大气季节内振荡对东亚夏季风活动的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用ERA40逐日再分析资料、NCEP/NCAR2逐日再分析资料、中国740个测站日降水资料、上海台风研究所提供的西太平洋热带气旋资料、Kaplan等重建的月平均SSTA资料、NOAA逐日长波辐射(OLR)等资料,应用离散功率谱分析、带通滤波、EOF分析等统计方法,研究了东亚夏季风(EASM)的移动特征、东亚地区季节内振荡(ISO)的基本特征、季节内振荡对东亚夏季风活动的影响、季节内振荡对东亚夏季风异常活动的影响机理。主要结论如下:
     (1)综合动力和热力因素定义了可动态描述东亚夏季风移动和强度的指数,并利用该指数研究了东亚夏季风的爆发和移动的季节内变化及其年际和年代际变化特征。研究发现,气候平均东亚夏季风前沿分别在28候、33候、36候、38候、40候、44候出现了明显的跳跃。东亚夏季风活动具有显著的年际变率,主要由于季风前沿在某些区域异常停滞和突然跨越北跳或南撤引起,造成中国东部旱涝灾害频繁发生。东亚夏季风的活动具有明显的年代际变化,在1965年、1980年、1994年发生了突变,造成中国东部降水由“南旱北涝”向“南涝北旱”的转变。
     (2)东亚季风区季节内变化具有10~25d和30~60d两个波段的季节内振荡周期,以30-60d为主。存在三个主要低频模态,第一模态主要表征了EASM在长江中下游和华北地区活动期间的低频形势;第二模态印度洋-菲律宾由低频气旋式环流控制,主要表现了ISO在EASM爆发期间的低频形势;第三模态主要出现在EASM在华南和淮河活动期间的低频形势。第一模态和第三模态是代表东亚夏季风活动异常的主要低频形势。
     (3)热带和副热带地区ISO总是沿垂直切变风的垂直方向传播。因此,在南海-菲律宾东北风垂直切变和副热带西太平洋北风垂直切变下,大气热源激发菲律宾附近交替出现的低频气旋和低频反气旋不断向西北传播,副热带西太平洋ISO以向西传播为主。中高纬度地区,乌拉尔山附近ISO以向东、向南移动或局地振荡为主;北太平洋中部ISO在某些情况下向南、向西传播。
     (4)季风爆发期,伴随着热带东印度洋到菲律宾一系列低频气旋和低频反气旋,冷空气向南输送,10~25天和30~60天季节内振荡低频气旋同时传入南海加快了南海夏季风的爆发。在气候态下,ISO活动表现的欧亚-太平洋(EAP)以及太平洋-北美(PNA)低频波列分布特征(本文提出的EAP和PNA低频波列与传统意义上的二维定点相关得到的波列不同)。这种低频分布形式使得欧亚和太平洋中高纬度的槽、脊及太平洋副热带高压稳定、加强,东亚地区的低频波列则成为热带和中高纬度ISO相互作用影响东亚夏季风活动的纽带。不同的阶段表现不同的低频模态,30~60d低频模态的转变加快了EASM推进过程中跳跃性;30-60d低频模态的维持使得EASM前沿相对停滞。
     (5)30-60d滤波场,菲律宾海域交替出现的低频气旋和低频反气旋不断向西北传播到南海-西太平洋一带。当南海-西太平洋地区低频气旋活跃时,季风槽加强、东伸,季风槽内热带气旋(TC)频数增加;当南海-西太平洋低频反气旋活跃时,季风槽减弱、西退,TC处于间歇期,生成位置不集中。
     (6)在El Nino态下,大气季节内振荡偏弱,北传特征不明显,但ISO由中高纬度北太平洋中部向南和副热带西太平洋向西的传播特征显著,东亚地区ISO活动以第三模态为主,EASM集中停滞在华南和淮河流域,常伴随着持续性区域暴雨的出现,易造成华南和江淮流域洪涝灾害,长江和华北持续干旱。在La Nina态下,大气季节内振荡活跃,且具有明显的向北传播特征,PNA低频波列显著,东亚地区ISO活动以第一模态单峰为主;EASM主要停滞在长江中下游和华北地区,这些地区出现异常持续强降水,华南和淮河流域多干旱;在El Nino态向La Nina态转换期,ISO活动以第一模态双峰为主,长江中下游常常出现二度梅。
Using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis daily data ERA40, NCEP/NCAR2 reanalysis daily data, the daily rainfall data from 740 stations in China, the North-West Pacific tropical cyclone data provided by Shanghai Typhoon Institute, the monthly mean sea surface temperature anomaly (SSTA) reconstructed by Kaplan el al. and the daily outgoing long-wave radiation (OLR) data of NOAA, basing on the discrete power spectral method, the band-pass filter and the EOF (empirical orthogonal function) analysis et al. statistical methods, this Paper study on the characters of the East Asian summer monsoon (EASM) movement, the basic features of intra-seasonal oscillations (ISO), the relationship between ISO and the movement of EASM and the mechanism how ISO influence the abnormal activities of EASM. The preliminary results are as following:
     (1) EASM index was defined by using the thermal and dynamic factors. It can describe EASM’s movement and intensity objectively. And then the intra-seasonal variability, inter-annual and inter-decadal variations of the EASM were analyzed by using EASM index. On average, EASM undergo six abrupt northward shifts at the 28th Pentad, 33rd pentad, 36th Pentad, 38th pentad, 40th pentad and 44th pentad. The movement of EASM showed prominent interannual variability, which is caused by the front of EASM stayed at one region without less movement for long time and jump northward or retreat southward abruptly, bringing the serious flood and drought disasters to East China. The movement of EASM also exhibited interdecadal variability and had three interdecadal abrupt changes in 1965, 1980 and 1994, respectively,in result, East China underwent from the pattern of south- drought and northern- waterlog before 1979 to south-waterlog and north- drought.
