太阳能相变蓄热供暖系统理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京地区地属寒冷地区,冬季供暖期长,供暖能耗占冬季建筑能耗的主要部分。但北京地区有着丰富的太阳能资源,属太阳能资源较富带。如果能充分利用太阳能作为冬季建筑供暖补充能源,则即可以减少化石能源的消耗,又可提高太阳能在建筑供暖能源中的利用率。然而太阳能固有的不稳定性和间歇性,给太阳能的热利用带来了较大的难度。本研究基于课题组多年关于相变蓄热技术的研究成果,充分利用相变蓄热材料相变潜热量大、可以在温度近似恒定的条件下蓄集大量热量的特点,提出将太阳能集热技术与相变蓄热技术结合,构筑太阳能—相变蓄热—新风供暖系统。利用太阳能为冬季新风供暖系统提供补充能源的学术思想,在太阳辐射强度大的情况下,可将多余的太阳热能蓄存在相变蓄热装置内,待夜晚或太阳辐射强度不足时,将预先蓄存在相变蓄热装置的太阳热能向新风供暖系统补充热能,实现了太阳能时间及地点的转移,提高了太阳能在建筑供能中的利用率。基于上述学术思想,本研究依据传热学、流体力学、相变贮能等理论,重点在以下几方面开展了研究工作:
     (1)建立了应用于闭式循环系统的全玻璃真空管集热器的传热数学模型。基于全玻璃真空管集热器在闭式循环系统中的应用条件,将其传热过程简化为在联集管内的强制流动与在一系列真空管内自然对流过程的耦合。并通过分析集热器的整体的能量转化过程与单根真空管的自然对流过程,推导出了集热器的数学模型。根据此模型,可以分析在室外太阳辐射强度、供水温度、集热器几何尺寸等参数变化条件下,集热器组件出水温度的变化规律。
     (2)在课题组前期的研究基础上,对已有的相变蓄热装置传热模型进行了完善。并构建了太阳能集热系统与相变蓄热系统的耦合传热模型。利用该模型,可以为太阳能时间和地点的转移,提供定量分析和指导。
     (3)基于上述研究结果,建立了太阳能—相变蓄热—新风供暖系统的仿真模型。依据该仿真模型,根据北京地区冬季太阳辐射变化规律,对集热系统流量、以及相变材料质量与集热器面积比等参数进行优化设计,并制定了在确保房间供给新风温度相对稳定条件下的系统运行控制策略及其控制条件。
Because of located in cold area and a long winter heating period in Beijing, building heating energy consumption accounts for a major part of building energy consumption in the Beijing area.
     Considering there is a lot of solar energy in Beijing, if make full use of solar energy as a supplement building heating in winter, it can not only reduce fossil energy consumption, but also raise solar energy utilization rate in the building heating. But because of inherent instability and intermittent of solar energy, it is difficult to directly take solar energy to the heating end with steady demand. Based on the previous research on phase change thermal storage technology,taking advantage of the PCM’s characteristic with large latent heat and nearly keep constant melt temperature in charge and discharge period, the solar energy - phase change thermal storage - fresh air heating system is proposed. In this system, when solar radiation intensity is high at noon, it can store excess solar energy to the phase change thermal storage. And when solar radiation intensity is low at night or in the morning, the heat energy stored in PCM is used to heat fresh air. So it is achived the transfer of solar energy in time and place by this system. Considering the above academic thought, based on theory of heat transfer, fluid dynamics and phase change energy storage, some researches are carried out in the following:
     (1) The heat transfer model for all - glass vacuum tube collector to be used in a forced - circulation solar water heating system is established. In this model, the simplified heat transfer of the collector consists of natural convection within a single glass tube and a forced flow in a manifold header. From this, the heat balance equation of collector and the heat balance and flow equation of the single tube can be established. When known the solar radiation intensity, outdoor air temperature, as well as the inlet temperature of heat transfer fluid, outlet temperature of collector can be calculated according to the model.
     (2) Based on previous research, the improved phase change storage heat transfer model was published. By coupled solar collector and phase change thermal storage model, the heat transfer problem between solar collectors and phase change thermal storage is studied.
     (3) Based on the above research, the heat transfer model on solar energy - phase change - fresh air heating system is built. According to the system model and solar radiation in winter in Beijing, the optical collector system flowrate, the optical ratio between phase change material quality and collector area are analyzed. And operating strategy and operating conditions research to ensure the supply fresh air temperature stable is researched too.
引文
1殷志强,吴家庆,陶祖岩,史月艳.全玻璃真空管集热器的研制.太阳能学报. 1981,(04):345-352.
