空调室内污染液滴的扩散及室内热环境的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代人绝大部分时间是在室内度过的,随着生活水平的提高,越来越多的建筑采用空调设备来保证室内的温度处于人体舒适要求的范围内。然而室内存在着多种随空气传播的污染,其中人体通过呼气、咳嗽和打喷嚏排出的含病原体的液滴,是呼吸道传染病传播的重要媒体,并会跟随气流运动和扩散。而空调气流既有可能稀释和排出室内污染微粒,也有可能携带污染液滴进入其他人员的呼吸区,从而感染健康人员。房间内空调气流组织的合理设计,对控制传染性疾病的传播,尤其是病房内高致病性传染病的交叉感染,非常重要。以前对污染液滴的传播和扩散的研究是将其简化为固体颗粒来处理。本论文针对液滴蒸发带来的不同性质,研究了不同形式的空调气流组织排除污染液滴和控制交叉感染的有效性。
     本文主要采用计算流体动力学(Computational Fluid Dynamics CFD)数值模拟蒸发液滴在空调气流里的扩散和传播特性。空调气流中液滴的运动采用了欧拉方法和拉格朗日法,分别计算静止源释放的液滴和咳嗽释放的液滴的扩散和输运。对于欧拉方法中通常用来模拟固体微粒运动的漂移模型,我们创新地提出了对浓度方程中漂移速度项的改进方法,引入了数密度方程,确立了漂移速度和蒸发液滴变化中的直径的代数计算法,从而将液滴的蒸发性质加入了漂移模型,因此可以用来模拟蒸发液滴在空调气流中的运动。
     咳嗽气流喷出的液滴在前10秒内主要是跟随咳嗽的射流扩散运动的。由于咳嗽产生的射流是高度湍流和变化的流场,本文采用了拉格朗日方法,追踪蒸发液滴在气流中的运动轨迹。咳嗽气流决定了液滴的喷射深度,而咳嗽气流和液滴的动量主要是由咳嗽的初速度决定的。本研究对咳嗽气流的速度进行了实验测量,实验数据表明咳嗽的初速度的范围为8~30m/s,咳嗽喷发的持续时间为150~600 ms。
     数值计算的结果显示,在室内能产生扩散和传播的液滴的粒径应小于等于100μm,更大的液滴会坠落于地上或咳嗽病员的床上。空气湿度对液滴蒸发的影响很大,液滴的蒸发时间在相对湿度为75%的室内空气中比在相对湿度55%空气中增加近一倍。研究显示,只有初始粒径大于50μm的液滴在空调气流中才显示出相对于沉降的现象,更小的污染液滴出于快速蒸发成小微粒,可视为跟随性小颗粒。而80μm液滴在蒸发的过程中下降到室内下部,成为处于室内下部的污染源,并有可能在置换式空调中上升到人体呼吸区。
     本文研究了咳嗽喷出的污染液滴在三种空调气流组织形式(混合式、置换式和下送式)中的扩散和传播特点。研究表明人体姿势和咳嗽的方向会影响空调气流组织排出污染液滴和微粒的有效性。置换式空调对排出跟随性小微粒有着明显的优势,但是对排出较大的80μm和100μm的污染液滴的固体残余物,存在一定的困难。下送式空调和置换式空调都表现出将污染液滴/微粒在空间混合、稀释的特点。从排出液滴的有效性和医护人员安全的综合考察,下送式为相对较好的空调形式。
     PV—Trombe墙系统是一种新型的利用建筑的外表面,综合应用太阳能发电和被动采暖的建筑形式。本文对PV—Trombe墙系统的性能和室内热环境进行了实验和理论研究。研究发现,PV—Trombe墙的发电能力和系统的热效率与光伏电池在外玻璃板的覆盖率成正比。在良好的太阳辐照条件下,系统的室内空气的温度在高度方向呈分层分布,上部温度较高。
     带窗户的房间,在冬季的晴好天气条件下,室内会有一个随时间移动的太阳光斑。太阳光斑一方面向室内空间注入了太阳辐射能,另一方面引起了室内温度的不均匀性,从而增加了室内流场和温度场的复杂性。本文探讨了CFD模拟计算带窗户的PV-Trombe墙系统的流场和温度场的方法,针对系统随时间变化的非稳态特征,提出了在固体墙体内加入热吸收率或热释放率,从而可以用稳态的计算方法,模拟某一时刻的系统的室内流场和温度场。采用此方法进行数值计算的室内温度与实验数据吻合良好,从而证实了这种方法的可行性。
Nowadays people spend most of their time at indoor environment. With the improvement of the quality of the people's life, more and more buildings are installed air conditioner and under a controlled air exchange system. The air exchange system should be well designed to keep a safe and comfort indoor environment for people inside. However, there are many airborne pollutants inside the building, some are from the human's body, such as the droplets expelled through breathing, coughing and sneezing. The conditioned indoor air flow may dilute the concentration of the airborne particles/droplets and expel them out of the building, it may also transport them to the breathing zone of other people to cause the health problem, especially in the hospital ward where the patient could expel droplets containing high infectious pathogens, which may result in cross infection inside the hospital. In previous studies of the transport of droplets containing contaminant in the air flow, the droplets are simply treated as airborne particles without evaporation. Taking consideration of the evaporation process, this paper is aimed to understand the characteristics of the transport of the droplets, to find out the effectiveness of different ventilation system in removing contaminated droplets, and the appropriate ventilation set-up to prevent cross infection.
     The numerical simulation with computational fluid dynamics (CFD) is the main approach in this study to investigate the transport and dispersal of droplets and solid remains of droplets that is the solid component of droplets left after the volatile component evaporated. To study the motion of droplets, both Eulerian model and Lagrangian model are used for the droplets expelled from stationary source and coughing, respectively. The drift-flux approach of Eulerian model is widely used in the study of the transport of solid particles in ventilated room. In order to reflect the characteristics of the evaporating of droplets, we proposed to remodel the calculation of drift velocity, to set up a method to construct the algebraic relationship of the drift velocity and evaporation rate with the changing diameters of droplets. The remodeled drift-flux model thus can simulate transport of evaporating droplets in the air flow.
