四倍体鲫鲤及相关鱼线粒体DNA的限制性酶切分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用密度梯度离心法和DNase Ⅰ、RNase消化法从红鲫、湘江野鲤、鲫鲤F_1、鲫鲤F_2、异源四倍体鲫鲤、湘云鲫、白鲫和野鲫的肝组织和白鲫的卵巢中提取线粒体DNA(mitochondrial DNA,mtDNA)和纯化。纯化后的mtDNA用识别6个碱基序列的9种限制性内切酶,即EcoR Ⅰ、Hind Ⅲ、Pst Ⅰ、Bgl Ⅱ、BamH Ⅰ、Xho Ⅰ、Xba Ⅰ、Sal Ⅰ和Kpn Ⅰ进行单酶酶切,用凝胶图像分析仪(Gel-Pro Analyzer)检测,根据各酶切片段的长度,推算出红鲫、湘江野鲤、鲫鲤F_1、鲫鲤F_2、异源四倍体鲫鲤、湘云鲫、自鲫和野鲫的mtDNA大小分别为16.19±0.13kb、16.61±0.05kb、16.02±0.09kb、16.02±0.09kb、16.20±0.10kb、16.24±0.14kb、16.60±0.09kb和16.06±0.17kb。根据异源四倍体鲫鲤mtDNA单酶解、双酶酶解的片段数目和分子大小,构建了异源四倍体鲫鲤mtDNA的7种限制性内切酶酶切图谱,为进一步分析异源四倍体鲫鲤及其相关鱼mtDNA的遗传及进化关系和作用奠定了基础。同时对mtDNA提取和纯化的条件优化以及分子大小的估算方法进行了探讨。
     根据Nei和Li(1979)建立的“利用限制性内切酶研究遗传差异的数学模型”,计算出不同实验鱼间的限制性酶切片段共享度(F)和遗传距离(P)。结果表明有直接亲缘关系的原始母本红鲫与鲫鲤F_1、鲫鲤F_2和异源四倍体鲫鲤之间均存在较小的遗传差异,而原始父本湘江野鲤与鲫鲤F_1、鲫鲤F_2和异源四倍体鲫鲤之间存在显著的遗传差异;鲫鲤F_1与鲫鲤F_2mtDNA酶切检测结果一致,mtDNA表现出完全的真实遗传。
     同时还计算了三倍体湘云鲫与其亲本间的酶切片段共享度和遗传距离,从三个群体的遗传距离比较来看,湘云鲫与母本白鲫的遗传距离(0.62)最近,三倍体湘云鲫与异源四倍体鲫鲤mtDNA Ⅰ型、白鲫与
    
    异源四倍体娜鲤mtDNAI型的遗传距离分别为1.97,2.76,存在较小
    差异。根据检测到的野娜等几个细鱼品系mtDNA的酶切结果,分析了
    几个群体间的遗传和进化关系·。
     通过对几个种间或群体间限制性酶切片段的统计分析,表明
    mtDNA在杂交育种形成的不同群体中遵循母系遗传的特性;培育的四
    倍体和三倍体既可以作为研究mtDNA母系遗传的模式,同时可为具体
    分析nltONA的父系渗漏及渗漏遗传问题提供准确的依据。从mtDNA的
    进化角度,根据Brown等提出的mtDNA的进化速率,估算出异源四倍
    体娜鲤和三倍体湘云鲡如果要从自然进化得到,分别需经过大约5百
    万年和1百万年的时间。
The mitochondrial DNAs (mtDNAs) from livers of red crucian carp, common carp, F, hybrid of red crucian carp (♀) × common carp(♂), F2 hybrid, allotetroploid crucian carp, triploid crucian carp, Japanese crucian carp, C. auratus auratus&n& ovary of Japanese crucian carp were isolated by the means of differential centrifugation and nuclease digestion, then purifing them by means of phenol extraction. After having been digested by 9 restriction enzyme recogenizing 6 base pairs: Eco R I, Hind III, Pstl. Bglll, BamH I. Xho I, Xbal. Sal I and Kpn I,the mtDNAs were analysed by using agarose gel electrophoresis and detected by Gel-Pro Analyzer. The size of mtDNAs for red crucian carp, common carp, F, hybrid, F2hybrid, allotetroploid crucian carp, triploid crucian carp, Japanese crucian carp and C. auratus auratus were 16. 19kb ± 0. 13, 16. 61 ± 0.05kb, 16. 02 ± 0.09kb, 16. 02 ± 0. 09kb, 16. 20 ± 0.10kb, 16.24 ± 0. 14kb, 16. 60 ± 0. 09kb and 16. 06 ± 0. 17kb respectively. Based on the nu
    m
    ber and s
    ize of the restriction fragments abtained by single or double enzyme digestion, the physical map of mtDNA from allotetraploid crucian carp of 7 kinds of restriction endonucleases (Pst I. Bgl II, Bam H I> Xho I, Sal I and Kpn I) was constructed, which laid a foundation for analysing further the heretidy and evolution of allotetraploid crucian carp and other correlated fishers. At the same time, the improvement of
    
