太原西山煤田杜儿坪垒状断裂带的几何学与运动学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太原西山煤田地块处于沁水煤田西北缘,是山西省重要的煤矿开采区。煤田总体上为一个东翼宽缓、西翼陡倾的向斜形态,中生代末期,由于强烈的燕山构造运动使得华北克拉通结晶基底发生破裂解体,太原西山煤田内部受到燕山期侵入岩体的强烈破坏,形成了复杂的构造形态,如北东向平行展布的五组垒状断裂带。
     然而,有关太原西山煤田内部垒状断裂带的几何学、运动学、动力学、年代学、发育演化过程、以及密集分布的断裂之间的关系等,尚无人做深入的剖析,限制了对区内构造应力场和构造演变过程的深度认知。
     本文以太原西山煤田内部五组垒状断裂带之一的杜儿坪断裂带为研究对象,对其周边近40Km2面积内进行了密集的构造露头观测,查明了该断裂带的三维几何学特征,并基于三维体平衡原理解析了研究区内不同断块的运动方向和运动量,应用耦合地质学原理对区域内断裂形变、岩体侵入等多种过程的耦合联动关系进行剖析,建立事件-时间-空间的序列关系,研究结果将有助于揭示山西地幔上涌带和壳幔减薄带的演变、了解华北克拉通的破坏过程、预防断裂活动引起的地质灾害以及优化区内煤矿采掘面布设。
     陷落柱是太原西山煤田煤系地层中普遍发育的一种特殊的隐伏地质现象,对煤炭开采具有很大影响。岩溶水强烈的侵蚀作用是形成陷落柱的主要原因之一,陷落柱也往往也是沿着地下水丰富的位置发育。而与地表断裂构造的发育相连通的下伏基岩中的裂隙正是理想的地下水运移通道,表层构造产生的破碎带也正是地下水重要的补给路径。因此,搞清地表断裂构造产生的破碎带发育规律,就能知道地下水运移规律,对进一步探讨下伏煤系地层中的隐伏陷落柱的空间分布特征具有重要意义。
     本文研究结果表明,杜儿坪垒状断裂带由北东和北北西向两组断裂带组成。其中北东向断裂组成垒状形态,形成原因是由于深部地幔岩浆上涌导致表层脆性岩层发生伸展张裂,然后在重力作用下不同块体发生不均匀沉陷而形成垒状构造;北北西向断层是由于受研究区东部边山断裂形成的影响,由于盆地所在的上盘岩层下降时产生拖拽作用,不同部位为平衡这种拖拽力而发生错动,从而形成阶梯状展布的构造形态。
The TaiYuan Xi’shan coal field land block is in northwest QinShui coal field, is the important Coal mining area in ShanXi province. As a whole , the coal field is an east wing delaying, west wing steep dipping syncline .At the final stage of Mesozoic Era, the intense Yanshan tectonic movement enabled the North China Craton crystalline basement to have the breakage and disintegration. The interior of TaiYuan XiShan coal field received the intense destruction from intrusive bodies in Yanshan time. For this reason, the coal field formed complex conformation, such as five group of parallel horst fault belt along northeast.
     However, the geometry, the kinematics, dynamics, the chronology, the growth evolutionary process, as well as the relations between dense distributed breaks and other subjects related to Taiyuan Xishan coal field interior horst fault belt nobody has made a thorough analysis yet. This limited depth cognition to this area about the tectonic stress field and tectonic evolution process.
     In this paper, the investigated object is DuerPing fault belt, the one of five group of horst fault belts in TaiYuan XiShan coal field. Aiming at configurating the three-dimensional geometry of the DuerPing fault belt, the author undertook a field investigation in a well-outcropped area of about 40Km2. Then based on the 3D body-balance principle, the direction and amount of displacement and rotation of the faulted blocks in this belt were analyzed; by means of the coupling geology principle, the fault deformation, the rock invasion and many other kinds of process's coupling linkaged relations were analyzed; the event - time - space sequence relations were built. The findings will be helpful in revealing the evolution of Shanxi mantle upwelling belt and the lithosphere thinning belt, understanding the North China Craton's destruction process, preventing geological disaster because of fault activity as well as optimizing layout on coal mine working face.
     The collapse column is one kind of special hidden geology phenomenon, it is widespread developed in the coal measures stratum of Taiyuan Xishan coal field, it has the very tremendous influence on coal mining. One primary cause of forming collapse column is the karstic water intense corrosive nature, the ground water rich place often is the collapse column growth place. Underlying bedrock's crevasse which connects with the surface faulting is the ground water ideal migration path. The surface fault belt is also the important supplies channel for ground water.