     Droplets expelled from coughing are primarily carried by the air jet pulse produced by coughing during the first 10 seconds from mouth. Because the air jet is highly transient and turbulent, the Lagrangian model was adopted in tracking the evaporating droplets transported in the ventilated room. Since the coughing air jet provides the initial impetus for the traveling of droplets, it is important to know the initial momentum of the coughing jet as it determines the penetrating distance of coughing droplets/particles. Laser Doppler Anemometry was used to measure the initial velocity of the coughing air. According to the experimental data, the initial velocity of the coughing air is the range of 8-30 m/s, the duration of the coughing impulse is 150-600 ms.
     The numerical simulation results indicate that the diameter of the droplets has to be equal or less than 100μm to disperse in the air, otherwise the droplets will fall to the ground or the bed. The humidity of the air can highly affect the evaporating rate of droplets. The time for droplets to dry up in the air of relative humidity of 75 % can be two times of that in the air of relative humidity of 55 %. The simulation results show that the gravitational effect is negligible on droplets smaller that 50μm, while larger ones show more or less settling feature. Droplets with initial diameter of 80μm drop to the lower part of room in the beginning, and then become airborne particles at low position while water dry up, which may later be brought up to the breathing zone by the air flow.
     It has been investigated in this paper the characteristics of transport of droplets of different initial sizes in three types of ventilation system as mixing, displacement and downward ventilation. It is found out that the posture of source manikin and the coughing direction affect the effectiveness of ventilated air in removing droplets and particles. The displacement ventilation shows obvious advantage in removing small airborne particles/droplets, but difficulty to carry larger droplets and their solid remains out of the room. The simulation results also show that the air flow mixed the droplets and dilute the concentration in the mixing and downward ventilated room as time goes on. With comparison, the downward ventilation set-up is recommended as it has equal ability in removing passive particles and lager droplets, moreover in this type ventilation set-up, the number of droplets attached less on the body of health care worker.
     PV-Trombe wall is a novel building design in utilization of solar radiation to provide both electricity and passive heating. This study has investigated the system efficiency in solar radiation utilization and the flow and temperature field inside the room with both experimental and numerical method. The numerical simulation results indicate that not only the electricity output is in the linear relationship with the coverage rate of the PV cells on the glazing of the system, but also the passive heating efficiency does. Both the experimental and numerical simulation results show that during day time the temperate of the room air is in stratified distribution along the height, with the highest temperature on the top of the room, except the air just above the floor area with the incident solar radiation through the window, which may be of the highest temperature.