     (2) The 10-25-day and 30-60-day oscillations are predominantly in East Asia, especially the 30-60-day oscillation. By the EOF analysis, there are three important low-frequency models in summer. The first model shows the prominent southeast-northwest East Asian (EANW) teleconnection wave-train, it appears in the Yangtze River Meiyu Period and North China rainy season. The second model exhibit low-frequency dipole in Baikal and Okhotsk, the cyclone circulation control from the Indian Ocean to Philippine. It can describe the low-frequency circulation in the EASM onset period. The third model shows the prominent southwest-northeast East Asian (EANE) teleconnection wave-train, it usually occurs in the periods that EASM stay in South China and Huaihe River Valley. After the EASM onset, the low-frequency circulation usually shows the first or the third mode mainly in some year, this is the important reason that causes the abnormal activity of EASM.
     (3) The propagations of the tropical and sub-tropical ISO rely on the vertical shear of the mean flow, the ISO propagate along the perpendicular direction of the vertical shear wind. Therefore, under the northeastern vertical shear in South China Sea-Philippine and northern vertical shear in subtropical Pacific, ISO from Philippine moves northwest to near of South China Sea (SCS), and then propagate to northward. The ISO form subtropical West Pacific move westward mainly. In mid-high latitudes The ISO from Ural propagate eastward and southward or oscillation in one place. Under some conditions, ISO from the middle of North Pacific move southward and westward.
     (4) The different low-frequency circulations occur in different EASM’s movement period. During the onset period, EASM are mainly affected by low-frequency cyclones (or anti cyclones) belt from low latitudes and the low-frequency dipole appearing in Baikal and Okhotsk. The phase lock of the low-frequency cyclones from 30-60-day and 10-25-day intra-oscillations in SCS are important reasons that cause the jump of EASM. After mid June, the low-frequency circulations take on Pacific-North American (PNA) and Europe-Asia-Pacific (EAP) low-frequency wave-train of the 30-60-day ISO. EAP and PNA low-frequency wave-train make the trough and ridge over mid-high latitudes and the Western Pacific Subtropical high steady and strengthen. East Asian (EA) low-frequency wave-train is the link between the intra-oscillations from low latitudes and mid-high latitudes, which affect the activity of EASM. The shift of the low-frequency mode and the phase lock with 10-25-day oscillation make the EASM abrupt movement (advance northward or retreat quickly), while EASM usually stay at one region for long time by the model of 30-60-day ISO.
