热带印度洋热收支与经向环流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带印度洋与热带太平洋或热带大西洋相比,有很多独一无二的特性。本文根据COADS、SODA等实际观测资料,较全面的分析了热带印度洋主要的气候特点,并研究了海表面温度(SST)、热收支与海洋动力、热力过程的联系;利用全球海洋环流模式较好地模拟出热带印度洋的季节和年际变化;基于热力学方程和海洋环流模式输出结果,探讨了热带印度洋SST和北印度洋热量收支的季节和年际变化机制,进一步揭示了海洋动力过程在北印度洋热平衡中的重要作用;在此基础上,利用理想化的数值试验与数值模拟结果相结合的方式,证实了风应力的季节变化和Ekman抽吸,以及水平热量扩散系数对北印度洋海洋环流和热收支的影响。
     热带印度洋,尤其是7°S以北的印度洋,受亚洲季风的显著影响,与季风对应,海洋环流也有很明显的季节变化,最明显的是索马里海流的季节转向。此外,索马里-阿拉伯沿岸夏季的很强的上翻,冬季则是下翻;跨越赤道在夏季有向南的EKMAN输送,在冬季相反。不仅如此,北印度洋SST在一年有两次增暖、夏季风期间阿拉伯海中部混合层的加深,以及季风转换其间赤道急流的存在等也是季节变化尺度上引人注目的现象。夏季的风应力在一年中占有优势,在赤道上出现了西风。此外,在赤道附近风应力大致从赤道以南的向西变为赤道以北的向东,这意味着年平均意义上有跨越赤道向南的Ekman流。这些特点是印度洋与其他大洋不同之处,对北印度洋的热收支和SST有重要影响。SST与海表面高度、热含量、温跃层深度等的相关分析也表明,在某些区域,除受海洋-大气之间热交换的影响外,海洋动力过程对SST的影响也占重要地位。
     根据混合层温度变化方程,利用海洋模式模拟结果进行诊断分析,估计了在SST变化中不同物理过程影响的相对重要性。就赤道以北印度洋而言,海面净热通量和混合层底的卷夹过程都有半年周期,这是SST呈现半年周期变化的主要原因。在夏季,整个阿拉伯沿岸和孟加拉湾西部混合层底的卷夹作用占优势;海面净热通量在孟加拉湾SST的变化中始终是主要的影响因子;对几个典型区域的研究表明,不同的区域的混合层温度有着非常不同的变化机制。
     根据热量收支方程和海洋模式资料,定量估计了北印度洋的热量收支,重点
    
    研究了经向热输送及其影响机制。结果表明越赤道和越10oN阿拉伯海的热输送
    量大小具有可比性,且有相同的年循环特征,而10oN孟加拉湾纬度的经向热输
    送较小,且具有半年变化周期;俨S以北印度洋任一纬度上的纬向风应力异常与
    此纬度上的经向热输送异常以及此纬度以北印度洋总的海面净热通量异常有很
    好的相关关系,相关系数最大可达一0.5以上。经向热输送集中在上500米,尤其
    在150米以上。在总的经向热输送中,经向翻转环流的贡献起主要作用,进一步
    证实了风对经向翻转环流的重要性。
     基于MOMZ,我们设计了一个包括赤道的理想的热带印度洋矩形海盆模式,
    其目的是为了研究控制跨越赤道进入北印度洋的平均流深度的基本物理过程及
    影响机制。利用数值试验,分别研究了水平热量扩散系数、风应力的季节变化,
    以及风的Ekman抽吸对海洋热收支、海洋环流的影响。研究表明,水平热量扩
    散系数不同对越赤道流的深度和经向热通量的影响不大;风的季节循环形成的季
    节扰动通量会使年平均的越赤道流加深,进入北印度洋的经向热通量减少,致使
    模式中SST降低,海面净热通量增加。北印度洋风场负的Ekman抽吸将使上层
     (混合层)海洋温度降低,下层升高,越赤道流加深,进入北印度洋的经向热通
    量减少,致使模式中SST降低,海面净热通量增加。
     我们还通过全球海洋环流模式,进一步证实了风应力的季节变化在北印度洋
    热收支、SST以及海洋环流变化中的作用:即包含风应力的季节变化将使长期平
    均的SST降低,海面净热通量增加。与之相联系,海洋环流也发生了相应的变
    化。
     揭示了风的季节变化形成的经向热输送的“季节扰动通量”会使北印度洋SST
    降低,海面净热通量增加的机制:在夏季风作用下,北半球的索马里沿岸产生强
    的上翻,上翻的冷水在被加热的过程中,有较多的海面净热通量进入海洋;而冬
    季相反的风应力不能“抵消”夏季的上翻,因为被加热的水不能够在冬季被下翻,
    致使冬季海洋释放的海面净热通量小于夏季进入海洋的海面净热通量。这种“不
    对称”的“季节矫正(rectify)”将引起海面净热通量增加;第二种途径是季节
    变化的风场引起了强的穿越等密面的热通量,其方向总是向下,它的增加使得深
    层温度升高,而上层温度降低,也会导致海面净热通量增加。
     以上研究成果为研究印度洋海洋一大气相互作用和印度洋海洋环流的数值模
    
    拟提供了新的理论依据和进一步的认识。
There are many unique features in the tropical Indian Ocean, compared with the tropical Pacific or Atlantic. Based on the observation data such as COADS and SODA, the main climatological features of the tropical Indian Ocean and relationships of sea surface temperature (SST), heat budget with ocean dynamics and thermodynamics processes are analyzed; the seasonal and interannual variability of the tropical Indian Ocean are well simulated using a ocean general circulation model; Based on the thermal equation and model output data, the variation mechanism of SST and heat budget are investigated in the tropical Indian Ocean; Besides, the effect of seasonal variation of wind stress, Ekman pumping and horizontal diffusivity on the ocean current and heat budget are studied, using both ideal model and complex model.
