑凡.太原市兰村泉域地下水的水化学分析[J].地下水,2004,26(4):267-268
    [7]李向全等.太原盆地地下水系统水化学-同位素特征研究[J].干旱区资源与环境,2006,20(5):110-111.
    [8]殷丹.山西省晋祠泉复流条件研究[D] .长春:吉林大学,2007.
    [9]吴晓芳.兰村泉域岩溶地下水动态研究[D]长春:吉林大学,2007.
    [10]侯玉新等.太原边山断裂带地热资源研究[J] .2002,14(4):38.
    [11]石慧馨,蔡祖煌等.碳酸盐岩地区地下水年龄的同位素研究[J] .中国岩溶,1988,7(4).
    [12]郭红玉.太原西山岩溶陷落柱发育时间研究[D] .太原:太原理工大学.
    [13]唐健生,韩行瑞,时坚,刘德深.黄河中上游能源基地岩溶水污染特征与防治对策[J].中国岩溶,1996 .
    [14]华北地区区域地层表-山西省分册(一).1979.
    [15]山西省奥陶系中统柱状对比图(太原西山小区剖面).
    [16]山西焦煤集团,山西煤田水文地质229队.太原西山煤田综合水文地质图,2001.
    [17]时坚,王晶,韩行瑞,刘德深.山西岩溶泉域水污染现状、趋势与防治对策研究[J].中国岩溶,2004.
    [18]郭满金.汾河二库环境地质问题[J]. 1995(3):24-39.
    [19]王宏义,鲁岚,高照,何涛.山西岩溶大泉污染特征及管理保护[J]. 1996,11(2):195.
    [20]刘建钟.太原二电厂灰场对兰村泉域岩溶水资源影响分析[J].2003(6):21-22.
    [21]鲁荣安.山西省岩溶大泉的环境特征及其管理保护[J] .
    [22]王丽丽.山西岩溶大泉水质演化趋势与成因分析—以柳林泉和娘子关泉为例[D].广西:西南师范大学,2005:13-14,19-22.
    [23]沈照理.水文地球化学基础[M].北京:地质出版社, 1993.
    [24]许贵森,哈承佑,王怀颖,王瑞久.山西太原西山裂隙岩溶地下水系统[M]. 1987.
    [25]林学钰,廖资生,赵勇胜等.现代水文地质学[M].北京:地质出版社,2005:109-114.
    [26]王秀云,王晓敏.太原市晋祠泉域岩溶水水质现状及对策[J] .地下水,2005,27(3).
    [27]韩行瑞,张凤岐等.中国北方岩溶泉[J].工程勘察,1985.
    [28]刘建立,朱学愚,钱孝星.中国北方裂隙岩溶水资源开发和保护中若干问题的研究[J].地质学报, 2000.
    [29]太原市水务局,中国地质大学,山西省地质勘察院.太原市地下水资源评价报告[R].2005.
    [30]李向全.中国北方半干旱半干旱区典型储水盆地地下水循环模式与水-岩作用研究-以太原盆地为例[D].上海:同济大学,2007:21-33.
    [31]李海涛.西山煤田岩溶水系统演化与煤系陷落柱群分布规律研究[D].2006:26-33.
    [32]郭红玉.太原西山岩溶陷落柱发育时间研究[D] .太原:太原理工大学.
    [33]高树起.汾河峡谷地貌及其与新生代构造的耦合演化[D].太原:太原理工大学,2007:51,161-166.
    [34]韩行瑞等.大规模采煤对岩溶区水环境的影响[J].中国岩溶,1994, 13 (2).
    [35]梁永平.山西岩溶大泉泉域水资源环境地质问题成因与保护区划定[J].
    [36]郑凡.太原市兰村泉域地下水污染分析[J].水资源保护,2005.
    [37]孙磊.太原市兰村泉域地下水质量分析与对策[J].地下水,2003,25(2):62-63.
    [38]郭建新.粉煤灰浸出特性试验研究[J].2005.
    [39]太原西山水源保护研究[M].1986:113-119.
    [40]潘曙兰.稳定同位素在太原地区岩溶水资源研究中的应用[J].中国岩溶,1989,8(2):151-155.
    [41]周春光,杨起,康西栋等.华北晚古生代煤中黄铁矿形成世代的硫同位素证据[J].中国煤田地质,2000,12(1):19-22.
    [42]夏邦栋主编.普通地质学(第二版)[M].北京:地质出版社, 1995:1-17,37-51,64-72,90-108,145-167,182-197.
    [43]王大纯,张人权,史毅虹,许绍倬,于青春,梁杏.水文地质学基础[M].北京:地质出版社:1-37,53-86,131-145,155-161.
    [44]袁道先,蔡桂鸿.岩溶环境学[M] .重庆:重庆出版社,1988:134-182.
    [45]袁道先,朱德浩,翁金桃等.中国岩溶学[M] .北京:地质出版社,1994:41-44,44-53,92-100.
    [46]乔小娟,李国敏,都洁等.太原市西山岩溶水系统水文地球化学特征分析[J].中国岩溶.2008,27(4):353-357.
    [47]高金汉,王训练,冯国良,张海军,刘旭东.太原西山七里沟晚古生代腕足动物群落及其古环境意义[J].地质通报.2005,24(6):528-535.
    [48]武铁山,徐朝雷,徐有华等(山西省区域地质调查队) [M] .山西省区域地质志:1-5,283-299.
    [49]贾炳文,李克等.吕梁山中段水峪贯地区地质综合研究[M].北京:科学出版社,1993:6-14.
    [50]太原市水务局,中国地质大学,山西省地质勘察院.太原市地下水资源评价报告[R].2005附表2参考文献:
    [1]华北地区区域地层表-山西省分册(一).1979.
    [2]山西省奥陶系下-中统柱状对比图(太原西山小区剖面).
    [3]山西省寒武系中-上统柱状对比图(阳曲小区剖面)
    [4]赵永贵,蔡祖煌等.岩溶地下水系统的研究-以太原地区为例[M].北京:科学出版社, 1990:1-2,47,145-147,150-154,187,190.
    [5]何宇彬,吴琼,徐超.太原地区喀斯特水资源研究[M].1997:
    [6]山西焦煤集团,山西煤田水文地质229队.太原西山煤田综合水文地质图(1:50000),2001.
    [7]李海涛.西山煤田岩溶水系统演化与煤系陷落柱群分布规律研究[D].2006:26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700