太阳能空气集热器热性能的实验和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用清洁可再生且蕴藏量丰富的太阳辐射能实现供暖,是缓解能源紧张问题和减少环境污染的有效措施之一,也是实现可持续发展的必经之路。集热器作为太阳能供暖系统的核心部件,提高其热性能对推进太阳能供暖技术的发展具有重要意义。集热器热性能的影响因素除了其自身结构外,还包括系统风量、太阳辐射强度和室外环境温度等运行参数。
     为探究系统风量对集热器热性能的影响,本文搭建了太阳能空气集热器实验台并进行了实验研究,利用CFD软件建立了集热板性能数值模拟计算模型并对其热性能参数进行了影响因素分析,根据模拟数据得出了相应工况下单位面积集热板上的最佳运行风量,本文的主要研究内容如下:
     搭建了由太阳辐射模拟装置、集热器和实验测试系统三部分组成的太阳能空气集热器实验台,并对0.94m3/h、1.41m3/h和1.87m3/h三种风量下集热器热性能的变化规律进行了实验研究,结果表明:在三种风量下稳定运行时,集热板表面温度分别为39.74℃、36.99℃和35.19℃,空气温升分别为22.45℃、17.57℃和14.37℃,集热效率分别为38.56%、45.13%和49.06%。
     利用CFD软件建立了集热板性能数值模拟计算模型并对其进行了验证,在此基础上对300W/m2≤I≤700W/m2、6℃≤Tamb≤12℃范围内各工况下流经集热板的压力损失、集热板表面温度、出口空气温度和空气温升、集热效率和换热效率等热性能参数进行了影响因素分析,根据各工况下的模拟数据得出了相应工况下单位面积集热板上的最佳运行风量,从而为实际工程中运行风量的选取提供参考依据,为太阳能空气集热器的设计与经济运行提供借鉴意义。
The solar radiation energy is clean, renewable and abundant, so using it to realize heating is one effective way to ease the energy shortage problem and reduce the environment pollution, also it is the only way to achieve the sustainable development. As the core component of the whole solar heating system, improving the thermal performance of the solar collector has the important significance to promote the development of the solar heating technology. In addition to its own structure, the factors of collector's thermal performance also include the air operationg flow, the solar radiation, ambient air temperarure and other operating parameters.
     To explore the thermal performance of air operating flow, a solar air collector system experimental platform was set up and the experimental study was carried out. Also the the numerical simulation model of collector plate's performance was built by the CFD software and the simulation was done to analyse the factors influence on thermal performance parameters, the optimal operating flow were obtained according the simulation results of the thermal performance parameters under the corresponding conditions. The main research work are as follows:
     A solar air collector system experimental platform was built in this article, which consists of a solar radiation simulation device, solar collector and the test system. The experiment was done to get the thermal performances of the collector under the three air flow of0.94m3/h,1.41m3/h and1.87m3/h. The results demonstrated that the temperature of the solar collector plate were respectively39.74℃,36.99℃and35.19℃, the rise of air temperature were respectively22.45℃,17.57℃and14.37℃, and the thermal efficiency were respectively38.56%,45.13%and49.06%in the steady state of the three kinds of air flow.
     The numerical simulation model of collector plate's performance was set up by the CFD software. By using the obtained experimental results, the author validated the numerical simulation model, and the simulation was carried out to get the thermal performance parameters under different conditions which the solar radiation was from300W/m2to700W/m2and the ambient temperature was from6℃to12℃were obtained by using the numerical simulation model According to the simulation results of performance parametres, such as the pressure loss of flow air, the temperature of collector plate's surface, the outlet air temperature and the rise of air temperature, the thermal efficiency and the heat exchange effectiveness, the optimal operating flow of collector plate's per unit area under corresponding conditions were obtained, which provided a reference for the selection of opertaing flow in the practical engineering, the design and economical operation of the solar air collector.
引文
[1]江亿,朱颖心.坚持科学发展实现中国特色建筑节能[J].节能与绿色建筑,2009,8:7-17
    [2]刘鉴民.太阳能利用原理技术工程[M].北京:电子工业出版社,2010.6
    [3]徐华东,赵云.太阳能建筑及其主要影响因素[J].能源工程,2003,6:6-9
    [4]清华大学建筑节能研究中心.中国建筑节能年度发展报告2010[M].北京:中国建筑工业出版社,2010
    [5]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40
    [6]武涌.北方采暖地区热计量改造“十一五”总结及“十二五”展望[J].供热制冷,2011,7:20-21
    [7]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2009
    [8]ViorelBadescu, Mihail Dan Staicovici. Renewable energy for passive house heating:Model of the active solar heating system [J]. Energy and Buildings,2006.2:129~141
