基于系统辨识的太阳能—相变蓄热新风供暖系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着不可再生资源的日益减少,低碳节能、用绿色能源代替传统能源已经成为全世界要共同面对的问题;而随着科技的进步与人类文明的发展,人们对自身生活环境的要求也越来越高。如何协调处理能量损耗的降低与生存质量的提高之间的关系成了当今各国专家学者研究的重点,而太阳能-相变蓄热新风供暖系统就是在室温控制领域解决这两者矛盾的一种有效的新方式。
     太阳能-相变蓄热新风供暖系统综合考虑建筑节能、新能源利用、能源储备、室内通风需求等问题,提出利用太阳能技术、相变蓄热技术与现代的控制理论相结合的方式,解决室内的供暖和通风换气问题。系统能够实时监测现场各种条件的变化;根据现场的不同实际情况,把太阳能用于室内供暖与能量储备;根据用户需求实现加热室温、储存热量、释放热量之间的自动转换;并在每种转换模式中实现自动控制,使室内的空气质量、温度条件,达到最宜居的状态,创造最理想的生活环境。纵观国内外本领域的相关研究成果,从太阳能-相变蓄热新风供暖系统的系统特性出发、对它的能量转化、运行机制、系统模型、智能控制策略等一系列问题进行成体系的研究,是一个目前研究基础相对薄弱,但很有研究价值的新领域。
     本文的主要研究内容和成果包括:
     1.从热力学的角度分析了系统的导热流程和工作原理;并从功能结构的角度对系统进行分析,把系统分为导热系统与测控系统两大部分。随后分析了导热系统的整体设计;测控系统中硬件平台主要测控参数的确定、测控设备的选用、测控网络结构的设计;以及软件平台中数据采集、数据处理、数据监视和控制输出等几大功能的设计。
     2.对太阳能集热器、蓄热槽、风机盘管进行物理特性研究,并根据其物理特性进行数学模型的推导;得出了系统各部分热传递的特性,同时对控制策略的模拟对象进行了研究。其中,用来加热新风的风机盘管是控制系统的主要控制对象,所以在它的数学模型基础上进行了仿真研究,并用实验数据对数学模型进行了验证。
     3.分析太阳能集热部分的控制需求,针对不同的室外光照条件提出了两种控制模式。对蓄放热、新风加热部分的控制需求进行分析,并针对不同的导热量提出了既能满足新风供暖需求,又能最大限度节能的五种控制模式。随后分析讨论了模式转换的条件,并设计了系统整体的控制模式转化策略。
     4.对非线性系统的辨识方法进行了分析;经过辨识方法的比较,选择用人工神经网络中的BP网络作为本系统的辨识方法。通过对BP网络的网络结构、数学算法及训练过程等问题的研究,确定了本系统的系统辨识策略。然后在系统辨识阶段比较并确定了神经网络辨识结构、BP网络的各层结构、网络训练算法和改进算法,得出了系统各个控制模式下的BP网络辨识模型。最后通过仿真验证了模型的有效性。
     5.对几种基于模型的控制理论进行了分析和对比,选择用模型预测控制作为本系统的控制算法。随后分析了基于线性模型的预测控制理论与基于非线性模型的预测控制理论,并研究了模型预测控制的数学描述以及算法特点。继而针对本系统的特点,进行神经网络预测模型与模型预测控制器的设计。最后对系统的各种控制模式进行了恒温测试与随动测试的仿真,并对仿真结果进行了分析,验证了控制策略的可行性。
With the reduction of non-renewable energy, substitution of low-carbon and green energy for traditional energy has become the worldwide concern. Moreover, with the progress of science and development of civilization, higher requirements are put forward for the comfortable living environment. How to balance the relationship between low energy consumption and high living standard becomes the focus of researchers. Nowadays, fresh air heating system with scholar energy and phase change thermal storage provides an effective solution for the above contradiction in indoor air temperature control field.