     (5)The low-frequency cyclones and anti cyclones from Philippine propagate northwestward to SCS-West Pacific (WP) alternately. The low-frequency cyclone make the monsoon trough (MT) strengthen and extend eastward, the WP tropical cyclones (WPTC) are active and appear frequently, the location that WPTC appear concentrate. While the low-frequency anti cyclone make MT weaken and shrink westward,WP TC are inactive. The locations where WPTC appear do not concentrate.
     (6) When the anomaly of sea surface temperature (SSTA) in the tropical Pacific takes on the El Nino mode, the activity of ISO is weak ,and it exhibits the third low-frequency mode mainly. EASM usually stayed at south China and Huai River Valley, the continuous rainstorms usually appear bringing serious flood in these regions, while the rainfall in the lower-middle reaches of the Yangtze River and North China is more less than normal and the drought occur. When SSTA in the tropical Pacific takes on La Nina mode, the activity of ISO is very active and it shows the single pole of the first low-frequency mode mainly. EASM usually stayed at the lower-middle reaches of the Yangtze River and North China for long time, the persistent precipitation appeared in these regions, while the continual drought usually appear in South China and the Huai River Valley. When SSTA in the tropical Pacific takes on La Nina mode and El Nino mode during early stage and in summer, the activities of ISO often show the first low-frequency mode with double poles, the two Meiyu Periods usually occur in the lower-middle reaches of the Yangtze River.
引文
[1] 陈隆勋,朱乾根,罗会邦等. 东亚季风.第一版.北京: 气象出版社,1991. 28~49.
    [2] 丁一汇..高等天气学. 第二版.北京: 气象出版社,2004.212~249.
    [3] 吴尚森,梁建茵,李春晖.南海季风强度与我国汛期降水的关系,热带气象学报,2003,19(s1): 25~26.
    [4] C.-p. Chang. East Asian Monsoon. World Scientific, 2004. 6~21.
    [5] B.N.Goswami and Prince K.Xavier. 2003,Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophysical research letters, 8: SAC9-1~4.
    [6] 涂长望,黄仕松.中国夏季风之进退.气象杂志,1944(18): 1~20.
    [7] 施尚文,巢俊民. 中国北方地区的夏季风. 见:全国热带夏季风学术会议文集. 昆明:云南人民出版社,1982. 72~85
    [8] 汤明敏,黄仕.1979 年中国东部夏季风的进退,全国热带夏季风会议文集,昆明: 云南人民出版社,1983.15~30.
    [9] Tao S Y, L X Chen. A review of recent research on the East Asian summer monsoon in China. Eds: C P Chang and T N Krishnamurti. Monsoon Meteorology, London: Oxford University Press, 1987.60~92.
    [10] 朱乾根,杨松.东亚副热带季风的北进及其低频振荡.南京气象学院学报,1989.12(3): 249~257.
    [11] 王安宇,吴池胜等.关于我国东部夏季风进退的定义.高原气象,1999.18(3): 400~408.
    [12] Fong, S. K and Wang, A. Y(Eds). Onset maintenance and retreat of Asian summer monsoon. Climatological ATLAS for Asian Summer Monsoon. Macau Meteorological and Geophysical Bureau and Macau Foundation, 2001.251~318.
    [13] 吴长刚,刘鸿升, 谢安. 夏季风北推和强度对我国北方夏季降水影响的年代际特征,高原气象,2005.24(5): 656-665.
    [14] Madden R D and P Julian. Detection of a 40 - 50 day oscillation in the zonal wind in the tropical Pacific, J . Atmos. Sci . , 1971. 28: 702~708.
    [15] Madden R D and Julian P. Description of globe Scale circulation cells in the tropics with 40 -50 day period., J . Atmos . Sci . , 1972. 29:1109~1123.
    [16] Anderson J R and Rosen R D. The latitude2height structure of 40~50 day variation in atmospheric angular momentum, J . Atmos .Sci .,1983. 40:1584~1591.