     Inside a room with a south-faced window, there is a solar light spot moving with time during daytime in winter. The solar light sport not only brings in the solar energy inside the room, but also increases the unbalance of the room temperature, which results in the further complication of the flow and temperature field. CFD modelling of the flow field of such kind building has been studied. Because the ambient condition and the indoor field are all change with time, we proposed to set heat absorption rate or heat generation rate in the solid wall region, the system transient factors can thus be added into a computational domain with the steady calculation method. With this approach, the steady simulation method can be used to simulate the indoor flow field at certain time. The simulation results are in good consistent with experimental data.
引文
[1] Sattar S. A., Ijaz M. K., in CRC Critical Reviews in Environmental Control, ed. Logan, T. (CRC, Philadelphia), 1987, pp.89-131.
    [2] Riley, E. C., Murphy, G. & Riley, R. L. Am. J. Epidemiol. 107, 421-432(1978); Frankova, V. Acta Virol. 19, 35-40(1975); Harmory, B. H., Couch, R. B., Douglas, R. G. J., Black, S. H. & Knight, V. Proc. Soc. Exp. Biol. Med. 139, 890-893(1972); Wilkinson, P. J. & Donaldson, A. I. J. Comp. Pathol. 87, 497-501(1977); Hyslop, N. S. J. Comp. Pathol. 79, 119-126(1965); Leclair, J. M., Zair, J. A., Lenin, M. J., Congdon, R. G. & Goldman, D. A. N. Engl. J. Med. 302, 450-453 (1980); Ratanasethakl, C. & Cumming, R. B. Aust. Vet. J. 60, 209-213(1983); Sattar, S. A. & Ijazm, M. K. in Manual of Environmental Microbiology, eds. Hurst, C. J. & Knudson, G. R. (Blackwell, Oxford), 2nd Ed., pp. 871-883(2002); Varma, J. K, Greene, K. D., Relier, M. E., Delong, S. M., Trottier, J., Nowicki, S. F., DiOrio, M., Koch, E. M., Bannerman, T. L., York, S. T., et al. J. Am. Med. Assoc. 260, 2709-2712(2003); Bolister, N. J., Johnson, H. E. & Wathes, C. M. Epidemiol. Infect. 109, 121-131(1992); Dennis, D. T., Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Friedlander, A. M., Hauer, J., Layton, M., et al. J. Am. Med. Assoc. 285, 2763-2773(2001); Fennelly, K. P., Martyny, J. W., Fulton, K. E., Orme, I. M., Cave, D. M. & Heifers, L. B. Am. J. Respir. Crit. Care Med. 169, 604-609(2004).
    [3] Yu I. T. S, Li Y. G., Wong T. W., Tam W., Chan A., Lee J. H. W., Leung D. Y. C., Ho T., N. Engl. J. Med. 2004; 350: 1731-1739.
    [4] Li Y., Huang X., Yu I. T. S. Qian H., Role of Air Distribution in SARS Transmission During the Largest Nosocomial Outbreak in Hong Kong, Indoor air 2004; 15: 83-95.
    [5] 王清勤,狄彦强,美国传染性隔离病房的通风空调系统设计,暖通空调2006;36(1):73-77.USA CDC. Guidelines for Preventing the Transmission of Mycobacterium Tuberculosis in Health Care Facilities, 1994.
    [6] Mundt E., The Performance of Displacement Ventilation Systems, PhD. Thesis, Royal Institute of Technology Building Services Engineering, Stockholm, 1996, Sweden..
    [7] Brohus H., Personal Exposure to Contaminant Sources in Ventilated Rooms, PhD. Thesis, 1997, Aalborg University, Aalborg, Denmark.
    [8] Bjorn E, Nielsen PV, Dispersal of Exhaled Air and Personal Exposure in Displacement Ventilated Rooms, Indoor Air 2002; 12:147-164.
    