    2 Y. Zhiqiang, G. L. Harding. Optical Properties of D.C. Reactively Sputtered Thin Films. Thin Solid Films. 1984, 120(2): 81-108.
    3 G. L. Harding, Y. Zhiqiang, S. Craig, S. P. Chow. Sputtered Solar Selective Absorbing Surfaces Based On Aluminum and Stainless Steel Composites. Solar Energy Materials. 1984, 10(2): 187-207.
    4殷志强, Harding G. L.溅射光谱选择性吸收表面的进一步改善.太阳能学报. 1986,(03):265-273.
    5侯苏平,殷志强,史月艳. Al-C-F/渐变SS-C/Al选择性吸收表面.太阳能学报. 1988,(02):134-146.
    6董光军,朱秀珍,周小雯,殷志强.全玻璃真空太阳集热管真空度测量及残气分析.太阳能学报. 2006,(12):1235-1240.
    7周邦伟,殷志强,魏志渊,卢锦文.真空沉积双层黑铬选择性涂层.太阳能学报. 1982,(02):137-144.
    8吴家庆,殷志强,王德晓.真空集热管中吸收涂层的半球向发射率的确定.太阳能学报. 1989,(02):208-214.
    9 G. L. Harding, Y. Zhiqiang, S. Craig, S. P. Chow. Sputtered Solar Selective Absorbing Surfaces Based On Aluminum and Stainless Steel Composites. Solar Energy Materials. 1984, 10(2): 187-207.
    10 Z. Yin, Z. Xue, J. Zhang, C. Shen. Graded Al-N/Al Absorbing Surfaces for All-Glass Evacuated Tubular Collectors -- R, D and Production: Bridging the Gap. Renewable EnergyRenewable Energy Energy Efficiency, Policy and the Environment. 1999, 16(1-4): 624-627.
    11 H. Yanbin, Y. Zhiqiang, S. Yueyan. Optical Properties of Multilayer Stack Models for Solar Selective Absorbing Surfaces. Renewable EnergySpecial Issue World Renewable Energy Congress Renewable Energy, Energy Efficiency and the Environment. 1996, 8(1-4): 559-561.
    12 M. J. Lighthill. Theoretical Considerations On Free Convection in Tubes. Quart. J. Mech. Appl. Math, 1953, 6(4): 398-439.
    13 B. W. Martin, H. Cohen. Heat Transfer by Free Convection in an Open Thermosyphon Tube. Brit. J. Appl. Phys, 1953, (5): 91-95.
    14 B. W. Martin, F. C. Lockwood. Entry Effects in the Open Thermosyphon. J. Fluid Mech, 1963, 19(2): 246-256.
    15 Y. Zhiqiang, G. L. Harding, B. Window. Water-in-Glass Manifolds for Heat Extraction From Evacuated Solar Collector Tubes. Solar Energy. 1984, 32(2): 223-230.
    16 Y. Zhiqiang, G. L. Harding, S. Craig, R. E. Collins, B. Window. Comparative Study of Fluid-in-Metal Manifolds for Heat Extraction From Single Ended Evacuated Glass Tubular Collectors. Solar Energy. 1985, 35(1): 81-91.
    17 G. L. Harding, Y. Zhiqiang, D. W. Mackey. Heat Extraction Efficiency of a Concentric Glass Tubular Evacuated Collector. Solar Energy. 1985, 35(1): 71-79.
    18 G. L. Harding, Y. Zhiqiang. Thermosiphon Circulation in Solar Water Heaters Incorporating Evacuated Tubular Collectors and a Novel Water-in-Glass Manifold. Solar Energy. 1985, 34(1): 13-18.
    19 S. P. Chow, G. L. Harding, Y. Zhiqiang, G. L. Morrison. Optimisation of Evacuated Tubular Solar Collector Arrays with Diffuse Reflectors. Solar Energy. 1984, 33(3-4): 277-282.
    20 S. P. Chow, G. L. Harding, Y. Zhiqiang, G. L. Morrison. Optimisation of Evacuated Tubular Solar Collector Arrays with Diffuse Reflectors. Solar Energy. 1984, 33(3-4): 277-282.
    21 Y. Zhiqiang, G. L. Harding, S. Craig, R. E. Collins, B. Window. Comparative Study of Fluid-in-Metal Manifolds for Heat Extraction From Single Ended Evacuated Glass Tubular Collectors. Solar Energy. 1985, 35(1): 81-91.