    The tropical Indian Ocean, especially for the region north of 7, is strongly influenced by Asia monsoon. In response to the seasonal reversal of wind, ocean currents also show obvious seasonal reversal with Somali current most prominent. Besides, the strong upwelling appears along the Somali-Arabian coast in summer but downwelling in winter, the southward cross-equator Ekman transport occurs in summer but opposite in winter. Further more, the SST warming twice in one year in the northern Indian Ocean, the mixed layer deepening in the central Arabian Sea during summer, as well as the equator jet occurred only in transient seasons are all noteworthy. The wind in summer dominates other seasons with annual mean westerly on the equator. In addition, the wind stress near the equator basically changes from west to east, resulting in southward Ekman transport on both sizes of the equator. Those unique dynamics have significant effects on the heat budget and SST of the northern Indian Ocean. The correlation analysi
    s between SST and sea surface height, heat content and depth of thermocline also shows the important role of ocean dynamic processes in some regions, besides the influence of heat exchange between air and sea.
    
    
    Based on the equation of temperature in mixed layer, combined with the data from an ocean model, the relative important of different processes in controlling the SST variations are determined. For the northern I ndian Ocean, the net surface heat flux and entrainment through the bottom of mixed layer have semiannual period, which is the major cause of semiannual variations in SST. In boreal summer, the entrainment dominates the western part of Bay of Bengal and most part of Arabian coast; net surface heat flux is always a dominant factor controlling the SST variation in Bay of Bengal throughout a year. Difference physical processes control the temperature of the mixed layer in different regions.
    The quantitatively studies of the heat budget in the northern Indian Ocean are given, focusing on the heat transport and the mechanisms involved in, based on the heat budget equation and data from the ocean model. It is showed that the heat transport crossing the equator has the similar magnitude and the same period of one year, compared with that of 10°N in Arabian Sea. By contrast, the heat transport across 10°N in Bay of Bengal has a much smaller value with a prominent semiannual period; There are tight relationship between integrated zonal wind stress in one latitude of the Indian Ocean north of 7°N and the total heat transport across that latitude, as well as the total net surface heat flux north of that latitude. The maximum correlation coefficient is less than -0.5. The heat transport concentrated on upper 500m, especially upper 150m; Of the total transport, the contribution from the meridional overturning circulation is overwhelming. All these results confirm the important of wind in meridional circulation and heat transport.