    [9] Qian H, Li Y, Nielsen PV, Hyldgaard CE, Wong TW, Chwang ATY, Dispersion of Exhaled Droplet Nuclei in a Two-Bed Hospital Ward with Three Different Ventilation Systems, Indoor Air 2006; 16:111-128.
    
    [10] Qian H, Nielsen P. V., Li Y., Hyldgaard C. E., Dispersion of Exhalation Pollutants in a Two-Bed Hospital Ward with Downward Ventilation System, The 10th International Conference on Indoor Air Quality and Climate, Beijing, 2005, China.
    
    [11] C. T. Crowe, Review -Numerical Models for Dilute Gas-Particle Flows, Journal of Fluids Engineering 1982; 104: 297-302.
    
    [12] S. Murakami, S. Kato, S. Nagano, Y. Tanaka, Diffusion Characteristics of Airborne Particles with Gravitational Settling in a Convection-Dominant Indoor Row Field, ASHRAE Transaction 1992; 98: 82-97.
    
    [13] Holmberg S., Li Y, Modeling of the Indoor Environment-Particle Dispersion and Deposition, Indoor Air 1998; 8: 113-122.
    
    [14] Friberg B., Friberg S., Burman L.G, Lundholm R., Ostensson R., Inefficiency of Upward Displacement Operating Theater Ventilation, J. Hosp. Infect 1996; 33: 263-272.
    
    [15] Zhao B., Zhang Z., Li X., Huang D., Comparison of Diffusion Characteristics of Aerosol Particles in Different Ventilated Rooms by Numerical Method, ASHRAE Transactions 2004; 110(1): 88-96.
    
    [16] Duguid, J.P., The numbers and the Sites of Origin of the Droplets Expelled During Expiratory Activities, Edinburg Med. J. 1945; 52: 385-40.
    
    [17] Brundrett G. W., Legionella and Building Services. Butterworth-Heinemann, Oxford, 1992- 129-130.
    
    [18] White F. M., Viscous Fluid Flow, McGraw-Hill. Inc., New York, USA 1991; 394-407.
    
    [19] Hinze J. O., Turbulence. McGraw-Hill Publishing Co., New York, 1975.
    
    [20] Cheng Q., Moser A., Huber A., Prediction of Buoyant Turbulent Flow by a Low-Reynolds -Numbe k-e Model, ASHRAE Transactions 1990; 96(1):564-573.
    
    [21] Nielsen P. V, The Selection of Turbulence Models for Prediction of Room Airflow, ASHRAE Transactions 1998; 104 (1B):1119 -1127.
    
    [22] Chen Q., Comparison of Different k-e Models for Indoor Air Flow Computations, Numerical Heat Transfer, Part B 1995; 28: 353-369.
    [23] Launder B. E., Spalding. D. B., Lectures in Mathematical Models of Turbulence. Academic Press, London, England, 1972.
    
    [24] Dodds M. W. J, Johnson D. A., Yeh C, Health Benefits of saliva: a Review, Journal of Dentistry. 2005; 33: 223-233.
    
    [25] Sirignano W.A., Fluid Dynamics of Sprays. J. Fluids Eng. 1993; 115: 345-378.
    
    [26] Godsave G.A.E., Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel. In: Proceedings of the Fourth Symposium (International) on Combusion. Combustion Institute, Baltimore, MD, 1953; 818-830. Spalding, D.B., The combustion of liquid fuels. In: Proceedings of the Fourth Symposium (International) on Combustion. Combustion Institute, Baltimore, MD, 1953; 847-864
    [27] Wager P.E., Aerosol Growth by Condensation. In Marlow W. H., ed. Aerosol Microphysics II, Berlin, Germany, Springer, 1982,129-178.
    
