太阳能—相变蓄热新风控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能-相变蓄热新风系统是把太阳能技术和相变蓄热技术相结合用于房间有组织通风换气的新型辅助供暖系统。国内针对太阳能-相变蓄热新风系统的研究相对较少,对其热力学建模、控制算法及系统辨识的研究也不多见。而太阳能-相变蓄热新风系统的建模以及控制问题对整个系统的热利用效率至关重要,关系到能源消耗问题,将很可能成为这个领域的研究热点。
     为便于对新风系统理论分析和实验研究,先后搭建了太阳能-相变蓄热新风系统实验平台和模拟系统实验平台。在此基础上,通过对太阳能-相变蓄热新风模拟系统的研究和分析,本文提出了系统的运行模式及其控制方法;深入分析了系统各部件的数学模型;研究了太阳能-相变蓄热新风温度的控制策略,提出把模糊控制算法应用到太阳能-相变蓄热新风系统的控制中,并最终实现了基于CAN总线技术的太阳能-相变蓄热新风模拟系统的模糊控制。此外,本文还利用采集的新风温度和热媒水流量的数据,进行了基于自适应模糊神经网络的非线性系统建模与参数辨识的仿真研究。文中的主要内容和成果如下:
     1.利用一套太阳能热水—相变蓄热—空气/水新风换热体系,研究了太阳能-相变蓄热新风系统的工作原理,分析了在不同的供暖阶段系统的主要运行模式和各部分的运行规律,最终设计实现了基于CAN总线的太阳能-相变蓄热新风系统的测量与控制。
     2.设计并搭建了太阳能-相变蓄热新风模拟测控系统,首次提出了系统的三种控制模式及模式转换控制方案。在充分考虑系统非线性、滞后性的基础上,确定了系统总体控制目标,为整个控制系统的设计与性能评价确立了理论依据。
     3.基于太阳能-相变蓄热新风模拟系统,设计完成了手动控制实验。通过运行测控系统验证了系统设计的正确性,掌握了系统各部件的运行特性,同时获得了大量有效的实验数据,为新风模拟系统模糊控制的实现、自适应神经模糊建模与参数辨识提供了数据支持。
     4.研究并构建了太阳能-相变蓄热新风模拟系统的风机盘管数学模型、房间温度数学模型。其中房间温度数学模型充分考虑了外界环境温度以及热负载等干扰因素,以更准确地模拟实际系统特性,为验证模糊控制器设计的合理性与有效性夯实了基础.
     5.作为本文的主要研究内容,提出将Mamdani型的模糊控制算法用于太阳能-相变蓄热新风模拟系统的新风温度控制中,设计实现了系统三种运行模式的模糊控制器,并在建立的风机盘管的模型上进行了MATLAB仿真。
     6.针对太阳能-相变蓄热新风模拟系统的数学模型难以精确建立的特点,设计了基于自适应神经模糊推理的控制器。应用BP神经元网络的误差反传算法,对输入变量隶属度函数和输出变量进行参数辨识。结果表明:该算法采用神经网络与模糊推理结合的建模和参数辨识方法,可以很大程度上逼近太阳能-相变蓄热新风模拟系统的特性,误差几乎为零。
     7.设计并进行大量的太阳能-相变蓄热新风系统模糊控制实验,验证本文提出模糊控制算法的合理性。实验结果表明,本文所实现的模糊控制系统具有响应快速、鲁棒性强、稳定性高的特点,满足对新风出口温度的控制要求。
     本文的工作可以为今后太阳能-相变蓄热新风系统的控制研究提供理论基础和技术支持。
In this dissertation, all the research work is mainly about a new type of fresh air system with the help of the solar energy and LHTS (phase change thermal storage) which can achieve organized ventilation.Only few of studies is on this type of fresh air system in China, so are the thermodynamic modeling, control algorithm and system identification. However, the modeling and control of this fresh air system is of great importance to the thermal efficiency of the system and related to energy consumption. So, the study in this dissertation will certainly become a hot topic in this area.