    Based on MOM2 model, a rectangular basin model with ideal w ind stress and other ideal conditions is designed to study the main processes and dynamical mechanism in setting the depth of cross-equator flow. The effects of horizontal diffusivity, seasonal variations of
引文
[1] 曹鸿兴:气候动力模式与模拟。气象出版社,北京,1994。1-333。
    [2] 巢清尘、巢纪平:热带西太平洋和东印度洋对ENSO发展的影响。自然科学进展,2001,11:1293-1330。
    [3] 陈烈庭:热带印度洋-太平洋海温纬向异常及其对亚洲夏季风的影响。大气科学(特刊),1988,142-148。
    [4] 陈烈庭、金祖辉、罗绍华:印度洋和南海海温变化的特征及其与大气环流的某些联系。海洋学报,1985,7(1)103-110。
    [5] 陈烈庭:阿拉伯海-南海海温距平纬向差异对长江下游降水的影响。大气科学,1991,15:33-42。
    [6] 金祖辉、沈如桂:长江中下游旱梅和涝梅年海温场及大气环流系统的特征。气象科学技术集刊,1987,11,气象出版社,83-88。
    [7] 李崇银:气候动力学引论。北京:气象出版社,2000,1-515。
    [8] 李崇银、穆明权:赤道印度洋海温偶极子型振荡及其气候影响。大气科学,2001,25:433-443。
    [9] 罗绍华、金祖辉、陈烈庭:印度洋和南海海温与长江中下游降水的相关分析。大气科学,1985,99(3),336-342。
    [10] 闵锦忠、孙照渤、曾刚:南海和印度洋海温异常对东亚大气环流及降水的影响。南京气象学院学报,2000,23(4),532-548。
    [11] 盂文,吴国雄:赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件(Ⅱ)数值模拟。大气科学,2000,24(1),15-25。
    [12] 倪允琪、钱永甫、林元弼:赤道西太平洋-印度洋海温异常对亚洲夏季风的影响。气象学报,1990,3,336-343。
    [13] 王东晓、吴国雄、许建军:热带印度洋年代际海洋变率及其动力学解释。科学通报,1999,44(11):1226-1232。
    [14] 魏凤英:现代统计诊断与分析。气象出版社,北京,2002,1-343。
    [14] 吴国雄、刘平、刘屹岷、李建平:印度洋海温异常对副热带高压的影响-大气中的两极热力适应。气象学报,2000,58(5):513-522。
    [15] 肖子牛、晏红明:E1 Nino位相其间印度洋海温异常对中国南部初夏降水及初夏亚洲季风影响的数值模拟研究。大气科学,2001,25(2),173-183。
    
    
    [16] 晏红明、肖子牛,谢应齐:近50年印度洋海表温度距平时空特征分析。气候与环境研究,2000,5:180-188。
    [17] 周天军、张学洪:印度洋海气热通量交换研究。大气科学,2002,26(2),161-170。
    [18] 张卫青、钱永甫。赤道中印度洋夏季变温对中国夏季降水影响的数值模拟。大气科学,2002,26(1),91-101。
    [20] GARP Publications Series,No.16,气候的物理基础及其模拟。曹鸿兴等译,1983,科学出版社。
    [21] Bottomley, M., C. K. Folland, J. Hsiung, R. E. Newell, and D. E. Parker. Global ocean surface temperature atlas, 1990, Cambridge ,edited by S.smith, 1-201.
    [22] Bryden, H. L., and M. M. Hal. Heat transport by currents across 25°N latitude in the Atlantic Ocean. Science, 1, 1980, 207, 884-886.
    [23] Brown, O. B.,and R. H. Havans, Interannual variability of Arabian Sea temperature, in oceanography from space, 1981,Plenum, New York, 135-143.
    [24] Cadet, D. L., and B. C. Dhiel. Interannual variability of surface fields over the Indian Ocean during recent decades. Mon. Wea. Rev., 1984, 112, 1921-1935.
    [25] Carissimo, B. C., A. H. Oort, and T. H. Vonder Haar. Estimates of the meridional energy transports in the atmosphere and ocean. Journal of Physical Oceanography, 1985, 15, 82-91.
    [26] Carton, J. A., Chepurin, G., a nd Cao, X.. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part Ⅱ: Results. Journal of Physical Oceanography, 2000,30,311-326.
    [27] Chen, D. L.M. Rothstein and A.J. Busalacchi. A hybrid vertical mixed-layer scheme and its application to tropical ocean models, or. Phys. Oceanogr. , 1994, 24, 2156-2179.
    [28] Duing, W., & Leetma A..Arabian Sea cooling: A preliminary heat budget. Journal of Physical Oceanography, 1980, 10, 307-312.
    [29] Feng M., P. Hacker, and R. Lukas. Upper ocean heat and salt balances in response to a westly wind burst in the western equatorial Pacific during TOGA COARE. J. Geophys. Res.,,1998,103,10289-10311.
    [30] Ffield, A. and A, L. Gordon. Vertical mixing in the Indonesian thermocline. J. Phys. Oceanogr.,1992,22,184-195.