    [28] Barrett J.C., Clement, CE, A Soluble One-dimensional Problem for Coupled Conduction and Mass Diffusion with Aerosol Formation in a Vapor-gas Mixture, J. Aerosol Sci., 1986; 17: 129-143.
    
    [29] Fuchs N.A. Evaporation and Droplet Growth in Gaseous Media, London, UK, Pergamon Press. 1959
    
    [30] Davies C.N. Evaporation of Airborne Droplets. In: Shaw, D.T. (ed.) Fundamentals of Aerosol Science, New York, USA, Wiley, 1978; 135-164.
    
    [31] Kukkonen J., Vesala T. and Kulmala M., The interdependence of evaporation and settling for airborne freely falling droplets, J. Aerosol Sci., 1989; 20: 749-763.
    
    [32] Ranz WE and Marshall Jr WR., Evaporation from drops, Part I. Chemical Engineering Progress 1952; 48(3):141-6; Ranz WE and Marshall Jr WR., Evaporation from drops, Part II. Chemical Engineering Progress 1952; 48(4):173-80.
    
    [33] Clift R., Grace, J.R. and Weber M.E., Bubbles, Drops, and Particles, New York, Academic Press. (1978).
    
    [34] N. Abuaf and F. W. Staub, Drying of liquid-solid slurry droplets, Drying '86, Proc. Fifth. Int. Symp. on Drying, Vol. 1, pp. 277-284, Massachusetts institute of Technology (1986).
    [35] Srdjan N., The Evaporation of single Droplets-Experiments and Modeling. In Drying '89 (Edited by A. S. Mujumdar and M. Roques), pp. 386-393 Hemisphere, NY (1989).
    [36] T. O. K. Audu, J. V. Jeffreys, The Drying of Drops of Particulate Slurries, Trans. INSTN Chem. Engrs. 1975; 53: 165-172.
    [37] H. W. Cheong, G. V. jeffreys, C. J. Mumford, A Receding Interface Model for the Drying of Slurry Droplets, A. I. Ch. E. J. 1986; 32(8): 1334-1346.
    [38] M. Kaviany, Principles of Heat transfer in Porous Media. Springer, New York(1991)
    [39] R. Krupitczka, Analysis of Thermal Conductivity in Granular Materials, Int. Chem. Eng. 1967; 7: 122-144.
    [40] X. Xie, Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto, How far droplets can move in. indoor environments-revisiting the Wells evaporation-falling curve, Indoor Air 2007; 17(3): 211-225.
    [41] Duguid J. P., The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet Nuclei, J. Hyg. 1946; 44: 471-479.
    [42] Shirolkar J. S., Coimbra C. F. M., McQuary M. Q., Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows, Prog. Energy Combust. Sci. 1996; 22: 363-399.
    [43] 周力行,湍流气粒两相流动和燃烧的理论与数值模拟,科学出版社1994
    [44] Crowe C. T., Sommerfeld M., Tsuji Y., Multiphase Flow with Droplets and Particles, CRC Press LLC 1998.
    [45] Batchelor G. K., Transport Properties of Two-Phase Materials with Random Structure, Journal of Fluid Mechanics 1974; 6: 227-255.
    [46] Lumley J. L., Two-Phase and Non-Newtonian Flows, in Bradshaw P.(ed) Turbulence, Berlin Springer(1978); p.289.
    [47] Etheridge D. Sandberg M., Building Ventilation: Theory and Measurement, Chichester John Wiley & Sons, 1996.
    [48] Tennekes H., Lumley J. L., A First Course in Turbulence, MIT Press, Cambridge MA 1972.
    [49] Zuber N., Findlay J. A., Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer 1965; 87: 453-468.
    [50] Manninen M., Taivassalo V., Kallio S., On the Mixture Model for Multiphase Flow, VTT Publications 288, Technical Research Centre of Finland, 1996.
    [51] Celik I., Rodi W., Modeling Suspended Sediment Transport in Nonequilibrium Situations, Journal of Hydraulic Engineering 1989; 114: 1157-1191.
    [52] Adams E. W., Rodi W., Modeling Flow and Mixing in Sedimentation Tanks, Journal of Hydraulic Engineering 1990; 116: 895-913.
    