     In such a fresh air heating system, issues of building energy conservation, new energy utilization, energy storage, and ventilation requirements are all considered. In addition, combination of techniques such as solar energy, LHTS, and modern control theory is proposed to solve the indoor heating and ventilation problems. In the fresh air heating system, the following functions are realized:real-time monitoring of various condition changes; automatic shifts among air heating, energy storage and energy release according to occupants requirements; automatic shifts among different modes to achieve an ideal living environment with high air quality and comfortable temperature. From the review of relevant domestic and international literatures, studies based on solar energy and LHTS fresh air heating system characteristics, such as energy change, operation mechanism, system modeling, and intelligent control, are rare, which are of great research value but with weak study basis.
     The main achievements of this dissertation are as follows:
     1. From the view point of thermodynamics, thermal conductivity process and work principle of the system are analyzed. The system is divided into two subsystems from the view point of system function:thermal conductivity system and test and control system. Then the following contents are introduced:design of thermal conductivity system; determination of parameters for the test and control system hardware platform, selection of the test and control devices, design of the test and control network; realization of the data collection, data processing, data monitoring and output control functions.
     2. Physical characteristics of solar collector, heat storage tank, fan coil units are studied. Through mathematical model analysis of the physical characteristics, thermal conductivity laws of different parts of the system are obtained. Meanwhile, the simulation objectives for control strategies are also studied, among which, fan coil unit is the main controlled objective. Thus, the mathematical model of fan coil unit is simulated for study and experimental data are used to validate the model.
     3. Control requirements of the solar collector part are analyzed. Then two control modes are proposed according to different outdoor light conditions. Then control requirements of heat storage and release and fresh air heating parts are analyzed. Five control modes are introduced for different heat conducting amount, which meet the requirements of fresh air heating and energy conservation. Subsequently, conditions for mode shifts are discussed, and control mode shift strategies for the whole system are designed.
     4. Methods of nonlinear system identification are briefly introduced. Through comparison of identification methods, BP neural network is selected as the system identification method. After analysis of BP neural network structure, mathematical algorithm and training process, BP network identification process is determined. During the system identification, neural network structure is chosen and the different layers of BP network are set. After determining the network training algorithm and improved algorithm, BP network identification models under different control modes are obtained. Then simulation and validation of the models are carried out.
     5. Control theories based on models are analyzed and compared. Then the MPC (model predictive control) is introduced whose control properties are better. MPC theories based on both linear and nonlinear models are analyzed, and MPC mathematical description and algorithm characteristics are studied. In view of the system features, a neural network MPC controller is developed. Invariable temperature tests and follow-up tests are simulated by various control modes. Simulation results are analyzed and show that the control strategies are feasible.
引文
[1]中国能源研究会.我国成第一能源消费大国[EB/OL]中国能源网.2011,3.
    [2]国家统计局.2010年国民经济和社会发展统计公报[R].2011,2.
    [3]薛志峰.超低能耗建筑技术及应用[M].北京:中国建筑工业出版社,2005.
    [4]赵晓艳,田稳苓,王敏.浅析建筑节能的现状与未来发展[J].建筑节能.2008,36(8).
    [5]徐寿波.改革开放30年中国能源发展战略的变革[J].北京交通大学学报(社会科学版).2008,7(3)
    [6]杨玉峰.2010年全球煤炭市场形势及2011年展望[J].中国能源.2010,32(10)
    [7]胡兆光.我国“十二五”综合资源战略规划的思考[J].中国能源.2009,31(9).
    [8]胡兆光.中国特色的低碳经济、能源、电力之路初探[J].中国能源.2009,31(11).
    [9]孙迎鑫,刘小勇.浅谈中国低碳经济的发展路径[J].科技资讯.2010,(32).
    [10]仇保兴.仇保兴在中国绿色建筑与节能委员会第一届三次委员会会议上强调加强合作迎接挑战推进绿色建筑发展[J].建筑节能.2010,38(5).
    [11]王元,杨俊杰,廖雄等.相变储能技术的研究进展与应用[J].煤气与热力.2010,30(9).