    [31] Ffield, A. and A. L. Gordon. Tidal mixing signatures in the Indonesian seas. J. Phys.
    
    Oceanogr., 1996, 26, 1924-1937.
    [32] Fieux, M., and H. Stommel. Historical sea surface temperatures in the Arabian Sea.Annu. Inst. Oceanogr., 1976, Paris, 52, 5-15.
    [33] Gartemicht, U & Schott, F.. Heat fluxes of the Indian Ocean from a global eddy-resolving model. Journal of Geophysical Research, 1997, 102, 21147-21159.
    [34] Godfrey, J. S., The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review, J. Geophys. Res., 1996, 101, 12217-12237.
    [35] Godfrey, J.S., Alexiou, A., Illahude, A .G., etc. The role of the Indian Ocean in the global climate system: recommendations regarding the global ocean observing system. Report of the Ocean Observing System Development Pabel, Background Report #6, , 1995,Texas A&M Univ., College Station, 1-89.
    [36] Godfrey, J.S., Bradley, E .F., Coppin, P.A., Pender, L. F., McDougall, T.J., Schulz, E.W., & Helmond , I.. Measurement of upper ocean heat and freshwater budgets near a drifting buoy in the equatorial Indian Ocean. Journal of Geophysical Research, 1999, 104, 13, 269-13,302.
    [37] Godfrey, J.S. R. J. Hu, A. Schiller, and R. Fiedler. Why does the cross-equator flow of Indian Ocean extend so deep? (2002,submitted to J. G. R.)
    [38] Hastenrath, S., and L., Greischar. The monsoonal heat budget of of the tropical Indian Ocean sector. Journal of Geophysical Research, 1993, 98, 6869-6881.
    [39] Hellerman, S. and M. Rosenstein. Normal monthly wind stress over the world ocean with error estimates. J.Phys.Oceanog., 1983,13, 1093-1104.
    [40] Horel J.D., and J. M. Wallace. Planetary scale atmospheric phenomena associated with the Southern Oscillation. M.W.R. , 1981, 109, 813-829.
    [41] Hsiung, J.. Estimates of global oceanic meridional heat transport. Journal of Physical Oceanography, 1985, 15, 1405-1413.
    [42] Hsiung, J.,Newell, R. E., and Houghtby T. The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quarterly Journal of Royal Meteeorological Society, 1989, 115, 1-28.
    [43] Hoskins B. J., and D. Karoly. The linear steady response of a spherical atmosphere to thermal and orographic forcing. J.A.S., 1981, 38, 1179-1196.
    [44] Kumar, H, P.V., & Mathew, B. On the heat budget of the Arabian Sea. Meteo. Atmos. Phys. , 1997, 62, 215-224.
    
    
    [45] Latif M.,T. P. Barnett. Interactions of the tropical Oceans. J. Climate, 1995, 8, 952-964.
    [46] Latif, M. and D. Dommenget. The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/1998. J. Climate, 1999, 12(12) , 3497-3504.
    [47] Lee, C.M., & Marotzke, J.. Seasonal cycle of of meridional overturning and heat transport of the Indian Ocean. Journal of Physical Oceanography, 1998, 28, 923-943.
    [48] Legler, D.M., I.M. Navon, and J. J. O'Brien. Objective analysis ofpseudostress over the Indian Ocean using a direct-minimization approach. Mon. Wea. Rev., 1989,117, 709-720.
    [49] Levitus, S.. Climatological Atlas of the World Ocean. NOAA Professional Paper 13. , 1982, U.S. Department of Commerce National Oceanic and Atmospheric Administration.
    [50] Levitus, S. Ekman volume fluxes for the world ocean and individual basins. J. Phys. Oceanogr. , 1988,18, 271-279.
    [51] Li Z.. Intercomparision between two satellite-based products of net surface radiation. J. Phys. Oceanogr., 1995, 12,406-413.
    [52] Loschnigg, J., & Webster, P.J.. A coupled ocean-atmosphere system of SST modulation for the Indian Ocean. Journal of Climate, 2000, 13/19, 3342-3360.
    [53] Marotzke, J. Boundary mixing and the dynamics of three-dimensional thermohaline circulations. Journal of Physical Oceanography, 1992, 27, 1713-1728.
    [54] McCreary, J. Modelling wind-driven ocean circulation. Hawaii Institute of Geophysics Report HIG-80-3, 1980, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822.