    [53] Zhou S., McCorquodale J. A., Modeling of Rectangular Settling Tanks, Journal of Hydraulic Engineering, 1992; 118:1391-1405.
    
    [54] Sokolichin A. Eigengerger G, Applicability of the Standard k-e Turbulence Model to the Dynamic Simulation of Bubble Columns: Part I . Detailed Numerical Simulations, Chem. Eng. Science 1999; 54: 2273-84.
    
    [55] Zhao B., Zhang Z., Li X., Numerical study of the transport of droplets or particles generated by respiratory system indoors, Building and Environment 2005; 40 (8): 1032-1039.
    
    [56] Zhu S., Kato S., Yang J. H., Study on Transport Characteristics of Saliva Droplets Produced by Coughing in a Calm Indoor Environment, Building and Environment 2006; 41: 1691-1702.
    
    [57] Fluent User's Manual 6.2, Fluent Inc. 2005.
    
    [58] J. R. Cash, A. H. Karp., A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software 1990; 16: 201-222.
    
    [59] Ryan KJ. Sherris Medical Microbiology. Norwalk: Appleton & Lange; 1994.
    
    [60] Mandell GL. Principles and Practice of Infectious Diseases. New York: Wiley; 1985.
    
    [61] Hsu JY, Stone RA, Logan-Sinclair RB, Worsdell M, Busst CM, Chung KF, Coughing Frequency in Patients with Persistent Cough: Assessment Using a 24 hour Ambulatory Recorder, Eur. Respir. J. 1994; 7: 1246-1253.
    
    [62] Bickerman H. A., E. Itkin., The Effects of a New Bronchodilator Aerosol on the Air Flow Dynamics of the Maximal Voluntary Cough of Patients with Bronchial Asthma and Pulmonary Emphysema. J. Chron. Dis. 8: 629-636, 1958.
    
    [63] Blumanthal W. S., F. J. Demaio, L. Cander, The Relationship Between Air Flow Transients, Intrathoracic Pressure, and Airway Geometry During Cough, Clin. Res. 1962; 10: 404.
    
    [64] Langlangds J. The Dynamics of Cough in Health and in Chronic Bronchitis. Thorax 1967; 22: 88-96.
    
    [65] King Mm, Brock G, Lundell C, Clearance of Mucus by Aimulated Cough, J Appl Physiol. 1985;58(6):1776-82.
    
    [66] McCool F. D., Global Physiology and Pathophysiology of Cough: ACCP Evidence-Based Clinical Practice Guidelines, Chest 2006; 129: 48-53.
    