    [17] 张可苏.40~50 天的纬向基流低频振荡及其失稳效应.大气科学,1987.11: 227~236.
    [18] Krishnamurti T N and Gadgil S, On the structure of the 30 to 50day mode over the globe during FGGE. Tell us, 1985. 37A :336~360.
    [19] Wallace J M and Gutzler D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Wea.Rev . , 1981. 109: 784~812.
    [20] 李崇银.大气中的季节内振荡.大气科学,1990.14: 32~45.
    [21] 李崇银.30-60 天大气振荡的全球特征.大气科学,1991.15(3): 66~76.
    [22] Krishnamurti T N and Bhalme H N. Oscillation of a monsoon system, Part 1 :observational aspects. J . Atmos . Sci . , 1976. 33:1937~1954.
    [23] Yasunari T. A. quasi-stationary appearance of 30-40 day period in the fluctuations during the summer monsoon over India. J. Meteor. Soc., Japan, 1980. 58: 225~229.
    [24] Lau KM and Chan P H. Aspects of the 40-50 day oscillation during Northern summer as inferred from outgoing longwave radiation. Monthly weather Review, 1986. 114: 1354~1367.
    [25] Krishnamurti T N and Gadgil S. On the structure of the 30-50 day mode over the globe during FGGE. Tell us , 1985. 37A:336~360.
    [26] Yasunari,T.A. Cloudiness fluctuation associated with the northern hemisphere summer monsoon [ J ] . J Meteor Soc Japan, 1979. 57: 227~242.
    [27] Gadgil, S. The Indian monsoon and its variability [J]. Annu. Rev. Earth Planet . Sci, 2003. 31: 429~467.
    [28] .B.N.Goswami, South Asian Monsoon. Springer Berlin Heidelberg. 19~62.
    [29] B.N Goswami,Guoxiong Wu, el al. The annual cycle, intraseasonal oscillation and Roadblock to seasonal predictability. Juornal of climate, 2006.19: 5078~5099.
    [30] Yasunari, T. Cloudiness fluctuations associated with the Northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 1979. 57: 227~242.
    [31] Gadgil, S., and G. Asha. Intraseasonal variations of the Indian summer monsoon. Part I: Observational aspects. J. Meteor. Soc Japan, 1992. 70: 517~527.
    [32] Gadgil, S., the Indian monsoon and its variability. Annu. Rev,Earth Planet. Sci., 2003, 31: 429~467.
    [33] Webster,P.J, V.I.Magana,T.N.Palmer, el al.Process,Predictability and the prospect of prediction. J.Geophys.Res., 1998.103:144451~144510.
    [34] Annamalai, H., and J. M. Slingo. Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 2001.18: 85~102.
    [35] K. Lau and D.Waliser. South Asian summer monsoon. Intraseasonal Variability of the Atmosphere-Ocean Climate System, Praxis Publishing, 2005:19~61.
    [36] 张镡,王景毅.夏季热带低层环流及其中期变化的初步分析,热带天气会议文集编辑小组编.热带天气会议文集,1976.132~144.
    [37] Chen T C, Chen J M. An observational study of t he South China Sea monsoon during the 1979 summer: Onset and life cycle, Mon. Wea. Rev , 1995.123: 2295~2318.
    [38] Lau K M , Wu H T , Yang S. Hydrologic processes associated wit h t he first transition of t he Asian summer monsoon: A pilot satellite study. Bul l. A mer. Meteor. Soc., 1998.79:1871~1882.
    [39] 穆明权,李崇银. 1998 年南海季风爆发与大气季节内振荡的活动.气候与环境研究, 2000.15(4): 375~387.
    [40] Li C Y, Wu J B. On the onset of the South China Sea summer monsoon in 1998. A dv. Atmos. Sci, 2000.17:193~204.
    [41] 林爱兰.南海夏季风的低频特征.热带气象学报,1998.14(2): 113~118.
    [42] Wu, G., and Y. Zhang. Tibetan Plateau forcing and the monsoon onset over South Asia and the Southern China Sea. Mon. Wea. Rev., 1998. 126: 913~927.