    22 G. L. Harding, Y. Zhiqiang, D. W. Mackey. Heat Extraction Efficiency of a Concentric Glass Tubular Evacuated Collector. Solar Energy. 1985, 35(1): 71-79.
    23 G. L. Harding, Y. Zhiqiang. Thermosiphon Circulation in Solar Water Heaters Incorporating Evacuated Tubular Collectors and a Novel Water-in-Glass Manifold. Solar Energy. 1985, 34(1): 13-18.
    24王立廷,陆维德,霍志臣.全玻璃真空集热管内自然对流换热与流动的可视化实验研究.太阳能学报. 1987,(03):305-309.
    25王立廷,陆维德,霍志臣.横置全玻璃真空集热管单管内自然对流换热的实验研究.太阳能学报. 1989,(02):177-184.
    26 F. O. Gaa, M. Behnia, G. L. Morrison. Experimental Study of Flow Ratets through Inclined Open Thermosyphons. Solar Energy. 1996, 57(5): 401-408.
    27 F. O. Gaa, M. Behnia, S. Leong, G. L. Morrison. Numerical and Experimental Study of Inclined Open Thermosyphons. International Journal of Numerical Methods for Heat and Fluid Flow, 1998, 8(7): 748-767.
    28霍志臣,阎小彬,张林.竖排真空管集热器可视化试验研究与实用化设计.太阳能学报. 1991,(04):412-417.
    29 L. J. Shah, S. Furbo. Theoretical Flow Investigations of an All Glass Evacuated Tubular Collector. Solar Energy. 2007, 81(6): 822-828.
    30王志峰, Hongwei Sun.全玻璃真空管空气集热器管内流动与换热的数值模拟.太阳能学报. 2001,(01):35-39.
    31 G. L. Morrison, I. Budihardjo, M. Behnia. Water-in-Glass Evacuated Tube Solar Water Heaters. Solar EnergySolar World Congress 2001. 2004, 76(1-3): 135-140.
    32 G. L. Morrison, I. Budihardjo, M. Behnia. Measurement and Simulation of Flow Rate in a Water-in-Glass Evacuated Tube Solar Water Heater. Solar EnergyISES Solar World Congress 2003. 2005, 78(2): 257-267.
    33 I. Budihardjo, G. L. Morrison, M. Behnia. Natural Circulation Flow through Water-in-Glass Evacuated Tube Solar Collectors. Solar Energy. 2007, 81(12): 1460-1472.
    34 I. Budihardjo, G. L. Morrison. Performance of Water-in-Glass Evacuated Tube Solar Water Heaters. Solar Energy. 2009, 83(1): 49-56.
    35 D. J. Morrison, S. I. Abdel-Khalik. Effects of Phase-Change Energy Storage On the Performance of Air-Based and Liquid-Based Solar Heating Systems. Solar Energy. 1978, 20(1): 57-67.
    36 K. Kaygusuz. Performance of Solar-Assisted Heat-Pump Systems. Applied Energy. 1995, 51(2): 93-109.
    37 N. Nallusamy, S. Sampath and R. Velraj. Experimental Investigation On a Combined Sensible and Latent Heat Storage System Integrated with Constant/Varying (Solar) Heat Sources. Renewable Energy. 2007, 32(7): 1206-1227.
    38 H. El Qarnia. Numerical Analysis of a Coupled Solar Collector Latent Heat Storage Unit Using Various Phase Change Materials for Heating the Water. Energy Conversion and Management. 2009,50(2): 247-254.
    39 E. Talmatsky and A. Kribus. Pcm Storage for Solar Dhw: An Unfulfilled Promise? Solar Energy. 2008, 82(10): 861-869.
    40 W. Saman, F. Bruno and E. Halawa. Thermal Performance of Pcm Thermal Storage Unit for a Roof Integrated Solar Heating System. Solar EnergyISES Solar World Congress 2003. 2005, 78(2): 341-349.
    41 H. Mehling, L. F. Cabeza, S. Hippeli, S. Hiebler. Pcm-Module to Improve Hot Water Heat Stores with Stratification. Renewable Energy. 2003, 28(5): 699-711.
    42 M. Esen. Thermal Performance of a Solar-Aided Latent Heat Store Used for Space Heating by Heat Pump. Solar Energy. 2000, 69(1): 15-25.
    43 B. S. G, V. P. M, P. M. S. Mathematical Model of a Solar-Pump System with Solar Absorbers and Two Thermal Storage Tanks. Appl. Solar Energy, 1988, 24: 21.
    44 A. Nilufer Egrican. Performance of a Solar Assisted Heat Pump System. Energy Conversion and Management. 1991, 31(1): 17-25.
