太阳辐射减弱和O_3胁迫对土壤性质及冬小麦中N、P元素的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地表太阳辐射减弱强度和03浓度升高均呈增加趋势,太阳辐射减弱和O3增加会影响作物的生长发育及作物对N、P元素的吸收。本文基于开顶式气室(OTC)和黑色遮阳网模拟地表03浓度增加和太阳辐射减弱情况,共设置了9个实验处理:CKl(野外大田组,完全自然环境);S1(太阳辐射减弱20%);S2(太阳辐射减弱40%);S3(太阳辐射减弱60%);CK2(仅增加OTC气室,不进行03曝气和遮光);T(03浓度为100±8n1·L-1);TS1(T与S1复合),TS2(T与S2复合),TS3(T与S3复合)。研究了整个生育期内太阳辐射减弱和03胁迫对冬小麦各器官中N、P元素和麦田耕层土壤理化性质、土壤酶活性的影响。主要结论如下:
     (1)太阳辐射减弱(S1、S2、S3)会增大土壤含水量,导致根区土壤全N和速效K含量增大,土壤速效P含量降低;太阳辐射减弱会增大冬小麦各器官中N、P含量,且根、茎和营养器官中N、P含量均与太阳辐射减弱强度呈极显著正相关,降低根中N、P累积量和分配率,增大叶中N、P累积量,降低营养器官中N、P的总转运量和转运率。
     (2)单因子03增加(T)会降低土壤过氧化氢酶活性,增大土壤脲酶活性,增大土壤速效P、K和全P、K含量;T处理会增大冬小麦各器官中N、P含量和营养器官中N、P的总转运率,降低叶中N、P的转运量,降低冬小麦各器官中P的累积量,降低出苗-抽穗期根、茎、叶对N、P的阶段累积吸收,降低抽穗期-成熟期穗中P的阶段累积吸收和根、茎、叶中P的阶段输出量,增大抽穗期-成熟期根、茎和营养器官中N的阶段输出量。
     (3)不同程度的太阳辐射减弱条件下的03增加处理(TS1、TS2、TS3)会增大冠层空气日平均相对湿度,降低冠层空气日平均温度;增大孕穗期-成熟期冬小麦各器官中N、P含量,降低营养器官对N的总累积吸收和植株对P的总累积吸收,降低根、叶和营养器官中N、P的转运量及穗中P的累积和分配,且叶中N、P的转运量随着太阳辐射强度的降低而降低,降低出苗期-抽穗期茎、叶对N、P元素的阶段累积吸收,降低抽穗期-成熟期茎、叶中N、P的输出量和穗中P的阶段累积吸收。
     (4)土壤含水量与冬小麦各器官中N、P含量显著正相关,与各器官中N、P累积量显著负相关,土壤pH值与各营养器官中N、P含量显著负相关。通径分析表明,土壤含水量增大对营养器官中N、P含量的直接促进作用最大,但是在一定程度上对营养器官中N、P的总累积量会产生直接阻碍作用,日平均太阳瞬时辐射强度对营养器官中N、P的总累积量的直接促进作用最大。
In recent years, the weakening of the surface solar radiation and elevated O3showed an increasing trend, the decreased solar radiation and increased O3will affect crop growth and absorption of N, P elements. In this paper, we simulated the enhanced O3concentration and reduced solar radiation by using open-top chamber (OTC) and black shade nets, set up9experimental treatments:CK1(field cornfield group, completely natural environment); S1(solar radiation attenuated by20%); S2(solar radiation weakened40%); S3(solar radiation weakened60%); CK2(only add the chamber without ozone aeration and shading); T(O3concentration of100±8n1·L-1); TS1(T and S1composite), TS2(T and S2composite), TS3(T and S3composite). Research was conducted comprehensive under the reduced solar radiation and enhanced O3conditions to detect the regularity of N、P concentration in different organ of winter wheat plants (Triticum aestivum L, Yang Mai13), cornfield topsoil physicochemical properties and soil enzyme activity. The main results indicated as follows:
     (1) The treatments of decreased solar radiation (S1, S2, S3) was increased soil moisture, increased the concentration of soil total N and available K, decreased soil available P concentration; The shading treatments increased the concentration of N, P in root, stem, leaf and vegetative organ, and N、P concentration in root, stem and nutritorium and the sun radiation abate strength was showed a significant positive correlation, the decreased solar radiation treatments reduced N, P cumulant and distribution rate of root, increased N and P cumulant of leaf, reduced the total transfer volume and transfer rates of N and P in the nutritorium.