    [43] Kang, I. S., S. I. An, C. H. Joung, S. C. Yoon, and S. M. Lee. 30~60 day oscillation appearing in climatological variation of outgoing longwave radiation around East Asia during summer, J. Korean Meteor. Soc., 1989.25:221~232.
    [44] Bin Wang and Xihua Xu, Northern Hemisphere Summer Monsoon Singularities and Climatological Intraseasonal Oscillation. Journal of climate, 1997.10: 1071~1085.
    [45] Kang, I. S, C. H. Ho, Y. K. Lim and K. M. Lau. Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 1999.127: 322~340.
    [46] .Wen Zhou, Johnny C.L. CHAN. Intraseasonal Oscillations and the South China sea summer monsoon onset. International Journal of Climatology, 2005.25:1585~1609.
    [47] 朱乾根.杨松.东亚副热带季风的北进及其低频振荡.南京气象学院学报,1989.12(3): 249~257.
    [48] Chen Longxun, Zhu Congwen, Wang wen,el al. Analysis of the Characteristics of 30-60 Day Low-Frequency Oscillation over Asia during 1998 SCSMEX.Adv. Atmos Sci, 2001.18(4): 623~638.
    [49] 穆明权,李崇银.1998 年南海季风爆发与大气季节内振荡的活动.2000.15(4): 375~387.
    [50] 陈隆勋,高辉,何金海,陶诗言,金祖辉 .夏季东亚和印度热带季风环流系统动能和对流扰动的纬向传播特征.中国科学 D 辑,2004.34(2): 171~179.
    [51] 琚建华,钱诚, 曹杰.东亚夏季风的季节内振荡研究.大气科学, 2005.29(2): 187~194.
    [52] 王遵娅,丁一汇. 中国雨季的气候特征. 大气科学,2008.32(1): 1~13.
    [53] Li Chongyin, Long Zhenxia and Zhang Qingyun. Strong/Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation. Advances in Atmospheric Sciences, 2001.18(6):1146~1160.
    [54] 孙淑清,盛夏亚洲上空副热带高压活动的波谱分析. 台风及热带环流的研究. 北京:科学出版社,1979.68~76.
    [55] 李崇银,周亚萍.热带大气中的准双周(10—20 天)振荡.大气科学,1995.19(4): 436~444.
    [56] 何金海,于新文.1979年夏季我国东部各纬带水汽输送周期振荡的初步分析,热带气象学报 1986.12(2): 9~15.
    [57] 吕心艳,张秀芝,陈锦年.2005 年 5-6 月东亚夏季风活动异常及其影响机制研究.热带气象学报,2007.23: 348~357.
    [58] 陶诗言, 陈隆勋.夏季亚洲大陆上空大气环流结构.气象学报,1957.28: 234~247.
    [59] 叶笃正, 陶诗言, 李麦村.六月和十月大气环流的突变现象.气象学报, 1958.29 : 249~263.
    [60] TAO S Y, CHEN L X. A review of recent research on the EastAsian summermonsoon in China [C ] / / Chang C P,et al. eds. MonsonMeteorology. Oxford:Oxford University Press, 1987. 60~92.
    [61] Chen Lonxun, Xie An,Westward propagating low-frequency oscillation and its teleconnection in the eastern hemisphere. Acta Meteor,1988.2(3):300~312.
    [62] He Jinhai,Yang Song, Meridional propagation of East-Asian low frequency oscillation and mid-latitude wave, Acta Meteo Sinica.(Spetical Issue), 1990,4.51-59.
    [63] 陆尔,丁一汇. 1991 年江淮特大暴雨与东亚大气低频振荡.气象学报,1996.54(6):730~736.
    [64] 何志学,贺懿华,熊秋芬,王丽,杨景勋.1998 年夏季热带内外大气低频振荡特征分析,2004.20(1): 53~63.
    [65] Ding Y. H. and Y. J. Liu. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. J. Meteor. Soc. Japan, 2001. 79: 255~276.
    [66] 吴池胜,王安宇,冯瑞权等.1994 年南海夏季风爆发的数值模拟和分析研究.大气科学,2001.25(4): 455~464.