    45 K. Kaygusuz. Experimental and Theoretical Investigation of Latent Heat Storage for Water Based Solar Heating Systems. Energy Conversion and Management. 1995, 36(5): 315-323.
    46 P. D. Lund. Effect of Climate On Major Cshpss Design Parameters. Solar Energy. 1989, 42(6): 487-494.
    47 A. F. Regin, S. C. Solanki, J. S. Saini. Latent Heat Thermal Energy Storage Using Cylindrical Capsule: Numerical and Experimental Investigations. Renewable Energy. 2006, 31(13): 2025-2041.
    48马贵阳,张育才,王旭东.太阳能相变蓄热加热输送原油系统.辽宁石油化工大学学报. 2006,(03):66-69.
    49冯小江,伊松林,张璧光,袁小艳.太阳能相变储热在木材干燥中应用的初步研究.化工机械. 2009,(03):205-210.
    50 F. Aghbalou, F. Badia and J. Illa. Exergetic Optimization of Solar Collector and Thermal Energy Storage System. International Journal of Heat and Mass Transfer. 2006, 49(7-8): 1255-1263.
    51 T. Kousksou, F. Strub, J. C. Lasvignottes, A. Jamil and J. P. Bédécarrats. Second Law Analysis of Latent Thermal Storage for Solar System. Solar Energy Materials and Solar Cells. 2007, 91(14): 1275-1281.
    52 S. O. Enibe. Thermal Analysis of a Natural Circulation Solar Air Heater with Phase Change Material Energy Storage. Renewable Energy. 2003, 28(14): 2269-2299.
    53 E. S. Mettawee and G. M. R. Assassa. Experimental Study of a Compact Pcm Solar Collector. Energy. 2006, 31(14): 2958-2968.
    54 Z. Chen, M. Gu and D. Peng. Heat Transfer Performance Analysis of a Solar Flat-Plate Collector with an Integrated Metal Foam Porous Structure Filled with Paraffin. Applied Thermal Engineering. 2010, 30(14-15): 1967-1973.
    55 Y. Varol, A. Koca, H. F. Oztop and E. Avci. Forecasting of Thermal Energy Storage Performance of Phase Change Material in a Solar Collector Using Soft Computing Techniques. Expert Systems with Applications. 2010, 37(4): 2724-2732.
    56 N. K. Bansal and D. Buddhi. Performance Equations of a Collector Cum Storage System Using Phase Change Materials. Solar Energy. 1992, 48(3): 185-194.
    57 L. H. A. S, J. E. Gonzalez and N. Dukhan. Initial Analysis of Pcm Integrated Solar Collectors. Journal of Solar Energy Engineering, 2006, 128(5): 173-177.
    58 S. D. Sharma, T. Iwata, H. Kitano and K. Sagara. Thermal Performance of a Solar Cooker BasedOn an Evacuated Tube Solar Collector with a Pcm Storage Unit. Solar Energy. 2005, 78(3): 416-426.
    59 R. Domanski, A. A. El-Sebaii and M. Jaworski. Cooking During Off-Sunshine Hours Using Pcms as Storage Media. Energy. 1995, 20(7): 607-616.
    60 D. Buddhi and L. K. Sahoo. Solar Cooker with Latent Heat Storage: Design and Experimental Testing. Energy Conversion and Management. 1997, 38(5): 493-498.
    61 F. Mathieu-Potvin and L. Gosselin. Thermal Shielding of Multilayer Walls with Phase Change Materials Under Different Transient Boundary Conditions. International Journal of Thermal Sciences. 2009, 48(9): 1707-1717.
    62 A. Najjar and A. Hasan. Modeling of Greenhouse with Pcm Energy Storage. Energy Conversion and ManagementSpecial Issue 3rd International Conference on Thermal Engineering: Theory and Applications. 2008, 49(11): 3338-3342.
    63 D. A. Neeper. Thermal Dynamics of Wallboard with Latent Heat Storage. Solar Energy. 2000, 68(5): 393-403.
    64 M. Lebreux, M. Lacroix and G. Lachiver. Control of a Hybrid Solar/Electric Thermal Energy Storage System. International Journal of Thermal Sciences. 2009, 48(3): 645-654.
    65 V. Badescu. Optimal Control of Flow in Solar Collectors for Maximum Exergy Extraction. International Journal of Heat and Mass Transfer. 2007, 50(21-22): 4311-4322.
    66 T. Vitte, J. Brau, N. Chatagnon and M. Woloszyn. Proposal for a New Hybrid Control Strategy of a Solar Desiccant Evaporative Cooling Air Handling Unit. Energy and Buildings. 2008, 40(5): 896-905.