    [55] McCreary J. P., and P. K. Kundu. A numerical investigation of the Somali current during the Southwest Monsoon. J. Mar. Res. , 1998, 46, 25-58.
    [56] McCreary, J.P., Kundu, P.K., & Molinari, R.L. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, 1993,31,181-244.
    [57] McPhaden, M.J. Variability in the central Indian Ocean, II, Oceanic heat and turbulent energy balances, J.Mar.Res. , 1982, 40,403-419.
    [58] McPhaden M. J., A. J. Busalacchi, R. Cheney, J. R. Donguy, et al. The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J.GR. , 1998, Vol. 103, C7, 14169-14240.
    
    
    [59] McPhaden, M.J., & Hayes, S.P. On the variability of winds, sea surface temperature, and surface layer heat content in the western equatorial Pacific. Journal of Geophysical Research, 1991,96, suppl, 3331-3342.
    [60] Miyama, T., J.P. McCreary, T.G. Jensen, J. Loschnigg and A. Ishida. Structure and dynamics of the Indian Ocean cross-equatorial cell. Deep-Sea Res. (2003,in press)
    [61] Munk, W.H. On the wind-diven ocean circulation. J. Meteorol.,1960, 7, 79-93.
    [62] Murtugudde R. and A.J.Busalacchi. Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J.Climate, 1999, Vol.12, 2300-2326.
    [63] Nicholls, N. Sea surface temperature and Australia winter rainfall. Journal of Climate, 1985, 2, 965-973.
    [64] Pacanowski, R.C. and S.G.H. Philander. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 1981, 11, 1443-1451.
    [65] Palmer T. N., and D. A. Mansfield. Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical east and west Pacific. Nature, 1984, 310, 483-485.
    [66] Potemra, J. T., and R. Lukas. Seasonal to interannual modes of sea level variability in the western Pacific and eastern Indian Ocean. Geophys. Res. Lett., ,1999, 26(3) , 365-368.
    [67] Qu, T.. Role of ocean dynamics in determing the mean seasonal cycle of the South China Sea surface temperature. Journal of Geophysical Research, 2001, 106(C4) : 6943-6955.
    [68] Qu, T., Meyers, G, & Godfrey, J.S. Ocean dynamics in the region between Australia and Indonesian and its influnce on the variation of sea surface temperature in a global general circulation model. Journal of Geophysical Research, 1994, 18433-18445.
    [69] Philander, S. J. H., Unstable air-sea interaction in the tropics. J. Atom. Sci., 1984, 41, 604-613.
    [71] Rao, R. R., and Sivakumar. Observed seasonal variability of heat content in the upper layers of the tropical Indian Ocean from a new global ocean temperature climatology. Deep Sea Research, Part I, 1998,45, 67-89.
    [72] Rao,R.R., Sivakumar, R.. On the possible mechanisms of the evolution of a mini-warm pool during the presummer monsoon season and the genesis of onset vortex in the southeastern Arabian Sea. Q.J.R.Meteo. Soc., 1999,125, 787-809.
    
    
    [73] Reason C. J. C., R. J. Allan, J. A. Lindesay, T. J. Ansell. ENSO and climatic signals across the Indian Ocean basin in the global context: Part 1, interannual composite patterns, Int. J. Climatol., 2000, 20, 1285-1327.
    [74] Saha, K... Zonal anomaly of sea surface temperature in equatorial Indian Ocean and its possible effect upon monsoon circulation. Tellus, 1970, 22(4) .
    [75] Saji, N.H., Goswami, B.N, Vanayachandran, P.N., & Yamagata, T.. A dipole in the tropical Indian Ocean. Nature, 1999, London, 401, 360-363.
    [76] Schiller, A., Godfrey, J.S., Mclntosh, P.C., Meyers, G., & Wijffels, S.E.. Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and the Indonesian Throughflow in a global ocean general circulation model. Journal of Physical Oceanography, 1998, 28, 2288-2312.
    [77] Schiller, A., J.S. Godfrey, P.C. Mclntosh, G. Meyers, N.R. Smith, O. Alves, G. Wang and R. Fiedler. A new version of the A ustrsalian C ommunity Ocean Model for seasonal climate prediction. CSIRO Marine Laboratories Report , 2002,1-102
    [78] Schott, R, Dengler, M., & Schoenefeldt, R.. The shallow overturning circulation of the Indian Ocean. Progress in Oceanography,2002, 53, 57-103.
    [79] Schott, R, McCreary, J.P.Jr. 1. The monsoon circulation of the Indian Ocean. Progress in Oceanography,2001, 51, 1-123.