    [67] 陶诗言,朱福康.夏季亚洲南部 100 毫巴流的变化及其与西太平洋副热带高压进退的关系.气象学报,1964.34(4): 385~395.
    [68] YangHui and LiChongyin. The relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-huaihe river basin. Advances in Atmospheric Sciences, 2003. 20(4): 540~553.
    [69] 温之平,黄荣辉,贺海晏,蓝光东.中高纬大气环流异常和低纬 30~60 天低频对流活动对南海夏季风爆发的影响.大气科学,2006.30(5): 952~964.
    [70] 陶诗言,卫捷.夏季中国南方流域性致洪暴雨与季风涌的关系.气象.2007.33(3): 10-18。
    [71] Chen L X, Zhu C W, Wang W. Analysis of the characteristics of 30-60 day low-frequency oscillation near Asia during 1998 SCSMEX. Advance in Atmospheric Science, 2001.8(4): 623~638
    [72] K.M.Lau.G.J.Yang S.H.Shen. Seasonal and Intraseasonal Climatology of Summer Monsoon Rainfall over East Asia. Monthly Weather Review, 1988.116: 18~37.
    [73] 缪锦海,Lau K M.东亚夏季风降水中 30 - 60 天低频振荡.大气科学,1991.15 (5):65~71.
    [74] 陈丽臻,张先荣,陈隆勋.长江流域两个典旱涝年大气 30 - 60 天低频波差异的初步分析.应用气象学报,1994.4: 483~488.
    [75] 周静亚,杨大升,黄嘉佑.夏季热带及副热带环流系统周期振荡与我国降水的功率谱分析.热带气象,1986.12 (3): 195~203.
    [76] 林学椿,于淑秋,唐国利等.1991 年长江淮河流域洪涝与 20 ~40 天的低频振荡. 国际暴雨洪涝学术讨论会,.中国安徽黄山.1992.
    [77] 李崇银. 大气低频振荡.北京: 气象出版社出版,1993.47~130
    [78] 陆尔,丁一汇.1991 年江淮特大暴雨与东亚大气低频振荡.气象学报,1996,54: 730~736.
    [79] 陈桂兴,黎伟标等.1998 年常见流域洪水期大气季节内荡特征及机理研究,中国科学 D 辑,2004.34(6): 562~572.
    [80] 朱乾根,徐国强. 1998年夏季中国南部低频降水特征与南海低频夏季风活动.气象科学,2000.20(3): 239~247.
    [81] 琚建华, 赵尔旭.东亚夏季风区的低频振荡对长江中下游旱涝的影响.热带气象学报,2005.21(2): 163~171.
    [82] 韩荣青,李维京, 董敏.北半球副热带—中纬度太平洋大气季节内振荡的纬向传播与东亚夏季旱涝.气象学报,2006.64(2): 149~163.
    [83] 琚建华,孙丹,吕俊梅. 东亚季风涌对我国东部大尺度降水过程的影响分析,大气科学,2007.31(6): 1129-1139.
    [84] Wang and LinHo. Rainy season of the Asian–Pacific summer monsoon. J. Climate, 2002.15: 386~398.
    [85] B.N. Goswami. Wu.G, T. Yasunari. The anuual cycle, Intraseasonal oscillation and Roadblock to seasonal predictability of the Asian summer monsonn. Joural of climate-special section, 2005. 19: 5078~5099.
    [86] CHEN G X, L IW B, YUAN Z J, et al.The chanicsms of the intraseasonal oscillation associated with the Yangtze River Basin flood in 1998. Science in China (D Earth Sciences, 2005.48 (7): 957~967.
    [87] Lau. K M, K M Kim and S. Yang. Dyamical and boundary forcing characteristics of regional component of the Asian summer monsoon. J.Climate, 2000.15:2461~2482.
    [88] 丁一汇.天气动力学中的诊断分析方法.北京: 科学出版社,1989. 174~175.
    [89] Yanai, M.,S. Esbensen and J.H Chu. Determination of bulk properties of tropical could clusters from large-scale heat and source budgets. J. Atmos. Sci., 1973:.30:611~627.