    67陈滨,陈佳,孙亚峰,王小林,刘雷.太阳能空气集热建筑模块的运行控制策略.太阳能学报. 2010,(04):418-423.
    68李郁武.直膨式太阳能热泵热水装置的优化分析与变容量运行研究.上海交通大学. 2007.
    69梁祥莹.太阳能—地源热泵式空调系统的研究.合肥工业大学. 2009.
    70李赟,黄兴华.冷热电三联供系统配置与运行策略的优化.动力工程. 2006,(06):894-898.
    71林兴斌,潘毅群,黄治钟.变风量空调系统不同控制策略下的能耗分析.建筑热能通风空调. 2010,(05).
    72陈丹丹,晋欣桥.变水量空调系统的优化控制策略及其能耗分析.建筑热能通风空调. 2009,(04).
    73杨振斌.风能、太阳能资源研究论文集.气象出版社.
    74中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集.中国建筑工业出版社.2005.
    75张鹤飞.太阳能热利用原理与计算机模拟.第2版.西北工业大学出版社.2007.
    76郑瑞澄.民用建筑太阳能热水系统工程技术手册.第1版.化学工业出版社.2006.
    77章熙民等.传热学.第1版.建筑工业出版社.2004.
    78周光埛等.流体力学.第2版.高等教育出版社.2004.
    79王昊.采用新型相变材料蓄热槽蓄放热特性数值计算方法探讨.北京工业大学. 2003.
    80蹇瑞欢.相变蓄热技术及理论在空调蓄热装置中的应用研究.北京工业大学. 2004.
    81李香玲.新型相变蓄热装置蓄放热特性的实验与计算模拟分析.北京工业大学. 2005.
    82李香玲,陈超,蹇瑞欢,欧阳军.填充板状定形相变材料蓄热槽蓄/放热特性实验研究.暖通空调. 2005,(10):122-126.
    83乐海林,陈超,刘宇宁.冬季相变墙房间节能特性研究.建设科技. 2005,(14):38-39.
    84陈超,蹇瑞欢,焦庆影,夏定国,李香玲.新型定形板状相变材料的蓄/放热特性.太阳能学报. 2005,(06):857-862.
    85陈超,王秀丽,尚建磊,刘铭.中温相变蓄热装置的蓄放热性能研究.北京工业大学学报. 2006,(11):996-1001.
    86陈超,刘宇宁,果海凤,周玮.复合相变墙体应用于被动式太阳房的初步研究.建筑材料学报. 2008,v.11;No.52(06):684-689.
    87陈超,果海凤,周玮.相变墙体材料在温室大棚中的实验研究.太阳能学报. 2009,v.30(03):287-293.
    88薛亚宁,陈超,李清清,李琢,周玮.复合相变蓄热墙体材料应用于日光温室的效果研究.北方园艺. 2010,No.222(15):6-11.
    89一种76-83℃的复合定形相变材料及制备方法.2006.
    90王昊,陈超.填充了球状相变材料的蓄热槽放热特性的数值分析.建筑热能通风空调. 2003,(04):52-55.
    91王昊,陈超,布文峰,蔺洁.相变材料球蓄热槽放热特性的数值分析.建筑热能通风空调. 2003,(02):23-28.
    92万红,孙诗兵,田英良,陈超.相变建筑节能材料的应用研究与思考.墙材革新与建筑节能. 2005,(07):42-44.
    93 M. Liu, C. Chen and J. Shang. Investigation On the Application of Thermal Storage Unit in Solar Energy-Air Conditioner Fresh Air Heater Systems. 2006.
    94 J. Shang, C. Chen, P. Wu, Z. Li and M. Liu. Experimental Investigation of Solar Energy in Winter Heating Fresh Air System. 2007.
    95尚建磊,陈超,刘铭,康国青.一种新型的太阳能供暖新风系统的实验研究. 2007,.
    96陈超,王秀丽,刘铭,尚建磊.中温相变蓄热装置蓄放热性能的数值分析与实验研究.太阳能学报. 2007,(10):1078-1084.
    97 F. Kreith and M. S. Bohn. Principles of Heat Transfer. 2001.
    98朱家玲,张伟,高天真.地热供暖系统板式换热器的优化设计.太阳能学报. 2001,(04):422-426.
    99中华人民共和国住房和城乡建设部.太阳能供暖采暖工程技术规范. 2009.
    100中华人民共和国建设部.民用建筑太阳能热水系统应用技术规范. 2006,.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700