     To facilitate the theoretical analysis and experimental research of this new type of fresh air system, an experimental platform and a simulating platform were developed in turn. In this dissertation, the advanced monitoring systems were firstly realized with the help of Labwindows/CVI and CAN bus by using these two platforms. Then, taking the simulating fresh air system as the object, a series of studies were done thoroughly on the thermodynamic modeling, control strategies and parameter identification:the fan coil and room air temperature model were established; fuzzy control algorithm was proposed to this fresh air system, and also the simulation was done on the fan coil model; basing on the acquisition of fresh air temperature and heat water flow, the simulation of nonlinear system identification was realized using the adaptive neuro-fuzzy inference method; finally, lots of fuzzy control experiments on the simulating fresh air system were designed and accomplished. The main contents and results of this dissertation are as follows:
     The novel structure of a fresh air system was firstly introduced. And then the characteristics and the operation modes of the system were analyzed in detail. Measurement and control of the fresh air system with solar collectors and LHTS was finally realized basing on CAN bus.
     Secondly, an observing and controlling system of the simulating fresh air system was designed and finally established. The operation modes of the system and the way it transfers between modes were presented for the first time. In full consideration of the nonlinerity and hysteresis of the fresh air system, the overall control goal was determined. This work lays theoretical foundation for the establishment and performance evaluation of the whole controlling system.
     Afterwards, the manual experiments were designed based on the simulating fresh air system. Through experiments, the validity of the system is verified, the operation features of the system components are mastered, and a mass of valid test data are achieved, which provide sufficient data support for the fuzzy control realization of the fresh air system, adaptive neuro-fuzzy modeling and parameter identification.
     Fourthly, the fan coil and the room temperature model were focused on and established. In the room temperature model, the external environment such as out air temperature and heat load disturbances are all taken into consideration, which makes the control model simulate the actual system characteristics more accurately. This work is the solid basis to verify the reasonability and effectiveness of the design of the fuzzy controller.
     Fifthly, the Mamdani fuzzy algorithm was proposed for the first time to control the temperature of the simulating fresh air system according to the nonlinearity and hysteresis of the system. The fuzzy controllers of three operation modes of the system are also designed in workspace and simulated numerically with MATLAB.
     Sixthly, adaptive'neural fuzzy inference controller was designed according to the characteristics of the mathematical model, which combines the neural network theory with the T-S fuzzy model. Regarding the deviation and the rate of the deviation as the input and the controlling variable as output, the proposed controller was realized by continuous BP neural network using the approximation ability of the network.The adaptive neuro-fuzzy controller of the simulation results show a reasonable identification of the parameters, and the simulated output can approach the original output very closely and the error is almost zero, which verifies the proposed adaptive neural modeling.
     Finally, a number of fuzzy experiments were designed and carried out to verify the correctess and feasibility of the fuzzy arithmetic. The result shows that the fuzzy controller is of good performance of robustness and adaptability, and it meets the control requirement of the fresh air temperature.
     This study provides theoretical basis and technical support for future application of the fresh air system with solar collectors and LHTS.
引文
[1]薛志峰.超低能耗建筑技术及应用.北京:中国建筑工业出版社,2005.
    [2]罗运俊,李元哲等.太阳热水器原理、制造与施工.北京:化学工业出版社,2005.
    [3]叶宏,何汉峰,葛新石,徐斌.利用焓法和有效热容法对定形相变材料熔解过程分析的比较研究.太阳能学报,2004(8):488-491.
    [4]徐占发等.建筑节能技术实用手册.机械工业出版社,2005.
    [5]Bruce Anderson. Solar Building Architecture. Cambridge:The MIT Press,1990.
    [6]日本太阳能学会编.太阳能的基础和应用.上海科学技术出版社,1982.
    [7]Kimio Kanayama, lromuhaba and Masssaki Yamamoto. Estimition of a Solar Heat Pump System. Solar Energy,1985,38 (5).
    [8]G Vincenzo Fnancastono, G Saggese, M Saggese and P Saggese,Italy. Analysis of Seasonal Storage with Heat Pump and Solar Collector System in the Italian Climate.International Conference of on Subsurface, lent Storage--in theory and practice-Stockolm, Tune,1983.