    [90] 黄嘉佑.气象统计分析与预报方法.北京: 气象出版社,2007.215~238.
    [91] 丁一汇.天气动力学中的诊断分析方法.北京: 科学出版社,1989. 84~86.
    [92] 魏凤英.现代气候统计诊断预测技术.北京: 气象出版社,2007.105~116.
    [93] North G R, Bell T, Cahalan R, et al. Sampling errors in the estimation of empirical ort hogonal function. Mon. Wea.Re., 1982.110: 699~706.
    [94] Wu Ai-ming,NiYun-qi. The influence of Tibetan Plateau on the interanuual variability of Asian monsoon. Advance in Atmospheric Sciences, 1991.14:491-504.
    [95] Webster P J and Yang S. Monsoon and ENSO : Selectively interactive systems. Quart J Roy Soc , 1992. 118 : 877~926.
    [96] 巢纪平.厄尔尼诺和南方涛动力学.北京: 气象出版社,1992.68~75.
    [97] Binwang. The Asian Monsoon. Praxis Pubilish, Chichester,2006: 394~395
    [98] McBride J L. Tropical cyclone formation, Chapter 3, Global Perspectives on Tropical Cyclones[ C ] ∥Elsberry R L, ed. Technology DocumentWMO /TD No. 693, World Meteorological Organization, Geneva, Switzerland, 1995: 63~105.
    [99] Binwang.The Asian Monsoon. Praxis Pubilish, Chichester, 2006.394~395
    [100] 陈联寿,丁一汇. 西太平洋台风概论,北京: 科学出版社,1979. 109pp.
    [101] Binwang.The Asian Monsoon. Praxis Pubilish, Chichester, 2006.394~395
    [102] Chen T C , Weng S P. Yamazaki N , et al. Interannual variation in the tropical cyclone formation over the western North Pacific. Mon Wea Rev, 1998.126 :1080~1090.
    [103] Chen T C , Weng S P. Interannual variation of the summer synoptic-scale disturbance activity in the western tropical Pacific.Mon Wea Rev, 1998. 126: 1725~1733.
    [104] Chen T C, Wang S.Y. Interannual Variation of the tropical Cyclone activity over the Western North Pacific. Notes and correspondence, 2006.20:5709~5720.
    [105] Harr P A , Elsberry R L. Tropical cyclone track characteristics as a function of large scale circulation anomalies. Mon Wea Rev, 1991. 119: 1448~1468.
    [106] Harr P A, Elsberry R L. Large-scale circulation variability over the tropical western North Pacific. Part Ⅰ: Spatial patterns and tropical cyclone characteristics. Mon Wea Rev, 1995. 123: 1225~1246.
    [107] Chang C P, Chen JM, Harr P A, et al. Northwestward propagating wave patterns over the trop ical western North Pacific during summer[ J ]. Monthly Weather Review, 1996. 124: 2245~2266.
    [108] 孙颖,丁一汇.1998和1999年西北太平洋热带气旋的异常特征及其大尺度条件.气象学报,2002.60(5):527~537.
    [109] Nakazawa T. Tropical super clusters within intraseasonal variations over the western Pacific. J Meteor Soc Japan, 1988. 66 :823~839.
    [110] Kemball-Cook, S., and B. Wang. Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 2001. 14: 2923~2942.
    [111] Liebmann B, Hendon H H, Glick J D. The relationship between tropical cyclones of thewestern Pacific and Indian Oceans and the Madden-Julian oscillation[ J ]. Journal ofM eteorological Society of Japan, 1994. 72: 401~411.
    [112] 王慧,丁一汇.何金海.西北太平洋夏季风的变化对台风生成的影响.气象学报,2006.64: 610~616.
    [113] Kang, I. S, C. H. Ho, Y. K. Lim, K. M. Lau. Principal Modes of Climatological Seasonal and Intraseasonal Variations of the Asian Summer Monsoon. Mon. Wea. Rev, 1999, 127(3): 322~340.
    [114] 鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背景.大气科学,2007.31(5): 779~792.