    
    
    
    
    
    mtDNAs extraction and purification conditions and the method estimating molecular size were also studied.
    Using "Mathematical model for studying genetic variation in terms of restriction endonucleases", established by Nel and Li (1979), calculated the proportion of shared restriction fragments (F) and the genetic distances (P) between populations. The results manifested that there was minor genetic divergence between original maternal red crucian card and F1 hybrid, F2 hybricK allotetraploid crucian carp, but there was obvious genetic divergence between paternal common carp and Fi hybrid, F2 hybrid, allotetraploid crucian carp. The digestion result between F1 hybrid and F2 hybrid was unanimous, and mtDNA showed completely real heredity. .
    With the same mathematical model, the proportion of shared restriction fragments (F) and the genetic distances (P) of triploid crucian carp and its parent were calculated. By comparing the genetic distance of three populations, the genetic distance between triploid crucian carp and maternal Japanese crucian carp was smallest (P=0. 62). The genetic distance between triploid crucian carp or Japanese crucian'carp and allotetraploid crucian carp(I-type) were 1.97 , 2.76 respectively. According to the endonucleases digestion results of mtDNAs from C. auralus auratus and other strains, the hereditary and evolutional relation of several populations was analysed.
    The statistical analysis of restriction fragments of several inter- species or inter-populations showed that mtDNA followed the character of matrilinear inheritance in crossing breeding. The two different breeding ways(breeding allo- tetraploid and allotriploid) could not only be regarded as the model of
    
    
    
    researching matrilinear inheritance of mtDNA, but could offered accurate testimony for concisely analysing mtDNA paternal leakage and leakage inheritance. From the point view of mtDNA evoltion and according to mtDNA the evolution rate being raised by Brown and his coleague,we can draw conclusions that allotetraploids and allotriploids gained from the natural evolution, they need 5 million years , 1 million years respect ively.
引文
1 刘筠著.中国养殖鱼类繁殖生理学.农业出版社,1993.
    2 F.奥斯伯、R.布伦特、R.E.金斯顿等著,颜子颍、王海林译.精编分子生物学实验指南,科学出版社,1998。
    3 J.萨姆布鲁克、E.F.弗里奇、T.曼尼阿蒂斯著,金冬雁等译.分子克隆实验指南,科学出版社,1998。
    4 [苏]T.T.高泽著,赵邦悌译.线粒体DNA.科学出版社,1982.
    5 汪仁,薛绍白,柳惠图著.细胞生物学(第二版),北京师范大学出版社,1998.
    6 李骏民.鱼类遗传和育种学.1985.
    7 翟中和,王喜忠,丁明孝主编.细胞生物学,高等教育出版社,2000.
    8 小岛吉雄.鱼类杂种的细胞遗传学.淡水渔业译丛,1984,(4):49-56.
    9 刘筠,周工建.红鲫(♀)×湘江野鲤(♂)杂交一代的细胞学研究.水生生物学报.1986,10(2):102-108.
    10 刘筠等.红鲫与湘江野鲤杂交的受精细胞学研究.动物学研究,1993,14(3):277-282.
    11 陈敏容等.白鲫(雌)、红鲫(雄)异源四倍体鱼的倍性操作及其生殖力的研究.水生生物学报,1997,21(3):197-205.
    12 叶玉珍等.人工复合三倍体鲤与亲本相对DNA含量及倍性分析.水生生物学报,1998,22(2):119-122.
    13 陈敏容等.人工诱导异源四倍体\新四倍体及异源三倍体白鲫的细胞遗传学研究.水生生物学报,1998.22(3):211-215.
    14 刘少军等.四倍休鲫鲤F_3-F_4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量.湖南师范大学自然科学学报,1999,22(4):61-68.
    15 刘少军等.三倍体湘云鲫繁殖季节性腺结构观察.水生生物学报,2000,24(4):301-306.
    16 刘少军.优质高产养殖鱼类-工程鲫.内陆水产,1993,1:17.
    17 袁志刚等.广西壮族人群mtDNA序列遗传多态性分析.遗传学报,2001,28(2):95-102.
    18 何晓晓.四倍体基因库及三倍体湘云鲫、湘云鲤的染色体研究.湖南师范大学研究生学位论文,1999.
    19 杨保生.鲫鲤杂交后代四倍体起源的研究.湖南师范大学研究生学位论文,1991.
    20 吕国庆,李思发.鱼类线粒体DNA多态研究和应用进展.中国水产科学,1998,5(3):94-103.
    21 张亚平等.动物mtDNA多态性的研究概况.动物学研究,1992,13(3):289-298.
    22 桂建芳.脊椎动物mtDNA的进化遗传学.动物学杂志,1990,25(1):50-55.
    23 张方,米志勇.动物线粒体DNA的分子生物学研究进展.生物工程进展,1998,18(2):25-31.
    24 赵兴波等.绵羊线粒体DNA的父系遗传.中国科学,2000,30(6):635-641.
    