    [12]Jianlei Shang, Chao Chen, Pin Wu. Experimental investigation of a new type solar energy winter fresh air heating system [C]. International Symposium on Heating, Ventilating and Air Conditioning, Beijing.2007,9.
    [13]M. Medrano, M. O. Yilmaz, M. Nogues, etc. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied energy [J].2009,86(10).
    [14]Tsoutsos T, Gerkas V, Marketaki K. Technical and Economical Evaluation of Solar Thermal Power Generation [J]. Renewable Energy,2003,28(6):873-886.
    [15]Martin A. Green. The Path to 25 percent Silicon Solar Cell Efficiency:History of Silicon Cell Evolution [J]. Progress in PhotoVoltaics.2009,17(3).
    [16]G Vincenzo Fnancastono, G Saggese, M Saggese and P Saggese, Italy. Analysis of Seasonal Storage with Heat Pump and Solar Collector System in the Italian Climate [C]. International Conference of on Subsurface, lent Storage--in theory and practice-Stockholm, Tune,1983.
    [17]P.D.LUND, Helsinki University of Technology, Department of Technical Physics, Finland. Effect of Climate on Major CSHPSS Design Parameters [J]. Solar Energy,1989, 42(6):487-494.
    [18]Katsunori NAGANO. Study on Floor Supply Air Conditioning System Stating Cold Energy for Building Structure and Granules Including Phase Change Material, Parti Construction of a small-scale experimental system and the thermal characteristics [J]. Environ. Eng. ALT, 2004,579(5):21-28.
    [19]Katsunori NAGANO, etc. Study on Floor Supply Air Conditioning System Stating Cold Energy for Building Structure and Granules Including Phase Change Material, Part2 Modeling of the system and load shifting effect of air conditioner load [J]. Environ. Eng. AIJ,2004,584(10):47-52.
    [20]Katsunori NAGANO, etc. Study on Floor Supply Air Conditioning System Stating Cold Energy for Building Structure and Granules Including Phase Change Material, Part 3 Utilization of micro-capsule pellet PCM and evaluation of thermal environment [J]. Environ. Eng. AIJ,2005,587(1):29-35.
    [21]S.O. Enibe. Thermal analysis of a natural circulation solar air heater with phase change material energy storage [J]. Renewable Energy,2003,18(14):2269-2299.
    [22]Zouhair Ait Hammou. A new PCM storage system for managing simultaneously solar and electric energy [J]. Energy and Building,2006,38:258-265.
    [23]L. H. Alva S., J. E. Gonzalez, N. Dukhan. Initial Analysis of PCM Integrated Solar Collectors [J]. Journal of Solar Energy Engineering,2006,128(5):173-177.
    [24]Soma Das and Tapas Kumar Dutta. Mathematical modeling and experimental studies on solar energy storage in a phase change material [J]. Solar Energy,1993,52(5):305-312.
    [25]A. Felix Region, S. C. Solanki, J. S. Saini. Latent heat thermal energy storage using cylindrical capsule:Numerical and experimental investigations [J]. Renewable Energy, 2006,31(13):2025-2041.
    [26]A. Barba, M. Spiga. Discharge mode for encapsulated PCMs in storage tanks [J]. Solar Energy,2003,74(2):141-148.
    [27]T. Kouskson, F. Strub, J. Castaing Lasvignottes, A. Jamil, J. P. Be'de'carrats. Second law analysis of latent thermal storage for solar system [J]. Solar Energy Material & Solar Cell, 2007,91:1275-1281.
    [28]Bansal NK, Buddhi D. Performance equations of a collector cum storage system using phase change materials [J]. Solar Energy,1992,48(3):185-194.
    [29]Bulkin S. G., Vyrlan P. M., Pleshka M. S. Mathematical model of a solar-pump system with solar absorbers and two thermal storage tanks [J]. Appl. Solar Energy,1988,24:41-42.