    [9]Torres-Reyes E, Cervantes de, Gortari J. Optimal Performance of an Irreversible Solar-Assisted Heat Pump. Energy Int J.2001,1(2):107-111.
    [10]Torres Reyes E, Picon Nunez M, Cervantes De G. Exergy Analysis and Optimization of a Solar-Assisted Heat Pump. Energy.1998,23(4):337-3.
    [11]Yumrutas R, Kaska O. Experimental Investigation of Thermal Performance of a Solar Assisted Heat Pump System with an Energy Storage. International Journal of Energy Research.2004,28(2):163-175.
    [12]P.D.LUND, Helsinki University of Technology, Department of Technical Physics, Finland. Effect of Climate on Major CSHPSS Design Parameters. Solar Energy,1989, 42(6):487-494.
    [13]Badescu V. Model of a Thermal Energy Storage Device Integrated into a Solar Assisted Heat Pump System for Space Heating. Energy Conversion and Management. 2003,44(6):1589-1604
    [14]Badescu V. First and Second Law Analysis of a Solar Assisted Heat Pump Based Heating System. Energy Conversion and Management.2003,43(18):2539-2552.
    [15]Badescu V. Model of a Solar-Assisted Heat Pump System for Space Heating Integrating a Thermal Energy Storage Unit. Energy and Buildings.2002,34(7):715-726.
    [16]A.Ucar, M. Inalli. Thermal and Economical Analysis of a Central Solar Heating System with Underground Seasonal Storage in Turkey. Renewable Energy.2005,30(7): 1005-1010.
    [17]Katsunori NAGANO, etc. Study on Floor Supply Air Conditioning System Stoting Cold Energy for Building Structure and Grandules Including Phase Change Matrial, Part1 Construction of a small-scale experimental system and the thermal characteristics. J.Environ. Eng.AIJ,2004,579(5):21-28.
    [18]Katsunori NAGANO, etc.Study on Floor Supply Air Conditioning System Storing Cold Energy for Building Structure and Grandules Including Phase Change Matrial, Part2 Modeling of the system and load shifiting effect of air conditioner load. J.Environ. Eng. AIJ, 2004,584(10):47-52.
    [19]Katsunori NAGANO, etc.Study on Floor Supply Air Conditioning System Stoting Cold Energy for Building Structure and Grandules Including Phase Change Matrial, Part 3 Utilization of micro-capsule pellet PCM and evaluation of thermal environment.J.Environ. Eng. AIJ,2005,587(1):29-35.
    [20]S.O. Enibe.Thermal analysis of a natural circulation solar air heater with phase change material energy storage.Renewable Energy,2003,18(14):2269-2299
    [21]Chow, T.T. He, W. Chan, A.L.S. Fong, K.F. Lin, Z. Ji. Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system。 Applied Thermal Engineering, v 28, n 11-12, August 2008,1356-1364.
    [22]Weber. R, Dorer. V. Long-term heat storage with NaOH. Vacuum, v 82, n 7-14 March 2008,708-716.
    [23]Roonprasang, N. Experimental studies of a new solar water heater system using solar water pump. Energy, v 33, n 4, April 2008,639-646.
    [24]Koca, Ahmet. Oztop, Hakan F.; Koyun, Tansel; Varol, Yasin. Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, v 33, n 4, April 2008,567-574.
    [25]Hassan, Marwa M. Modeling of an integrated solar system. Building and Environment, v 43, n 5, May,2008, p 804-810.
    [26]Badescu, V. Optimal control of flow in solar collector systems with fully mixed water storage tanks. Energy Conversion and Management, v 49, n 2, Feb.2008,169-84.
    [27]Su, Yan, Davidson, Jane H. Discharge of thermal storage tanks via immersed baffled heat exchangers:Numerical model of flow and temperature fields. Proceedings of the Energy Sustainability Conference 2007, Proceedings of the Energy Sustainability Conference 2007, 2007, p 711-720.