    [67] Abraham J., Entrainment characteristics of transient gas jets: Numer. Heat Tran. A 1996; 30; 347-364.
    [68] Song L. Abraham J., Entrainment Characteristics of Transient Turbulent Round, Radial and Wall-Impinging Jets: Theoretical Deductions, Journal of Fluids Engineering 2003; 125: 605-613.
    [69] 朱德忠,热物理激光测试技术,科学出版社1990。
    [70] Klepeis NE, Nazaroff WW, Characterizing Size-Specific ETS Particle Emissions. Proc. Indoor Air'02 2002; 162-169.
    [71] Murakami S, Kato S, Zeng J. Flow and Temperature Fields Around Human Body with Various Room Air Distribution, CFD Study on Computational Thermal Manikin(Part 1). ASHRAE Transactions 1997; 103(1): 3-15. Murakami S, Kato S, Zeng J., Numerical Simulation of Contaminant Distribution Around a Modeled Human Body, CFD study on Computational Thermal Manikin(Part 2). ASHRAE Transactions 1998; 104(2): 226-233.
    [72] Nielsen M., Pederson L., Studies on the Heat Loss by Radiation and Convection from the Clothed Human Body, Acta. Phys. Scandinav. 1952; 27: 272-294.
    [73] Rapp G. M. Convective Heat Transfer and Convective Coefficients of Nude Man, Cylinders and Spheres at Low Air Velocities, ASHRAE Transactions 1973; 79: 75-87.
    [74] Hayashi T., Kato S., Murakami S., Yang JH, CFD Analysis on Rising Stream Around a Human Body and Its Effect on Inhalation Air Quality, ASHRAE Transactions 2002; 108(2): 1173-8
    [75] Murakami S., Kato S., Zeng J., Combined Simulation of Airflow, Radiation and Moisture Transport for Heat Release from a Human Body, Building and Environment 2000; 35: 489-500.
    [76] ASHRAE Fundamental Handbook, [Chapter 8] 1993.
    [77] Murakami S., Analysis and Design of Micro-Climate Around the Human Body with Respiration by CFD, Indoor Air 2004; 14(Suppl 7): 144-156.
    [78] Gao P., Niu J., CFD Study on Micro-Environment Around Human Body and Personalized Ventilation, Building and Environment 2004; 39: 795-805.
    [79] Niu J, van der Kooi J., Grid-Optimization for k-e Turbulence Model Simulation of Natural Convection in Rooms, In: Proceedings ROOMVENT-92: Air Distribution in Rooms-Third International Conference, 1992; 1: 207-23.
    [80] Fanger P. O., Thermal comfort. Copenhagen: Danish Technical Press, 1970.
    [81] Topp C., Hesselholt P., Trier M. R., Nielsen P. V., Influence of Geometry of Thermal Manikins on Room Airflow, Proceedings of the 7th International Conference on Healthy Buildings, Singapore, 2003, Vol.2, 339-344.
    [82] Yin ZQ, Status of Solar Thermal Conversion in China, Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement, Beijing September 2007, Vol.1, 19-26.
    [83] 董月鲜,2005年房地产宏观调控成效明显,国家信心中心经济预测部:中国投资信息网.
    [84] 国务院,国家中长期科学和技术发展规划纲要(2006-2020),人民日报,2006-02-10(1).
    [85] 易桦,新型PV-Trombe墙系统的理论与实验研究,博士学位论文,2007,中国科学技术大学.
    [86] 杨洪兴,季杰,娄成芝,太阳能光伏——建筑一体化(BIPV),新能源,1999;1:27-30.
    [87] 季杰,蒋斌,陆剑平,易桦,何伟,裴刚,新型PV—Trombe墙的实验,中国科学技术大学学报2006;36(4):349—354.
    [88] 季杰,易桦,何伟,裴刚,陆剑平,蒋斌,PV新型Trombe墙的光电光热性能数值模拟,太阳能学报2006;27(9):870—877,
    [89] Ji J., Yi H., Pei G., Lu J. R, Study of PV-Trombe Wall Installed in a Fenestrated Room with Heat Storage, Applied Thermal Engineering, 2007; 27: 1507-1515.
    [90] Ji J., Yi H., Pei g., Jiang B., He W., Study of PV-Trombe Wall Assisted with DC-Fan, Building and Environment, In press, Corrected Proof, Available online 19 Dec. 2006.
    [91] Ji J., Yi H., He W., Pei G., PV-Trombe System Designed for Composite Climates, Journal of Soar Energy Engineering, Accepted, 2006.
    [92] Ji J., Yi H., He W., Pei G., Lu J. R, Jiang B., Modeling of a Novel Trombe Wall with PV cells, Building and Environment, 2007; 42(3): 1544-1552.
    [93] Yang H. X., Marshall R. H., Brinkworth B. J., Validated Simulation For Thermal Regulation of Photovoltaic Wall Structures. Proceed of the 25th Photovoltaic Specialist Conference, USA, 1996; 1453-1456.
    [94] Brinkworth B. J., Cross B. M., Marshall R. H., Yang H. X.. Thermal regulation of photovoltaic cladding. Solar Energy, 1997; 62(3): 169-178.
    [95] 杨洪兴、季杰,BIPV对建筑墙体得热的影响的研究,太阳能学报,1999;20(3):169—178.
    [96] Stefan Krauter, Rodrig Guido Araujio, Sandra Schroer, Rolf Hanitsch, Mohammed J. Salhi, Clements Triebel and Reiner Lemoine, Combined Photovoltaic and Solar Thermal System for Facade Integration and Building Insulation, Solar energy, 1999; 67: 239-248.
    [97] 季杰,何伟,光伏墙体年发电性能及年得热动态预测,太阳能学报2001;22(3):311-316。
    [98] 季杰,何伟,不同自然冷却方式对光伏墙体性能的理论与实验研究,太阳能学报,2001;22(4):380-385。
    [99] 何伟,太阳能在建筑上的光电、光热应用研究,博士学位论文,2002,中国科学技术大学。
    [100] 季杰,何伟,光伏光热建筑一体化对建筑节能影响的理论研究,暖通空调,2003;33(6):8-11。
    [101] Ji J., Chow T. T., He W., Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong. Building and Environment, 2003; 38(11): 1327-1334.
    [102] 季杰,程洪波,何伟,陆剑平,T.T.Chow,太阳能光伏光热一体化系统的实验研究,2005;26(2):170-173。
    [103] 季杰,陆剑平,何伟,周天泰,裴刚,一种新型全铝扁盒式PV/T热水系统的实验研究。太阳能学报,2006;27(8):765-773。
    [104] G. S. Yakubu, The Reality of Living in Passive Solar Homes: A User Experience Study, Renewable Energy, 1996; 8: 177-181.
    [105] Tasdemiroglu E., The Performance Results of Trombe-Wall Passive System Under Aegean Sea Climatic Conditions, Solar Energy, 1983; 30(2): 181-189.
    [106] 孙鹏,陈滨,丁颍慧,陈会娟,冬季特朗贝墙内置卷帘对墙体热性能的影响,太阳能学报2006;27(6):564—570。
    [107] 叶宏,葛新石,几种集热—贮热墙式太阳房的动态模拟及热性能比较,太阳能学报2000;21(4):349—357
    [108] Zrikem Z., Bilgen E., Theoretical Study of a Composite Trombe-Michel Wall Solar Collector System, Solar Energy, 1987; 39: 409-419.
    [109] Zalewski L., Chantant M., Experimental Thermal Study of a Solar Wall of Composite Type, Energy and Buildings 1997; 25: 1-18.
    [110] Akbarzadeh A., Charters W. W. S., Lesslie D. A., Thermocircultaion Characteristics of a Trombe Wall Passive Test Cell, Solar Energy 1982; 28: 461-468.
    [111] Smolic W., Thomas A. Some Aspects of Trombe Wall Heat Transfer Models, Energy Conversion and Management 1991; 32(3): 269-277.
    