    [30]Kaygusuz K. Performance of solar-assisted heat pump systems [J]. Appl. Energy,1995a, 51:93-94
    [31]Kaygusuz K. Experimental and theoretical investigation of latent heat storage for water based solar heating system [J]. Energy. Mgmt,1995b,36:315-316.
    [32]林国星,严子峻.不可逆太阳能热泵系统集热器的最佳工作温度[J].太阳能学报,1996, 17(4):309-312.
    [33]赵军,马一太.太阳能热泵供热系统的实验研究[J].太阳能学报.1993,14(4):306-310.
    [34]刘靖,郑宗和,赵军.太阳能热泵供热系统的理论研究[J].新能源.1996,18(7):21-23.
    [35]旷玉辉,王如竹.太阳能热泵[J].太阳能.2003,(2):20-24.
    [36]余延顺,廉乐明.寒区太阳能土壤热源泵系统太阳能保证率的确定[J].热能动力工程.2002,17(7):393-395.
    [37]余延顺,廉乐明.寒冷地区太阳能土壤热源泵系统运行方式的探讨[J].太阳能学报.2003,24(1):111-115.
    [38]张喜明,于力强等.太阳能热泵地板辐射供暖系统[J].可再生能源.2005,(1):28-30.
    [39]施明恒,杜斌等.太阳能液体除湿空调系统再生和蓄能特性的研究[J].太阳能学报.2006,27(1):49-54.
    [40]胡洋,王国栋.太阳热水系统与建筑整合设计初探[J].太阳能学报.2005,26(1):717-721.
    [41]吴振荧,李德英.太阳能地板辐射供暖系统的设计研究[C].全国暖通空调制冷2006年学术年会论文集,2006.
    [42]肖伟,张寅平等.与太阳能空气集热器结合的定形相变蓄热地板供暖系统实验研究[C].全国暖通空调制冷2006年学术年会论文集,2006.
    [43]刘中良,马重芳,孙璇.相变潜热随温度变化对固-液相变过程的影响[J].太阳能学报.2003,24(1):53-57.
    [44]王永利,陈光明等.组合相变蓄热材料应用于太阳能供暖系统[J].热力发电.2004,2:53-54.
    [45]张小松,兰国彬,杜凯等.太阳能热泵组合系统中的设备能量平衡[J].建筑热能通风空调.2000,19(1):23-25.
    [46]Y. P. Zhang, K. P. Lin, R. Yang, etc. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient building [J]. Energy and Buildings,2006, 38:1263-1269.
    [47]Xu Xu, Yinping Zhang, Kunping Lin, etc. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar building [J]. Energy and Buildings,2005,37:1084-1091.
    [48]Yinping Zhang, Kunping Lin, Yi Jiang, etc. Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard [J]. Energy and Buildings.2008,40:1771 1779.
    [49]于水.太阳能与相变复合技术对建筑热特性分析[C].全国暖通空调制冷2008年学术年会论文集.
    [50]杨睿,郭宝华.一种适于大规模工业生产的高导热定形相变蓄热材料[P].中国. CN200410068844.6.2005,3,2.
    [51]Zadeh, Lotfi A. Outline of a new approach to the analysis of complex systems and decision processes [J]. IEEE Transactions on Systems, Man,& Cybernetics.1973,3(1):28-44.
    [52]庞中华,崔红.系统辨识与自适应控制MATLAB仿真[M].北京航空航天大学出版社,2009.
    [53]方崇智,肖德云.过程辨识[M].清华大学出版社,1988.
    [54]杨承志,孙棣华,张长胜.系统辨识与自适应控制[M].重庆大学出版社,2003.
    [55]冯培悌.系统辨识[M].浙江大学出版社,1999.
    [56]徐湘元.自适应控制理论与应用[M].电子工业出版社,2007.
    [57]齐晓慧,田庆民,董海瑞.基于Matlab系统辨识工具箱的系统建模.兵工自动化[J],2006,25(10).
    [58]侯媛彬.系统辨识及其Matlab仿真[M].科学出版社,2004.
