干燥剂除湿换热器强化除湿性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥剂除湿换热器作为一种内冷/热式除湿器,以换热器为基材,具有较好的传热性能,与一般的绝热式除湿床相比,可同时实现对再生和除湿过程的强化。同时,该除湿器可以使用太阳能等可再生能源作为驱动热源,具有良好的节能效应。为了对这类除湿换热器的运行特点进行更深入的研究,本文以除湿换热器作为研究对象之一,从实验测试和理论模拟两个角度进行了探讨。
     论文建立了太阳能热水驱动除湿换热器的实验装置,从理论和实验两个方面对除湿换热器进行了研究分析。结果表明,通过控制再生时间和送风起始点,可以降低能耗和获得最佳的送风状态;太阳能热水驱动除湿可以实现全天平均除湿量0.1g/s、平均制冷量552W;且使用多台除湿器切换运行,可实现在连续除湿的同时,将除湿量和制冷量翻倍。
     论文对除湿换热器的传热传质数学模型进行了补充修改,增加了反应冷热对冲过程的附加方程,对原模型的模拟结果进行了改善。利用该数学模型,对若干运行参数的影响进行分析,推导了除湿换热器传热和传质单元数的表达式。模拟结果表明,在ARI夏季工况下,再生热水和冷却水的温度对除湿性能有很大的影响;对处理空气进行除湿前预冷和再生前预热对性能的影响有限;随着气侧传热和传质单元数的增加,系统的除湿率和全热换热率逐渐增加。另外,使用搭建的除湿换热器在上海冬季工况下可以实现平均加湿量0.107g/s。
     研究结果表明再生式除湿换热器再生效果好,除湿效率高,可以利用太阳能等可再生能源,具有很好的应用前景。
     作为对另一种强化除湿方法的探索,本文通过实验测定了磁场对硅胶和LiCl-硅胶复合干燥剂吸附性能的影响,并对其应用于除湿过程的潜力进行了分析。实验结果表明:在试验工况下,磁场可以在一定程度上降低硅胶的吸附量,对吸附具有抑制作用。
Desiccant-coated heat exchanger (DCHE) is a kind of internal cooled/heated dehumidifier, which is made by fin-tube heat exchanger coated with solid desiccant materials. Compared with conventional adiabatic dehumidifier, DCHE can overcome the decrease of dehumidification cased by adsorption heat and the decrease of regeneration cased by desorption heat, which in turn enhances the dehumidification and regeneration respectively. The media used to regenerate the desiccant is hot water, so solar energy and other low grade thermal energy can be used. In this paper, DCHE is experimentally and theoretically investigated.
     An experimental setup is build to test the performance of DCHE driven by solar water. It is found that the energy consumed can be reduced and proper supply air conditions can be reached by controlling the regeneration time and the supply points respectively. According to the test results of several typical conditions in a whole day, the average moisture removal rate and average cooling capacity are predicted and they could be tripled by using three devices at the same time.
     A one-dimensional heat and mass transfer model of DCHE is used to analyze the effects of several parameters on system performance in terms of dynamic air outlet humidity ratio as well as temperature. In order to describe the phase between two operation modes, in which hot and cold water blend together, two equations are added to the original model. At the same time, the fundamental dimensionless groups like the number of transfer units were derived. The simulation results conclude that the temperature of water affects greatly the dehumidification performance. While in comparison with the effects caused by water temperature, air temperature affects less. In this paper, the humidification function of DCHE in winter is also predicted. The simulation results based on typical meteorological parameters of Shanghai shows that DCHE can provide humidification and heating rate 0.107g/s, when the hot water temperature is 70℃.
     As an attempt to utilize the magnetic fields in the desiccant cooling system, the influences of magnetic fields on the adsorption of water on silica gel and composite desiccant are investigated. Results show that under given conditions, the magnetic fields can reduce the adsorption amount to some extent.
引文
[1].张学军.硅胶-卤素盐复合干燥剂转轮除湿性能研究[D].上海交通大学制冷与低温工程研究所2003.
    [2].张寅平,张立志,刘晓华,莫金汉.建筑环境传质学[M].中国建筑工业出版社, 2006年.
    [3].贾春霞.硅胶基复合干燥剂强化除湿机理及其应用研究[D].上海交通大学制冷与低温工程研究所2006.
    [4].熊珍琴.热致浓度差两级双溶液除湿系统理论与实验研究[D].上海交通大学机械与动力工程学院2009.
    [5].葛天舒.转轮式两级除湿空调理论与实验研究[D].上海交通大学制冷与低温工程研究所2009.
    [6].李震,江亿,陈晓阳,刘晓华.溶液除湿空调及热湿独立处理空调系统[J].暖通空调, 2003, 33 26-31.
    [7]. La, D.,Dai, Y. J.,Li, Y., etc. Technical development of rotary desiccant dehumidification and air conditioning: A review[J]. Renewable and Sustainable Energy Reviews, 2009.
    [8]. Babus’Haq R.F., O. H., Probert S.D. Feasibility of using an integrated small-scale CHP unit plus desiccant wheel in a leisure complex[J]. Applied energy, 1996, 53 179-192.