     Therefore, Clarifies developmental mechanism of crushed belt which produces by the surface fault structure, can know the ground water migration rule, this rule have important meaning to further discusses on spatial distribution character of hidden collapse column in underlying coal measures stratum. The findings indicated that Duerping horst fault belt is composed of northeast and north north-west two groups of fault belts. And northeast trending fault belt is a step horst, the Forming reason is because deep mantle rock magma upwelling caused the extensional faulting on surface brittle strata, then under the action of gravity, different blocks had the unequal settlement and finally formed horst structure.
     The north north-west trending fault belt was influenced by the forming process on marginal fault belt at the east of research area. Hanging layer in basin produced drag force when it decreased, the original north north-west trending layer broken into land blocks and moved out of their place in order to balance this kind of drag force. Thus the fault terrace belt formed.
引文
[1]朱志澄,伸展构造问题,中国地质,1992.4
    [2] Wernicke, B. Low-angle normal faults in the Basin and Range province: Nappe tectonics in an extending orogen. Nature, 1981.291: 645-647
    [3] Davis G.A, Burchfiel B.C.. Garlock fault: an intracontinental transform structure, southern California. Geological society of America Bulletin. 1979, 84 (5): 1047-1422
    [4]余达淦,伸展构造研究综述,华东地质学院学报,1994.3,第17卷第1期
    [5] Marshak S, Van Der Pluijm, Hamburger M. The tectonics of continental interiors. Tectonophysics. 1999, 305: vii-x
    [6] Friedmann S L. Burbank D W. Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Research, 1995, 7: 109-127
    [7]张忠义,鲁西中新生代伸展构造研究,博士学位论文,中国地质大学,2005
    [8] Michon L, Merle O. Mode of lithospheric extension: Conceptual models from analogue modeling. Tectonics. 2003, 22 (4): 1-15
    [9] Lister G.S, Davis G.A. The origin of metamorphic core complex and detachment faults formed during Tertiary continental extension in the northern Colorado River region. Journal of Structural. Geology, 1989, 11, 65-94
    [10] Lister G.S, Baldwin S.L. Plutonism and the origin of metamorphic core complexes. Geology, 1993, 21: 607-610
    [11] Foster D.A, Fanning C.M. Geochronology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contemporaneous with extension. GSA Bulletin, 1997, 109 (4): 379-394
    [12] Keay S, Lister C, Buick I. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 2001, 342: 275-312.
    [13]张有学,尹安主编,地球的结构、演化和动力学,北京:高等教育出版社,2002
    [14] Davis G.A.郑亚东,变质核杂岩的定义、类型及构造背景,地质通报,2002,21 (4-5):186-192
    [15]煤炭科学研究院地质勘探分院,太原西山含煤地层沉积环境,1987.06,第1版,8-15
    [16]山西省煤矿管理局,山西煤田地质,煤炭工业出版社,1960.1,88-103
    [17]桂学智,太原西山煤田南部北东-北北东向断裂形成机理的探讨,山西地质,1986,第2期
    [18]胡瑞生,贾映月,对太原西山向斜地质构造形成规律的初探,山西矿业学院学报,1988.6
    [19]敖贵福,试从构造角度论对太原西山煤田井田的划分,山西地质,1991.9,第6卷3期,295~298
    [20]王志友,太原西山煤田地质构造,山西焦煤科技,1993.1