    
    25 张辉等.三个三倍体鲫鱼品系及野鲫mtDNA的比较研究.遗传学报,1998,25(4):330-336.
    26 张四明等.方正银鲫、白鲫与鲫mtDNA限制性内切酶酶切比较.水产学报,1992,16(2):120-129.
    27 张四明等.乌鳢mtDNA限制性内切酶酶切分析.淡水鱼业,1991,4:38-39.
    28 宋平等.鲢鳙mtDNA的九种限制性内切酶酶切图的比较.水产报,1994,18(3):221-230
    29 夏德全,王文君.动物线粒体DNA研究及在鱼类种群遗传结构研究中的应用.水产学报,1998,22(4):364-370.
    30 陈关君等.鲤鱼、鲫鱼肌细胞线粒体DNA的限制性内切酶酶切图谱比较.遗传学报,1984,11(2):141-146.
    31 戴建华等.长吻鱼危肝脏mtDNA的研究.武汉大学学报,1994,1:115-120.
    32 宋平等.大鳞副泥鳅mtDNA九种限制性内切酶酶切图谱.水生生物学报,1996,20(4):353-362.
    33 曹萤,夏德全.尼罗非鲫和奥利亚非鲫mtDNA遗传差异的研究.水产学报,1997,21(4):360-364.
    34 殷文利等.鳜及大眼鳜mtDNA比较研究.水生生物学报,1998,22(3):257-264.
    35 谢志雄等.南方鲇mtDNA物理图谱及分析.水生生物学报,1998,22(3):285-287.
    36 殷文利等.草鱼mtDNA酶切图谱的研究.武汉大学学报,1997,43(2):219-220.
    37 谢志雄等.太湖新银鱼mtDNA物理图谱及分析.遗传,1998,20(1):16-19.
    38 张四明等.中华鲟(Acipenser sinensis)mtDNA个体间的长度变异与个体内的长度异质性.遗传学报,1999,26(5):489-496.
    39 李思发等.长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析.动物学报,1998,44(1):82-93.
    40 崔建勋等.三种鱼的mtDNA限制性内切酶酶切分析.动物学研究,1992,13(2):256-262.
    41 张四明,龙华.湖北淤泥湖团头鲂mtDNA限制性片段长度多态性的研究.水产学报,1996 20(4):289-293.
    42 王晓梅等.鲫鱼种群的随机扩增多态DNA与遗传多样性分析.中国水产科学,1999,6(2):
    43 张辉等.一种改进的鱼类mtDNA的快速制备方法.水生生物学报,1997,21(3):281-283
    44 王文等.一种改进的动物mtDNA提取方法.动物学研究,1993,14(2):197-198.
    45 王晓梅等.用RAPD技术检测野生鲫鱼和四个金鱼代表品种的基因组DNA多态性.遗传,1998,20(5):7-11.
    46 吴乃虎等.草鱼和鲤鱼mtDNA的分离纯化及其COI基因的分子克隆.动物学报,1991,37(4):376-381.
    47 申宗侯等.武昌鱼肝mtDNA限制性内切酶酶解图谱与12S rRNA基因的初步定位.水生生物学报,1993,17(2):174-179.
    