    [59]吴广玉.系统辨识与自适应[M].哈尔滨工业大学出版社,1987.
    [60]Fogel E., Huang Y F. On the Value of Information in System Identification Bounded Noise Case [J]. IEEE Trans. Automatic Control,1982,18(2):229-238.
    [61]孙先仿,范跃祖,宁文如.故障检测的集员辨识方法[J].航空学报,1998,19(3):371-374.
    [62]王文正,蔡金狮.飞行器气动参数的集员辨识[J].宇航学报,1998,19(2):31-36
    [63]韩志刚,蒋爱平.自适应辨识、预报和控制——多层递阶途径[M].黑龙江教育出版社,1995.
    [64]韩志刚.多层递阶方法理论与应用的进展[J].控制与决策,2001,16(2):129-132.
    [65]李邦宪.动态系统预测的多层递阶方法[M].气象出版社,1995.
    [66]马杰,田迪,王少红等.多层递阶方法在故障预报中的应用[C].第六届全国技术过程故障诊断与安全性会议论文集,2009,8.
    [67]张晓东,韩志刚.一种改进的多层递阶预报方法研究[J].哈尔滨工业大学学报,2002,34(3).
    [68]张晓东.多层递阶方法及其在企业产值预测中的应用[D].黑龙江大学,1997.
    [69]易继锴,侯媛彬.智能控制技术[M].北京工业大学出版社,1999.
    [70]徐洪泽,褚东升,张福恩.一种改进的遗传算法及其在系统辨识中的应用[J].哈尔滨工业大学学报,1997,29(4):72-75.
    [71]李孝安.一种基于遗传算法与进化编码的系统辨识方法[J].控制与决策,1996,11(3):404-407.
    [72]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995,9(4):1-14.
    [73]Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Application to Modeling and Control [J]. IEEE Trans. On Systems, Man and Cybernetics,1985,15(1):116-132.
    [74]Johansen T A, Murray-Smith R. On the interpretation and Identifications of Dynamic Takagi-Sugeno Fuzzy Models [J]. IEEE Trans. On Fuzzy Systems,2000,8(3):297-313.
    [75]李洪兴.变论域自适应模糊控制器[J].中国科学(E),1999,29(1):32-42.
    [76]张钊.任意隶属度函数模糊系统的逼近特性[J].中国工程科学,2005,7(8):47-50.
    [77]刘霞,刘继承,耿玉容.基于自适应模糊推理的非线性系统辨识器设计[J].化工自动化及仪表,2009,36(5):29-33.
    [78]Pati Y C. Analysis and Synthesis of Feed forward Neural Networks Using Discrete Affine Wavelet Transformations [J]. IEEE Tran. On Networks.1993,4(1):73-85.
    [79]段伟武.基于智能方法的系统辨识和故障诊断[D].烟台大学,2010,3.
    [80]Zhang Q. Wavelet Networks [J]. IEEE Trans. Neural Networks,1992,3(6):889-898.
    [81]Zhang Q. Using Wavelet Network in Nonparametric Estimation [J]. IEEE Trans. Neural Networks,1997,8(2):227-236.
    [82]Tsatsanis M K, Giannakis G B. Time-varying System Identification and Model Validation Using Wavelets [J]. IEEE Trans. On Signal Processing,1993,41(12):3512-3523.
    [83]胡寿松.自动控制原理.第4版[M].科学出版社,2001.
    [84]傅京孙,蔡自兴,徐光祐.人工智能及其应用[M].北京大学出版社,1990.
    [85]Yager, R.R., Filev, D.P. On the reasoning in fuzzy logic control and fuzzy expert systems [C]. Fuzzy Systems,1993, Second IEEE International Conference on vol,1993,1.
    [86]孙增圻.智能控制理论与技术[M].清华大学出版社,1997.
    [87]何玉彬.神经网络控制技术及其应用[M].科学出版社,2000.
    [88]王立新.模糊系统与模糊控制[M].清华大学出版社,2003.