    [21]吴汾柱,山西中生代构造体系对岩浆岩的控制,山西地质,1989.4(4)
    [22]谭永杰,鄂尔多斯盆地南缘构造变形及其演化,北京:中国矿业大学北京研究生部博士论文,1992
    [23]陈冒彦,王思敬,黄克兴,王贵荣,陕西渭北东部区新生代的符合伸展构造系研究,华北地质矿产杂志,1998.9
    [24]丁国瑜,中国内陆活动断裂基本特征的探讨,中国活动断层,北京:地震出版社,1982, 5~6
    [25]张文佑,华北断块区中新生代地质构造特征及岩石圈动力学模型,地质学报,1983, (1) : 39~40
    [26]张文佑等,华北断块区的形成与发展,科学出版社,1980
    [27]马杏垣,论伸展构造,地球科学-武汉地质学院学报,1982.第3期
    [28] Barttley John M, et al. Tectonics. 1990,(9); 521~534
    [29] Carmignani L & Kligfield R Tectonics, 1990, (9);1275~1303
    [30]马杏垣,论伸展构造,地球科学-武汉地质学院学报,1982.第3期
    [31]郭敏泰,华北煤田基底溶洞网络与煤系陷落柱发育规律研究,国家自然基金项目(49772133)
    [32]国家地震局地壳应力研究所,华北地区现代地壳运动与地震活动及其运动方式的探讨,见:地壳构造与地壳应力文集,北京,地震出版社,1992, 19~22
    [33]贾炳文、李克等《吕梁山中段水峪贯地区地质综合研究》科学出版社,1993.04
    [34]聂维清等,太原西山煤田构造体系的探讨,山西矿院学报,1988,第2期
    [35]山西省地矿局,山西省区域地质志,北京:地质出版社,1989
    [36]山西省地层对比简表,华北地区区域地层表山西省分册(二),山西省地层表编写组(附图),北京:地质出版社,1979.10
    [37]太原西山地区地形图(1:50000)西铭幅(10-49-81-乙),太原西山地区地形地质图(1:50000)晋源镇幅(10-49-81-丁),1979
    [38]山西焦煤集团公司地测勘探中心,山西煤田水文地质二二九队,《西山煤田综合水文地质图1:50000》及其说明书和附表,2001.12
    [39]山西省地层表编写组(附图),山西省奥陶系中统柱状对比图,华北地区区域地层表山西省分册,北京:地质出版社,1979.10
    [39]张超,地理信息系统实习教程,高等教育出版社,2003.5,20
    [40] http://www.google.com
    [41] http://baike.baidu.com/view/183820.htm
    [42] Aline Concha-Dimasa,Mariano Cercaa,Sergio R. Rodr?′gueza,Robert J. Wattersd,Geomorphological evidence of the influence of pre-volcanic basement structure on emplacement and deformation of volcanic edifices at the Cofre de Perote–Pico de Orizaba chain and implications for avalanche generation,Geomorphology,2005,72,19–39
    [43]董雱,数字高程模型在陷落柱林三维空间形态表达和剥蚀回溯中的应用,太原理工大学硕士学位论文,2003.5
    [44]刘良明,ArcView基础教程,北京:测绘出版社,2001
    [45]汤国安,陈正江,赵牡丹等,ArcView地理信息系统空间分析方法,北京:科学出版社,2002
    [46] http://earth.google.com
    [47] http://zhidao.baidu.com
    [48]李海涛,太原西山岩溶水系统演化模拟与煤系陷落柱群分布规律探讨,太原理工大学硕士学位论文,2006.6,54~59、40~41、21
    [49]李晓波,肖庆辉等译校,美国大陆动力学研究的国家计划,中国地质矿产信息研究院,1993,1~73
    [50] Meyerhoff A A,et al. Surge Tectonics: A New Hypothesis of Global Geodynamics [M]. Dordrechti Kluwer Academic Publishers, 1996
    [51] Martin H. Alternative geodynamic models for the Damara Orogeny: critical discussion [A]. In: Martin, Eder (eds) Intracontinental Fold Belts, 1983, 913~945
    [52]邓晋福,赵海玲,莫宣学,等。中国大陆根-柱构造——大陆动力学的钥匙[M].北京:地质出版社,1996.32~39
    [53]邵济安,张长厚,张履桥等,关于华北盆山体系动力学模式的思考[J].自然科学进展,2003,13(2): 218~224
    [54]肖庆辉,邱瑞照,伍光英,邢作云等,中国东部中生代软流层上涌造山作用,中国地质,2006.8,33(4):746~747
    [55]肖庆辉,邢作云,张昱等,当代花岗岩研究的几个重要前沿[J].地学前缘,2003,10(3):221~229
    [56]肖庆辉,李晓波,刘树臣等,当代地质科学前沿[M].武汉:中国地质大学出版社,1993. 526
    [57]张崇立,地壳形变测量研究动向与某些问题评述,地球科学进展,地震出版社,1992
    [58]段秋梁等,华北东部晚中生代伸展构造作用,地球物理学进展,2007.4
    [59]刘和甫,梁慧社,李晓清等。中国东部中新生代裂陷盆地与伸展山岭耦合机制[ J ] .地学前缘, 2000 , 7 (4) : 477~486
    [60]邓晋福,赵海玲,莫宣学,等。中国大陆根-柱构造——大陆动力学的钥匙[M].北京:地质出版社,1996.32~39
    [61] Dapeng Zhao,Shigenori Maruyama,Soichi Omori,Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics,Gondwana Research, 2007,11: 120–131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700