    [28]Vikram.D, Kaushik. S, Prashanth. V, Nallusamy.N. An improvement in the solar water heating systems by thermal storage using phase change materials. International Solar Energy Conference, Proceedings of the ASME International Solar Energy Conference, ISEC2006,2007, p 409-416.
    [29]Castell, A; Sole, C.; Medrano, M.; Nogues, M.; Cabeza, L.F. Comparison of stratification in a water tank and a PCM-water tank. Proceedings of the Energy Sustainability Conference 2007, Proceedings of the Energy Sustainability Conference 2007,2007, p 465-470.
    [30]H.L.von库伯,F斯泰姆莱著.王子介译.热泵的理论与实践.中国建筑工业出版社.1986:28-39.
    [31]Penrod E B. Prasanna K V. Design of a Flat-Plate Collector for a Solar Earth Heat Pump. Solar Energy.1962,6(1):9-22.
    [32]31 Penrod E B, Prasanna K V. Procedure for Designing Solar-Earth Heat Pump Heating. Piping & Air-Conditioning.1969,41(6):97-100.
    [33]Yumrutas R, Kunduz M, Ayhan T. Investigation of Thermal Performance of a Ground Coupled Heat Pump System with a Cylindrical Energy Storage Tank. International Journal of Energy Research.2003,27(11):1051-106.
    [34]Metz P D. The Use of Ground Couple Tanks in Solar Assisted Heat Pump System. Transaction of ASME. Journal of Solar Energy Engineering.1982,104(4):366-372.
    [35]V. Trillat-Berdal, B. Souyri, G. Fraisse. Experimental Study of a Ground-Coupled Heat Pump Combined with Thermal Solar Collectors. Energy and Buildings.2006,38(12): 1477-1484
    [36]Ozgener O, Hepbasli A. Experimental Performance Analysis of a Solar Assisted Ground-Source Heat Pump Greenhouse Heating System. Energy and Buildings.2005, 37(1):102-115.
    [37]Ozgener O, Hepbasli A. Experimental Investigation of the Performance of a Solar Assisted Ground-Source Heat Pump System for Greenhouse Heating. International Journal of Energy Research.2005,29(3):217-236.
    [38]Ozgener O, Hepbasli A. Performance Analysis of a Solar Assisted Ground-Source Heat Pump System for Greenhouse Heating:an Experimental Study. Building and Environment. 2005,40(8):1040-1059.
    [39]Viorel Badescu, Mihail Dan Staicovici. Renewable Energy for Passive House Heating Model of the Active Solar Heating System. Energy and Buildings,2006,38(2):121-130.
    [40]Viorel Badescu, Benoit Sicre. Renewable Energy for Passive House Heating Ⅱ. Model. Energy and Buildings,2003,35:1078-1096.
    [41]Viorel Badescu, Benoit Sicre. Renewable Energy for Passive House Heating Part Ⅰ. Building description. Energy and Buildings,2003,35:1068-1084.
    [42]赵军,马一太等.太阳能热泵供热系统的实验研究.太阳能学报.1993,14(4):306-310.
    [43]刘靖,郑宗和.赵军.太阳能热泵供热系统的理论研究.新能源.1996,18(7):21-23.
    [44]旷玉辉,王如竹.太阳能热泵.太阳能.2003,(2):20-24.
    [45]林国星,严子峻.不可逆太阳能热泵系统集热器的最佳工作温度.太阳能学报.1996,17(4):309-312.
    [46]张小松,兰国彬,杜凯,费秀峰.太阳能热泵组合系统中的设备能量平衡.建筑热能通风空调.2000,19(1):2523-2537.
    [47]张喜明,于力强等.太阳能热泵地板辐射供暖系统.可再生能源.2005,(1):28-30.
    [48]施明恒,杜斌等.太阳能液体除湿空调系统再生和蓄能特性的研究.太阳能学报.2006,27(1):49-54.
    [49]胡洋,王国栋.太阳热水系统与建筑整合设计初探.太阳能学报,2005,26(1):717-721.