    [89]Richalet J. Industrial Applications of Model Based Predictive Control [J]. Automatica, 1993,29(5):1251-1274.
    [90]Shavit. G, S. G. Brandt. The Dynamic Performance of A Discharge Air-Temperature System with API Controller [J]. ASHRAE Trans. Research,1982,88(2):826-838.
    [91]李峰,李萍,赵虎等.变风量空调系统的模糊控制[J].仪器仪表学报,2004,25(4):261-263.
    [92]M. Kasahara, T. Matsuba. Design and tuning of robust PID controller for HVAC systems, ASHRAE Trans.1999,105(2):154-166.
    [93]吴爱国,杜春燕,宋晓强.参数自调整控制器在中央空调温度控制系统中的应用[J].中国工程科学,2004,6(11):84-87.
    [94]李绍勇,崔旭春,王刚等.空调房间室温广义预测控制的仿真研究,建筑热能通风空调 [J].2003,(6):23-26.
    [95]刘川,张显库.一种鲁棒神经网络结构在温度控制系统中的应用[J].计算机技术与自动化,2003,(3):7-9.
    [96]胡玉玲,曹建国,陈志新等.模糊神经网络用于变风量空调系统末端的控制[J].控制工程,2007,14(增刊):20-22.
    [97]尚建磊.太阳能一相变蓄热技术在冬季供暖新风系统中的实验研究[D].硕士学位论文,北京工业大学.2008.
    [98]李志勇,陈超,罗海亮等.太阳能-相变蓄热供暖系统耦合传热模型的建立与实验验证[J].建筑科学,2010,26(10):292-295.
    [99]李志勇,陈超,邓超.太阳能-相变蓄热新风供暖系统运行控制策略研究[J].土木工程学报,2010,43(增刊):421-425.
    [100]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真[M].科学出版社,2004.
    [101]飞思科技产品研发中心MATLAB6.5辅助神经网络分析与设计[M].电子工业出版社,2004.
    [102]武俊丽,李建辉,史庆武.基于BP神经网络对时滞系统的模型参数辨识仿真[J].佳木斯大学学报,2010,28(4):296-299.
    [103]诸静等.智能预测控制及其应用[M].浙江大学出版社,2003.
    [104]席裕庚.预测控制[M].国防工业出版社,1993.
    [105]Rouhani R., Mehra R. K.. Model algorithmic control (MAC) [J]. Automatica,1982,18(4): 401-414.
    [106]Clarke D. W., Mohtadi C, Tuffs P. S. Generalized predictive control [J]. Automatica,1987, 23(2):137-162.
    [107]Kwon W., Pearson A. On feedback stabilization of time-varying discrete linear systems [J]. IEEE Transactions on Automatic Control,1978,23(3):479-481.
    [108]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475.
    [109]孙浩,席裕庚,张钟俊.一类非线性系统的模型预测控制算法[J].上海交通大学学报,1994,28(4):68-75.
    [110]童一飞,金晓明.基于广义预测控制的循环流化床锅炉燃烧过程多目标优化控制策略[J].中国电机工程学报,2010,30(11):38-43.
    [111]Norquay S J, Palazoqlu A, Romaqnoli J A. Model predictive control based on Wiener models [J]. Chemical Engineering Science,1998,53(1):75-84.
    [112]Jing Ou, R. Russell Rhinehart. Grouped neural network model-predictive control [J]. Control Engineering Practice,2003,11:723-732.
    [113]Ugur Yuzgec, Yasar Becerikli, Mustafa Turker. Nonlinear predictive control of a drying process using genetic algorithms [J]. ISA Transactions,2006,45:589-602.
    [114]P. Dufour, Y. Toure, D. Blanc. On nonlinear distributed parameter model predictive control strategy:on-line calculation time reduction and application to an experimental drying process [J]. Computers and Chemical Engineering,2003,27:1533-1542.
    [115]苏成利.非线性模型预测控制的若干问题研究[D].浙江大学,2006.
    [116]李国勇.智能控制及其MATLAB实现[M].电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700