    
    48 黄勇富等.猪mtDNA多态性与中国地方猪种起源分化的关系.遗传学报,1998,25(4):322-329.
    49 王文等.银额果蝇自然群体中的mtDNA多态性研究.遗传学报,1994,21(4):263-274.
    50 李明等.四种鹿属动物的线粒体DNA差异和系统进化关系研究.动物学报,1999,45(1).
    51 李菁菁等.褐家鼠线粒体DNA遗传多态性的研究.动物学研究,1999,20(4).
    52 Shao jun Liu et al. The formation of tetreploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquculture, 2001, 192: 171-186.
    53 Arnason E and Rand D M. Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic DNA cod Gadus morhua. Genetics, 1992, 132: 211-220.
    54 Avise J C et al. Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegillsunfish (Lepomis macrochirus). Evolution, 1982, 38: 931-941.
    55 Billington N and Hebert P D. Mitochondrial DNA diversity in fishes and its implications for introductions. Can J Fish apuat sci, 1991, 48(Suppl. 1): 80-94.
    56 Billington N et al. Evidence of introgressive hybridization in the genus Stizostedion. interapecific transfer of mitochondrial DNA between sauger and walleye. Can J Fish Apuat Sci, 1988, 45(2): 2035-2041.
    57 Brent Sutherland et al. The fate of paternal mitochondrial DNA in developing female mussels, Mytilus edulis: Implication for the mechanism of doubly uniparental inheritance of mitochondrial DNA. Genetics. 1998, 148: 341-347. (January)
    58 Broughton R E and Dowling T E. Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics, 1994, 138: 179-190.
    59 Brown W M et al. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA., 1979, 76: 1967-1971.
    60 Brown W M. Evolution of animal mitochondrial DNAs. In: M Nei, R K Koehned. Evolution of genes and proteins. Sunderland MA: Sinauer, 1983: 62-88.
    61 Chang Y C et al. The complete nucleotid sequence and gene orgnaization of carp (Cyprinus carpio) mitochondrial genome. J. Mol. Evol., 1994, 38: 138-155.
    62 Christiane Delarbre et al. The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula. Genetics, 1998, 150: 331-344.
    63 Flavio V et al. Mitochondrial genotype segregation during preimplantation development in monse heteroplasmic embryos. Genetics, 1998, 148: 877-883.
    64 Gyllensten U, et al. Paternal in heritance of mitochondrial DNA in mice, Nature,
    
    1991, 352: 255-257.
    65 Hindar K N, et al. Genetic effects of cultured fish on natural fish population. Can J Fish Aquat Sci, 1991, 48: 945-957.
    66 Hiroshi Shitara, et al. Maternal inheritance of mouse mtDNA in interspecific Hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics, 1998, 148: 851-857.
    67 Jaime R et al. A polymerase chain restriction fragment length polymorphism (PCR-RFLP) assay for the discrimination of mitochondrial DNA from the florida and northern subspecies of large mouth bass. Transactions of the American Fisheries Society, 1999, 127: 507-511.
    68 Kenji Saitoh et al. Preliminary data on restriction mapping and detection of length variation in Japanese flounder mitochondrial DNA. Aquaculture, 1995, 136: 109-116.
    69 Kitada S et al. Estimates of stocking effectiveness evaluated by a two-stage sampling survey of commercial landings. Nipp Suis Gakk, 1993, 59: 67-73.
    70 Koji Okamoto et al. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial budl. J Cell Biol, 1998, 142: 613-621.
    71 Knox D and Verspoor E. A mitochondrial DNA restriction fragment length polymorphism of potential use for discriminiation of farmed Norwegian and wild Atlantic salmon population in Scotland. Aquaculture, 1991, 95: 249-257.
    72 Kocher T D et al. Evolution of the ND2 gene in East African cichlids. Moiecular pnylogenetics and evolution, 1995, 4: 420-432.
    73 K. W. P. Miller, J. L. Dawson and E. Hageelberg. A concordance of nucleotide substitutions in the first and second hypervariable segments of the human mtDNA control region. International Journal of Legal Medicine, 1996, 109: 107-113.
    74 Lansman R A et al. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. Ⅲ. Techniques and potential applications. J Mol Evol, 1981, 17: 214-226.
    75 Lee W J and Kocher T D. Complete sequence of a sea Lamprey (petromyzoa marinus) mitochondrial genome: Early establishment of the vertebrate genome organization Genetics, 1995, 139: 873-887.
    76 Lee W J et al. Structure and evolution of fish mitochondrial control regions. Journal of Molecular Evolution, 1995, 41: 54-66.
    