    [9]. Liu X H, G. K. C., Lin B R, Jiang Y. Combined cogeneration and liquid-desiccant system applied in a demonstration building[J]. Energy and Buildings, 2004, 36 945-953.
    [10]. M., M. Hybrid solar HVAC cogeneration/desiccant cooling combined cycle[A]. In Proceeding of the eleventh annual ASME solar energy conference[C], San Diego, 1989; 379-389.
    [11]. Dai Y J, W. R. Z., Zhang H F, Yu J D. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning[J]. Applied Thermal Engineering, 2001, 21 1185-1202.
    [12]. Yadav Y K, K. S. C. Psychometric techno-economics assessment and parametric study of vapor-compression and solid/liquid hybrid air-conditoning system[J]. Heat Recovery Systems and CHP, 1991, 11 563-572.
    [13]. B.K., P. Improving gas-fired heat pump capacity and performance by adding a desiccant dehumidification subsystem[P]. 1989.
    [14]. C.X. Jia, Y. J. D., J.Y. Wu, R.Z. Wang. Analysis on a Hybrid Desiccant Air Conditioning System[J]. Applied Thermal Engineering, 2006, 26 2393-2400.
    [15]. Khalid Ahmed C S, G. P., Al-Farayedhi A A. Simulation of a hybrid liquid desiccant based air-conditioning system[J]. Applied Thermal Engineering, 1997, 17 125-134.
    [16]. Ma Q, W. R. Z., Dai Y J, Zhai X Q. Performance analysis on a hybrid air-conditioning system of a green building[J]. Energy and Buildings, 2006, 38 447-453.
    [17]. Gari H A, A. S. E., Fathalah K A. Analysis of an integrated absorption/liquid desiccant air conditioning system[J]. Heat Recovery Systems and CHP, 1990, 10 87-98.
    [18]. Dai Y.J., W. R. Z., Xu Y.X. Study of a solar powered solid adsorption-desiccant cooling system used for grain storage[J]. Renewable energy, 2002, 25 417-430.
    [19]. Rane M V, R. S. V. K., Easow R R. Energy efficient liquid desiccant-based dryer[J]. Applied ThermalEngineering, 2005, 25 769-781.
    [20]. Kinsara A A, E. M. M., Al-Rabghi O M. Proposed energy-efficient air-conditioning system using liquid desiccant[J]. Applied Thermal Engineering, 1996, 16 791-806.
    [21]. Kinsara A A, A.-R. O. M., Elsayed M M. Parametric study of an energy efficient air conditioning system using liquid desiccant[J]. Applied Thermal Engineering, 1998, 18 327-335.
    [22]. Kiatsirirroat T., T. W. Analysis of a heat pump with solid desiccant tube bank[J]. International journal of energy research, 2002, 26 527-542.
    [23]. Kakabaev A, K. N., Klyshchaeva O. Storage of cold in an open-cycle solar absorption cooling system[J]. Geliotekhika, 1981, 17 64-66.
    [24].刘晓茹,袁卫星,于志强.内冷却紧凑式叉流除湿器性能数值模拟与分析[J].太阳能学报, 2005, 26 (001): 110-115.
    [25].郑毅,袁卫星,王海, etc.内冷却紧凑式固体除湿器实验研究[J].北京航空航天大学学报, 2006, 32 (009): 1100-1103.
    [26]. Ge, T. S.,Dai, Y. J.,Wang, R. Z., etc. Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers[J]. Energy, 2010, 35 (7): 2893-2900.
    [27].彭作战.再生式除湿换热器除湿性能研究[D].上海交通大学制冷与低温工程研究所2010.
    [28].方利国,谭盈科.除湿制冷系统及除湿器研究进展[J].广东化工, 1995, 3 15-19.
    [29]. Hamed, A. M. Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed[J]. Renewable Energy, 2002, 27 (4): 525-541.
    [30].方玉堂,蒋赣.转轮除湿机吸附材料的研究进展[J].化工进展, 2005, 24 (10): 1131-1135.
    [31]. Waugaman D G, K. A., Kettleborough C F. A review of desiccant cooling systems[J]. Journal of Energy Resources Technology, 1993, 115 1-8.
    [32]. Jia, C. X.,Dai, Y. J.,Wu, J. Y., etc. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material[J]. Energy Conversion and Management, 2006, 47 (15-16): 2523-2534.
    [33]. Zhang, X. J.,Dai, Y. J.,Wang, R. Z. A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier[J]. Applied Thermal Engineering, 2003, 23 (8): 989-1003.
    [34]. Charoensupaya, D.,Worek, W. M. Parametric study of an open-cycle adiabatic, solid, desiccant cooling system[J]. Energy, 1988, 13 (9): 739-747.
    [35].冯青,俞金娣.转轮式干燥剂除湿器数学模型及RDEH程序[J].太阳能学报, 1994, 15 (003): 209-217.
    [36]. San, J. Y.,Hsiau, S. C. Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator[J]. International Journal of Heat and Mass Transfer, 1993, 36 (8): 2051-2059.