    [115] 王绍武,赵宗慈. 我国旱涝36年周期及其产生的机制,气象学报,1979.37(1): 64~73.
    [116] 李克让,北太平洋海温距平经向差对付热带高压影响的若干事实,大气科学,1979.3(2): 150~157.
    [117] 赵振国.厄尔尼诺现象对北半球大气环流和中国降水的影响.大气科学,1996.20(4): 422~428
    [118] Nitaa. T.. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation, J.Mereor.Soc.Japan,1987. 64: 373~390.
    [119] HuangR.H and W.J. Li. Influence of the heat source anomaly over tropical western Pacific on the subtropical hgh over East Asia, International Conference on the General circulation of East Aisa,Chengdu, April 10-15,1987.40~51.
    [120] Huang R.H and F.Y. Sun. Impact of the tropical western Pacfic on the East Asian summer monsoon. J.Mereor.Soc, Japan, 1992.70:243~256.
    [121] Kawamura R. Intra-seasonal variability of sea surface temperature over the trop ical western Pacific [ J ]. J Meteor Soc Japan, 1988. 66 (6): 1007~1012.
    [122] 高守亭,朱文妹,董敏.大气低频变异中的波流相互作用(阻塞形势) [ J ]. 气象学报, 1998.56(6): 665~680.
    [123] 宇婧婧,何金海,沈新勇. 海温对热带低频振荡系统影响的动力学研究,南京气象学院学报,2006. 29(5): 688~643.
    [124] 叶笃正,黄荣辉.黄河、长江流域旱涝规律和成因研究.济南: 山东科技出版色,1996,61~104.
    [125] 施能,鲁建军,朱乾根,东亚冬、夏季风100年强度指数及其气候变化. 南京气象学院学报,1996,19(2): 168~177.
    [126] Li Chongyin and Wu Peili. A further inquiry on 30-60day Oscillation in the tropical atmosphere. Acta Meteor. Sinica, 1990. 4:525~535.
    [127] Ferreira R N. SchubertW H. Barotropic aspects of ITCZ break down[ J ]. Journal of Atmospheric Sciences, 1997. 54: 251~285.
    [128] 陈光华,黄荣辉.西北太平洋热带气旋和台风活动若干气候问题的研究.地球科学进展,2006.21: 610~616.
    [129] Chen Wen, Hans F Graf, Huang Ronghui. The interanuual variability of East Asain winter monsoon and ite relation to the summer monsoon, Adv Atmos Sci, 2007. 17(1): 49~62
    [130] 叶笃正,黄荣辉.黄河、长江流域旱涝规律和成因研究.济南: 山东科技出版色,1996.205~216.
    [131] Blackmon, M.L., J.E. Geisler, E.J. Pitcher. A general circulation modal study of January climate anomaly pattern associated with interannual variation of equatorial Pacific sea surface temperature. J. Atmos.SCi, 1983.40:1410~1425.
    [132] Shukla.J. and J.M.Wallace, Numerical simulation of the atmosphere response to equatorial Pacific sea surface temperature anomalies. J. Atmos. Sci., 1983. 40:1613~1630.
    [133] 李崇银,肖子牛. 赤道太平洋增暖对全球大气30-60天振荡的激发. 科学通报, 1991. 36:1157~1160.
    [134] Li Chongyin, Long Zhenxia and Xiao Ziniu. On low frequency remote response in the atmosphere to external forcing and their influeces on climate. China meteorological Press: Climate Variability, 1993. 77~190.
    [135] Wang B. and X. Xie. Couple models in the warm pool climate system, Part I: the role of air sea interaction in maintaining MJO. J. Climate,1998.11: 2116~2153.
    [136] Li C Y, Cho Han Ru,.el.al CISK Kelvin wave with evaporation-wind feedback and air-sea interaction-A further study of tropical intraseasonal oscillation mechanism. Advances in Atmos Sci , 2002 , 19(3) : 379~390.
    [137] 李崇银,龙振夏,穆明权.大气季节内振荡及其重要作用. 大气科学,2003.27 (4): 518~535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700