    
    77 Magoulas A and F Zouros. Restriction-site heteroplasmyin Anchovy (Engraulis encrasicolus) indicates incidental biparental inheritance of mitochondrial DNA. Mol Biol Evol, 1993, 10: 319-325.
    78 Meyer A and A C Wilson. Oririn of tetraploids inferred from thcir mitochondrial DNA affiliation to lungfish. J Mol Evol, 1990, 31: 359-364.
    79 Milinkovitch et al. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature, 1993, 361: 346-348.
    80 M. V. Derenko and G. F. Shields. Mitochondrial DNA sequence divesity in three north asian aborginal population groups. Journal molecular biology, 1997, 31(5): 665-669.
    81 Nei M and W H Li. Mathmatic model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci USA, 1979, 76: 5296-5273.
    82 Noack K et al. The complete mitochondrial DNA sequence of the Bichir(polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. Genetic, 1996, 144: 1165-1180.
    83 Palva T K and Palva E T. Rapid isolation of fish mitochondrial DNA with a commericially available plasmid isolation kit. The progressive fish-culturist, 1993, 55: 125-127.
    84 Perna, N T Kocher, T D Kocher. Mitochondrial DNA: Molecular fossils in the nucleus. Current Biology, 1996, 6: 128-129.
    85 Sartou N. and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4: 406-425.
    86 Sturmbauer C and A Meyer. Genetic divergence, speciation and morphological studies in a lineage of African cichild fish. Nature, 1992, 358: 578-581.
    87 Tzeng G-S, C-F Hui, S-C Shen, et al. The complete nucleotide seqnence of the Crossostone lacustue mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res, 1992, 20: 4853-4858.
    88 Wang G F and Yan S Y. Mitochondrial DNA content and mitochondrial gene transcrip tional activities in the early development of loach and goldfish. Int. J. Dev. Biol, 1992, 36: 477-482.
    89 Ward R D and P Grewe. Appraisal of molecular genetics in fisheries. Rev Fish Biol Fish, 1994, 18: 7313-7318.
    90 Wilson G M et al. Intra-and tnter-specific mitochondrial DNAsequences divergence in salmo: rainbow, steelhead, and cutthroat trouts. Can J Zool, 1985, 63: 2088-2094.
    
    
    91 Zardoya R el al. The complete nucleotide sequence of the mitochondrial DNA genome of the Rainbow trout: Oncorhynchus mykiss. J. Mol. Evol., 1995, 41: 942-951.
    92 Zardoya R and Meyer A. The complete nucleotide sequence of the mitochondrial genome of the lungfish(protopterus dolloi) support its phylogenetic position as a close relative of land vertebrates. Genetics, 1996, 142: 1249-1263.
    93 Zardoya R and Meyer A. The complete DNA sequence of the mitochondrial genome of a "living fossil", the Coelacanth (Latimeria cha lumnae). Genetics, 1997, 146: 995-1010.
    94 Zouros E et al. Mitochongdrial DNA inheritance. Nature, 1994, 368: 818.
    95 Zouros E et al. A new type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc Natl Acad Sci USA. 1994, 91: 7463-7467.
    96 Susumu Ohno. Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Cell & developmental biology, 1999, 10: 517-522.
    97 Spring J. Vertebrate evolution by interspecific hybridization: Are we polyploid? FEBS Lett 400: 2-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700