    [80] Schott, R, Swallow, J. C., and Fieux, M.. The Somali Current at the equator: annual cycle of currents and transports in the upper 1000m and connection to neighboring latitudes. Deep-Sea Research, 1990, 37, 1825-1848.
    [81] Shetye, S.. A model study of the the Arabian Sea temperature. J. Mar. Res. , 1986, 44, 521-542.
    [82] Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C.,Sundar, D., Michael, G. S., Almeida, A. M., and Santanam, K.. Hydrography and circulation off the west coast of India during the Southwest Monsoon 1987. Jornal of Marine Research, 1990,48, 359-378.
    [83] Shukla, J.. Interannual variability of monsoons.,John Willy, New York, 1987, 399-463.
    [84] Shukla, J., & Mooley, D.A.. Empirical prediction of the summer monsoon rainfall over India. Monthly Weather Review, 1987, 115, 695-703.
    [85] Simonot,J.-Y. and H.L. Letreut. A climatological field of mean optical properties of the world
    
    ocean. J. Geophys. Res. , 1986 91, 6642-6646.
    [86] Slingo, J.M., Rowell, K.R., Sperber, K.R., Nortley, N.. On the predictability of the interannual behavior of the Madden-Julian oscillation and its relationship with Elnino. Q.J.R.M.S, 1999,125, 583-609.
    [87] Smith, R. L., Huyer, A., Godfrey, J. S., and Church, J. A.. The Leeuwin Current off western Australia, 1986-1987. Journal of Physical Oceanography, 1991, 21, 322-345.
    [88] Sprintall J, and M. Tomczak. Evidence of the barrier layer in the surface layer of the tropics. J.GR. , 1992,97,7305-7316.
    [89] Stevenson,J.W., & Niiler, P.P.. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. Journal of Physical Oceanography, 1983, 13, 1894-1907.
    [90] Stricherz, J., J.J. O'Brien and D. Legler. Atlas of Florida State University Tropical Pacific Winds for TOGA 1966-1985 , 1992 ,The Florida State University, 1-256.
    [91] Swallow, J. C., and Bruce, J.C.. Current measurements off the Somali coast during the southwest monsoon of 1964. Deep Sea Research, 1966, 13, 861-888.
    [92] Swallow, J. C., Molinari, R. L., Bruce J. G, Brown, O. B. and Evans, R. H.. Development of near-surface flow pattern and water mass distribution in the Somali basin in response to the southwest monsoon of 1979. Journal of Physical Oceanography, 1983, 13, 861-888.
    [93] Tourre Y. M., and W. B. White. ENSO signals in global upper ocean temperature. J. Phys. Oceangr., 1995, 25, 1317-1332.
    [94] Trenberth E., G. W. Branstator, D. Karoly., A. Kumar, N. C. Lau, and C. Ropelewski, 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J.G.R., vol. 103, C7. , 14291-14324.
    [95] Trenberth, K. E., and A. Solomon. The global heat balance: Heat transports in the atmosphere and ocean. Clim. Dyn. , 1994, 10, 107-134.
    [96] Vinayachandran, P.N., & Shetye, S.R.. The warm pool in the Indian Ocean. Proc. Indian Acad. Sci. Earth Planet Sci. , 1991, 100, 165-175.
    [97] Wacongne, S., & Paconowski, R.. Seasonal heat transport in a primitive equations model of the tropical Indian Ocean. Journal of Physical Oceanography, 1996, 26, 2666-2699.
    [98] Wallace J. M., E. M. Rasmusson,T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. V. Storch. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J.G.R., 1998, vol. 103, C7, 14241-14259.
    
    
    [99] Webster, P. J., V. O. Magama, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai and T. Yasunari. Monsoons: processes, predictability, and the prospects for prediction. J.GR. , 1998,103, C7, 14451-14510.
    [100] Webster, P.J., Moore, A.M., Loschnigg, J.P., & Leben, R.R.. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 1999, London, 401, 356-359.
    [101] Wunsch, C.. Determining the general circulation of the oceans: A preliminary discussion. Science, 1977, 196, 871-874.
    [102] Wyrtki, K. An equatorial jet in the Indian Ocean. Science, 1973,181, 262-264.
    [103] Xie, S. P., Annamalai, H., Schott, R, & McCreary, J.P.Jr.. Structure and mechanisms of south Indian Ocean climate variability. Journal of Climate, 2001, 15, 864-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700