    [112] Smolic W., Thomas A., Theoretical and Experimental Investigations of Heat Transfer in a Trombe Wall, Energy Conversion and Management 1993; 34(5): 385-400.
    
    [113] Akbari H., Bogers T. R., Free Convective Laminar Row Within the Trombe Wall Channel, Solar Energy 1972; 22:165-174.
    
    [114] Chen D. T, Chaturvedi S. K., Mohieldin T. O., An Approximate Method for Calculating Laminar Natural Convective Motion in A Trombe Wall Channel, Energy 1994; 19(2): 295-268.
    
    [115] Awbi H. B., Gan G, Simulation of Solar-induce Ventilation, Renewable Energy Technology and the Environment 1992; 4: 2016-2030.
    
    [116] Gan G. A Parameter Study of Trombe Walls for Passive Cooling of Building, Energy and Buildings 1998; 27(1):37-43.
    
    [117] Bouchair A. Solar Chimney for Promoting Cooling Ventilation in Southern Algeria.Building Service Engineering, Research and Technology 1994; 29(4): 495-500.
    
    [118] Moshfegh B., Sandberg M., Flow and Heat Transfer in the Air Gap Behind Photovoltaic Panels, Renewable and Sustainabel Energy Reviews 1998; 2: 287-301.
    
    [119] Chen Z. D., Bandopadhayay P., Halldorsson J., Byrjalsen C, Heiselberg P., Li Y., An Experimental Investigation of A Solar Chimney Model With Uniform Wall Heat Flux, Building and Environment 2003; 38: 893-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700