    [50]吴振荧,李德英.太阳能地板辐射供暖系统的设计研究.全国暖通空调制.2006年学术年会论文集.
    [51]潘云钢,金健.太阳能在拉萨火车站供暖系统中的应用.全国暖通空调制热.2006年学术年会论文集.
    [52]王永川,陈光明等.组合相变储热材料应用于太阳能供暖系统.热力发电.2004,(2):53.
    [53]肖伟,张寅平等.与太阳能空气集热器结合的定形相变蓄能地板供暖系统实验研究.全国暖通空调制冷.2006年学术年会论文集.
    [54]王昊.采用新型相变材料蓄热槽蓄放热特性数值计算方法探讨.[D].硕士学位论文.北京工业大学.2003.
    [55]蹇瑞欢.相变蓄热技术及理论在空调蓄热装置中的应用研究.[D].硕士学位论文.北京工业大学.2004.
    [56]新型相变蓄热装置蓄放热特性的实验与计算模拟分析.李香玲.[D].硕士学位论文.北京工业大学.2005.
    [57]欧阳军.相变蓄热装置应用于空调系统的计算模拟分析与实验研究.[D].硕士学位论文.北京工业大学.2006.
    [58]新型相变蓄热装置在采暖系统中应用的研究.王秀丽.北京工业大学.2006.
    [59]蔡自兴,徐光祐.人工智能及其应用(第二版).北京:清华大学出版社,1996.
    [60]王耀南.智能控制系统—模糊逻辑·专家系统·神经网络控制.长沙:湖南大学出版社,1996.
    [61]蔡自兴.神经控制器的典型结构.控制理论与应用.1998,15(1):1.
    [62]吴宏鑫,解永春.基于对象特征模型描述的智能控制.自动化学报.1999,25(1).
    [63]刘林运,万百五.定性控制综述.信息与控制.1998,27(1):46
    [64]曹建福,韩崇昭.非线性控制系统的频谱理论及应用.控制与决策.1998,13(3):193.
    [65]Shavit, GandS, GBrandt. The Dynamic Performanee of a Diseharge Air-Temperature system with A PI controller. [C]. ASHRAE. Trans. Research.1982, Vol.88 (2):826-838.
    [66]KalmanI, SuiL, Zhao. Analytical determination of PID coefficients for temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed evarition. [C]. ASHRAETransaetion.1995,101:343-353.
    [67]SalsburyTI. A temperature controller for VAV air-handing units based on simplified Physical model. [J]. HVAC&RReseareh.1998,3(3):264-279.
    [68]M. Kasahara, T. Matsubaetal. Design and tuning of robust PID controller for HVAC systems. [C]. ASHRAE Trans.1999,105 (2):154-165.
    [69]QiangBi, Wen-JianCai, Qing-GuoWang, etal. Advanced controller autotuning and its application in HVAC systems. [J]. Control Engineering Practice,2000,8:633-644.
    [70]C.Ghiaus. Fuzzy model and control of a fan coil. [J]. Energy Building.2001,33:545-550.
    [71]SousaJM, BabuskaR, VerbruggenHB. Fuzzy Predictive Control Applied To an air-conditioning system. [J]. Control Engineering Practice,1997.15(10):1395-1406.
    [72]Yingguo P, Zhang H, Bien Z. A simple fuzzy adaptive control method and application in HVAC [C]. Proeeedings of Fuzzy Systems Conference on Computational Intelligenee, 1998:528-532.
    [73]Richard. T, ArthurD. A fuzzy decision-making approach to temperature Control in air-conditioning systems. [J]. Control Engineering Practice,1998,1 (13):689-698.
    [74]Singh G, Zaheeruddin M, Patel R V. A daptive control of mulvariable thermal processes in HVAC systems[J].EnergyConversion&Management,2000,41:1671-1685.
    [75]Ghiaus C. Fuzzy model and control of a fan-coil [J]. Energy and Buildings,2001, 33:545-551.