    [37]. Ge, T. S.,Dai, Y. J.,Wang, R. Z., etc. Experimental investigation on a one-rotor two-stage rotary desiccant cooling system[J]. Energy, 2008, 33 (12): 1807-1815.
    [38]. Wu, A.,Zhang, H. Mathematical model and performance analysis of an internally cooled liquid desiccant dehumidifier[J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2008, 29 (7): 843-848.
    [39]. Wu, A. M.,Li, C. L.,Zhang, H. F. Study on the performance of internally-cooled liquid desiccant system[J]. Petrochemical Equipment, 2006, 35 (6): 17-20.
    [40]. Rady, M. A. Experimental and numerical investigations on the performance of dehumidifying desiccantbeds composed of silica-gel and thermal energy storage particles[J]. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 2009, 45 (5): 545-561.
    [41]. Fathalah, K.,Aly, S. E. Study of a waste heat driven modified packed desiccant bed dehumidifier[J]. Energy Conversion and Management, 1996, 37 (4): 457-471.
    [42]. Ge, T. S., Dai, Y.J., Wang, R.Z. A mathematical model for predicting the performance of desiccant coated heat exchanger[A]. In 9th International Conference on Sustainable Energy Technologies [C], Shanghai China, Aug 24-27, 2010.
    [43]. Shimooka, S.,Oshima, K.,Hidaka, H., etc. The evaluation of direct cooling and heating desiccant device coated with FAM[J]. Journal of Chemical Engineering of Japan, 2007, 40 (13): 1330-1334.
    [44]. Aynur, T. N.,Hwang, Y.,Radermacher, R. Field performance measurements of a heat pump desiccant unit in heating and humidification mode[J]. Energy and Buildings, 2008, 42 (5): 678-683.
    [45]. Dai, Y. J.,Wang, R. Z.,Zhang, H. F. Parameter analysis to improve rotary desiccant dehumidification using a mathematical model[J]. International Journal of Thermal Sciences, 2001, 40 (4): 400-408.
    [46]. San, J. Y. Heat and mass transfer in a two-dimensional cross-flow regenerator with a solid conduction effect[J]. Int. J. Heat Mass Transfer, 1993, 36 (3): 633-643.
    [47].腊栋,蔡世佳,代彦军,蒋祚贤.基于不同干燥剂的焓轮式全热回收器特性数值模拟[J].化工学报, 2008, 59 64-69.
    [48].沈维道,郑佩芝,蒋淡安.工程热力学[M].高等教育出版社, 1983.
    [49].苏长荪,谭连城,刘桂玉.高等工程热力学[M].高等教育出版社, 1987.
    [50]. Dai Y.J., W. R. Z., Zhang H.F. . Parameter analysis to improve rotary desiccant dehumidification using a mathematical model[J]. Int. J. Therm. Sci., 2001, 40 400-408.
    [51].陶文铨,杨世铭.传热学[M].高等教育出版社, 1998.
    [55]. Ge, T. S., Li, Y., Wang, R. Z., etc. A review of the mathematical models for predicting rotary desiccant wheel [J]. Renewable and Sustainable Energy Reviews, 2008, 12 (6): 1485-1528.
    [56].Zhang, X. J. Study on dehumidification performance of silica gel-haloid composite desiccant wheel [D]. Department of Mechanical Engineering of Shanghai Jiao Tong University December 2003.
    [57]. Nakagawa, J., Hirota, N., Kitazawa, K., etc. Magnetic field enhancement of water vaporization [J]. Journal of Applied Physics, 1999, 86 2923.
    [58]. Zhou, K. X., Lu, G. W., Zhou, Q. C., etc. Monte Carlo simulation of liquid water in a magnetic field [J]. Journal of Applied Physics, 2000, 88 1802.
    [59]. Toledo, E. J. L., Ramalho, T. C., Magriotis, Z. M. Influence of magnetic field on physical-chemical properties of the liquid water: insights from experimental and theoretical models [J]. Journal of Molecular Structure, 2008, 888 (1-3): 409-415.
    [60]. Chang, K. T., Weng, C. I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation [J]. Journal of Applied Physics, 2006, 100 043917.
    [61]. Ozeki, S., Miyamoto, J., Ono, S., etc. Water- Solid Interactions under Steady Magnetic Fields: Magnetic-Field-Induced Adsorption and Desorption of Water [J]. J. Phys. Chem, 1996, 100 (10): 4205-4212.
    [62]. Ozeki, S., Miyamoto, J., Watanabe, T. A Thermodynamic Aspect of the Magnetic Effect on Water Adsorption [J]. Langmuir, 1996, 12 (8): 2115-2117.
    [63]. Ozeki, S., Wakai, C., Ono, S. Is a magnetic effect on water adsorption possible? [J]. The Journal ofPhysical Chemistry, 1991, 95 (26): 10557-10559.
    [64].姚晔,陆志,连之伟,刘世清.固体除湿剂超声波再生可行性实验研究[J].上海交通大学学报, 2008, 42 (1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700