    [9]HollickJ.C. Solar cogeneration panels [J]. Renewable Energy,1998:195~200
    [10]Hollick J.C, Peter R.W. United States Patent.1990,4:934~938
    [11]Hollands K.G.T. Principles of the transpired-plate air heating collector:the solar wall, Renewable Energy Technologies in Cold Climates'98(Incorporating the 1998 Annual Conference of the Solar Energy Society of Canada), The Solar Energy Society of Canada Inc, Ottawa,1998:139~144
    [12]Kutscher C.F., Christensen C, Barker G. Unglazed transpired solar collectors:an analytic model and test results [J]. Elsevier Science,1991:1245~1250
    [13]Kutscher C.F., Christensen C, Barker G. Unglazed transpired solar collectors:heat loss theory [J]. Solar Energy,1993:182~188
    [14]Kutscher. Heat exchanger effectiveness and pressure drop for air flow through perforated plates with and without crosswind, Journal of Heat Transfer[J]. Solar Energy,1994:391-399
    [15]Arulanandam S.J. A numerical investigation of unglazed transpired-plate solar collectors under zero-wind conditions[C]. University of Waterloo, Waterloo, Canada,1995
    [16]Arulanandam S.J, Hollands K.G.T, Brundrett E. A CFD heat transfer analysis of the transpired solar collector under no-wind conditions[J]. Solar Energy,2000,67:93-100
    [17]Van Decker G.W.E. Heat-exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch[J]. Solar Energy,2001,71(1):33~45
    [18]Fleck B A. A field study of the wind effects on the performance of an unglazed transpired solar collector[J]. Solar Energy,2002,73(3):209~216
    [19]Gunnewiek L. H. Effect of wind on flow distributing in unglazed transpired plate collectors [J]. Solar Energy,2002,72(4):317~325
    [20]Keith Gawlik. A numerical and experimental investigation of low-conductivity unglazed transpired solar air heaters[J]. Journal of Solar Energy Engineering,2005,127(2):153~155
    [21]Augustus Leon M, Kumar S. Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors [J]. Solar Energy,2007(81):62~75
    [22]Abulkhair H, Colllins M. Investigation of wind heat loss from unglazed transpired solar collectors with corrugation [C].5th Annual International Green Energy Conference,2010
    [23]卫欣.一种公共建筑上的太阳墙系统[J].太阳能,2007,1:28-29
    [24]黄护林,施明恒,宗祥康等.带有透明峰窝太阳房的模拟计算[J].太阳能学,1997:371-375
    [25]黄护林,施明恒,宗祥康,葛新石.一座典型建筑物的窗户覆盖透明蜂窝后的热环境分析[J].太阳能学报,1997:432-436
    [26]黄护林,施明恒,葛新石.大孔径复合透明蜂窝结构中对流-辐射耦合传热的计算[J].太阳能学报,1999:59-63
    [27]叶宏,葛新石,庄双勇,程晓舫,王军,许勤堂,奚益民.带透明蜂窝的太阳空气加热器的实验研究[J].太阳能学报,2003:27-31
    [28]张立平.蜂窝平板式太阳能空气集热器及太阳墙的研究[D].江苏大学,2007
    [29]张红,张立平,戴剑侠.太阳墙式空气集热器的供暖试验研究[J].煤气与热力,2007:84-86
    [30]邱林,邹越,黄莉.太阳能空气集热器热性能的实验研究[J].太阳能学报,2007:84-87
    [31]闫敏,邱林,任耿,黄莉,邹越.一种开孔被动式太阳能集热器热效率的研究[J].节能,2009:12-14
    [32]邱林,邹越,黄莉,任耿.太阳集热墙通道中气流速度场与温度场的协同性探讨[J].建筑科学,2010:32-35
    [33]于瑾,马忠娇,宋嘉林.严寒地区太阳墙新风系统节能模拟分析[J].沈阳建筑大学学报,2010:957-961
    [34]张学伟,刘伟,徐冬.太阳能多孔集热墙内传热与流动特性分析[J].建筑节能,2007,(12):54-56.
    [35]张学伟,张卫星,刘伟.太阳墙的冬季集热和夏季隔热性能研究[C].工程热物理学会学术会议论文,2008.
    [36]徐冬.多孔太阳墙系统传热与流动的数值模拟[D].华中科技大学,2007
    [37]欧阳莉.多孔太阳墙的传热与流动分析[D].华中科技大学,2008
    [38]欧阳莉,刘伟.温室内多孔蓄热墙传热与流动特性[J].工程热物理学报,2008:284-286
    [39]欧阳莉,刘伟.太阳能多孔墙的传热与流动特性[J].可再生能源,2008:82-89
    [40]欧阳莉,刘伟.多孔蓄热墙太阳能采暖系统优化设计[J].工程热物理学报,2010:1367-1370
    [41]刘丹.采用冲锋型吸热板的新型太阳能空气集热器的热性能研究[D].天津大学,2009
    [42]李宪莉.太阳能热风系统与村镇建筑一体化研究[D].天津大学,2010
    [43]王远峰.太阳墙系统热性能的研究[D].哈尔滨工业大学,2009
    [44]高立新,孙绍增,王远锋.无盖板渗透型太阳能空气集热器热性能的实验研究[J].节能技术,2012:155-158
    [45]王天成.无盖渗透型太阳能空气加热系统性能的实验研究[D].哈尔滨工业大学,2011
    [46]高立新,王天成,孙绍增.无盖板渗透型集热器热性能的对比试验[J].可再生能源,2012:1-4
    [47]吴兴.无盖板太阳墙换热过程的数值模拟[D].哈尔滨工业大学,2011
    [48]王一鸣,杨昆,刘伟,江雯,杨金国,范爱武.一种新型的多孔太阳墙采暖房[J].工程热物理学报,2012:501-504
    [49]黄俊,顾洁,王晓博.多孔太阳墙式太阳能房间与普通房间热舒适性分析[J].节能,2012:55-58
    [50]方修睦,姜永成,张建利.建筑环境测试技术[M].北京:中国建筑工业出版社,2002
    [51]历玉鸣.化工仪表及自动化[M].北京:化学工业出版社,2009
    [52]路延魁.空气调节设计手册[M].北京:中国建筑工业出版社,2001
    [53]Kutscher C.F. An investigation of heat transfer for air flow through low porosity perforated plates[C]. University of Colardo, Department of Mechanical Engineering,1982
    [54]温正,石良辰,任毅如.Fluent流体计算应用教程[M].北京:清华大学出版社,2009,1:197-198
    [55]中国建筑科学研究院.《民用建筑供暖通风与空气调节设计规范》GB50736-2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700