    [76]Moreira V D, Amaral W C, Ferreira P A. A new approach for robust modelpredictive control with an application to an air-conditioningsystem[C]. Proeeedings of IEEE international conferenee on control applicationsl, Taipei.2004:667-672.
    [77]Alcala R, Casills J, Cordon O. A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. [J]. Engineering application of Artificial Intelligence,2005,18:279-296.
    [78]晋欣桥,任海刚,李晓峰.变风量空调系统新风量的实时预测.[J].上海交通大学学报,2002,36(11):1640-1643.
    [79]曹国庆,娄承芝,安大伟.模糊PID自整定控制在空调系统中的应用研究.[J].暖通空调,2004,34(20):106-109.
    [80]李玉云,王永冀.人工神经网络在暖通空调领域的应用研究发展[J].暖通空调,2001,31(1):38-41.
    [81]李绍勇,崔旭春,王刚等.空调房间室温广义预测控制的仿真研究,建筑热能通风空调.[J].2003,(6):23-26.
    [82]刘川,张显库.一种鲁棒神经网络结构在温度控制系统中的应用.[J].计算机技术与自动化,2003,(3):7-9.
    [83]阂剑青.基于神经网络的中央空调控制系统的建模与仿真.[D].工程硕士学位论文,浙江工业大学,2003.
    [84]温彩霞,陈天及,孙毅刚.神经元PID在空调机组性能试验室温度控制中的建模与仿真.[J].制冷与空调,2007,(1):31-34.
    [85]陈静,莫小明,陆伟良.神经网络在空调控制系统中的应用与发展.[J].微处理机,2007,(5):23-25.
    [86]魏东,张明廉.神经网络非线性预测优化控制及仿真研究.[J].系统仿真学报.2005,17(3):697-701.
    [87]吴爱国,杜春燕,宋晓强.参数自调整控制器在中央空调温度控制系统中的应用.[J].中国工程科学,2004,6(11):84-87.
    [88]许云明,张伟平.参数自调整模糊控制器在空调控制中的应用.[J].制冷与空调,2006,(2):72-75.
    [89]林喜云,沈国民,谢军龙.模糊控制器在中央空调控制系统中的应用.[J].制冷与空调,2007,(1):47-50.
    [90]陈庆伟,姜建芳,胡维礼.分层递阶模糊控制在空调控制系统中的应用.[J].南京理工大学学报,1994,(4):14-18.
    [91]童明椒,幸晓坷,杨本强.实时专家系统在空调控制系统中的应用研究.[J].建筑电气2003,(3):4-6.
    [92]董超俊,刘贤坤,湛德照HVAC系统最优控制模型的开发及应用.[J].工业仪表自动化装置,2001,4:26-30
    [93]尚建磊.太阳能—相变蓄热技术在冬季供暖新风系统中的实验研究.[D].硕士学位论文,北京工业大学.2008.
    [94]王黎明,夏立,绍英.CAN现场总线系统的设计与应用[M].北京:电子工业出版社,2008.
    [95]蔡敬琅.变风量空调设计[M].北京:中国建筑工业出版社,2007.
    [96]方崇智,萧德云.过程辨识.清华大学出版社,1988:84-85
    [97]石辛民,郝整清.模糊控制及其MATLAB仿真.北京:清华大学出版社,2008.89-102.
    [98]李国勇.神经模糊控制理论及应用.北京.电子工业出版社,2009:20-24.
    [99]张乃尧,阎平凡.神经网络与模糊控制.北京.清华大学出版社,1998:12-16.
    [100]T. H. Martin, B. D. Howard, H. B. Mark,神经网络设计.机械工业出版社.2002:201-205
    [101]L. Guan, S. Chen}, R. Zhou. Artificial Neural Network Power System Stabiliser Trained with an Improved BP Algorithm. IEEE Proceedings:Generation, Transmission and Distribution.1996,143(2):135-141.
    [102]Yu Xinhuo, M. Efe, Kaynak Okyay. A General Backpropagation Algorithm for Feedforward Neural Networks Learning. IEEE Transactions on Neural Networks.2002, 13(1):251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700