     (2) The treatments (T) of single increasing O3concentration was reduced soil catalase activity, increased urease activity and concentration of soil available P, K and total P, K; increased N, P concentration in the various organs of winter wheat and N, P total transfer rates of nutritorium, reduced translocation amount of N, P of leaf, reduced the cumulant of P in various organs of winter wheat, reduced the stage accumulation of N, P in root, stem and leaf in the seeding stage-heading stage, reduced the stage accumulation of P in spike and the phase output of P cumulant in root, stem and leaf during the heading stage and the maturity stage, increased output of N cumulant in root, stem and vegetative organ in the heading stage-mature stage.
     (3) The treatmens of increased O3under different levels of reduced solar radiation conditions (TS1, TS2, TS3) increased canopy air relative humidity, reduced the daily average temperature of canopy air, promoted N and P concentration in different organs of winter wheat plant, reduced the total N cumulant of nutritorium and the P cumulant in winter wheat plant, decreased N, P transfer amount in root, leaf and nutritorium, reduced P cumulant and distribution rates in spike, decreased the stage accumulation of N, P in stem and leaf during seeding stage and heading stage, reduced N, P phase output of stem, leaf and P cumulated absorption of spike in the heading stage-mature stage, and the N, P transfer amount was reduced as the weaken intensity of solar irradiance.
     (4) The soil moisture and N, P concentration in various organs of winter wheat was showed a significant positive correlation, showed a significant negative related with N, P cumulant in the different organs, soil pH was significant negative correlated with N, P concentration in various nutrient organs. Path analysis showed that soil moisture increases promoted N, P concentration in nutritorium of the largest direct role, but produced direct impediment on N, P total cumulant in nutritorium to some extent, daily average solar instantaneous radiation intensity had the largest role in direct promoting N, P total cumulant in nutritorium of winter wheat.
引文
[1]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,,2000:268-270.
    [2]白月明,郭建平,王春乙,等.水稻与冬小麦对臭氧的反应及其敏感性试验研究.中国生态农业学报,2002,10(1):13-16,
    [3]陈展,王效科,冯兆忠,等.臭氧对生态系统地下过程的影响[J].生态学杂志,2007,26(1):121-125.
    [4]陈展,王效科,段晓男,等.臭氧浓度升高对盆栽小麦根系和土壤微生物功能的影响[J].生态学报,2007,27(5):1803-1808.
    [5]陈玉群,钟慧莲.中国城市的阳光问题[J].广西大学梧州分校学报.2002,12(1):20-21.
    [6]陈娟,曾青,朱建国,等.臭氧和氮肥交互对小麦干物质生产、N、P、K含量及累积量的影响[J].生态环境学报,2011,20(4):616-622.
    [7]陈军胜.华北平原免耕冬小麦田土壤水热特征及其对冬小麦生长发育影响研究[D].中国农业大学博士学位论文.2005.
    [8]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响[J].应用生态学报,1999,,10(2):193-196.
    [9]曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报,,2003,,34(4):295-298.
    [10]段建真,郭素英.遮阴与覆盖对茶园生态环境的影响[J].安徽农学院学报,1992,19(3):189-195.
    [11]杜宝华,吕学都.土壤湿度对冬小麦光合速率的影响[J].中国农业气象,1992,13(4):8-11.
    [12]杜家菊,陈志伟.使用SPSS线性回归实现通径分析的方法[J].生物学通报,2010,45(2):4-6.
    [13]丁玉川.陈明昌,程滨,等.作物磷营养效率生理生化基础研究进展[J].山西农业科学,2004,32(3):25-29.
    [14]党红凯.超高产冬小麦营养元素吸收,积累与分配规律的研究[D].河北农业大学硕士学位论文.2007.6:1-52.
    [15]方保停,张胜全,王敏,等.节水栽培冬小麦光合器官遮光对籽粒蛋白质形成的影响[J].麦类作物学报,2008,28(2):266-270.
    [16]冯妍.太阳辐射减弱下冬小麦生物量变化的大田试验与模拟研究[D].南京信息工程大学硕士学位论文,2011.
    [17]宫玉艳.近地层臭氧浓度升高对水稻元素吸收和分配的影响[D].扬州大学硕士学位论文,2010.
    [18]郭建平,王春乙,温民,等,大气中03浓度变化对水稻影响的试验研究[Jl.作物学报,2001,27(6):822-826.
    [19]郭琳琳.典型耕地棕壤肥力状况及变化趋势的研究[D].沈阳农业大学硕士学位论文,2009.
    [20]郭翠花,高志强*,苗果园.花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响[J].作物学报,2010,36(4):673-679.
    [21]胡君利,林先贵,朱建国.土壤微生物对大气对流层臭氧浓度升高的响应[J].土壤,2008,40(6):857-862.
    [22]胡燕.华东型连栋塑料温室夏季遮阳网降温试验研究[D].浙江大学硕士学位论文,.2003.2:1-72.
    [23]霍常富,孙海龙,范志强,等.根系氮吸收过程及其主要调节因子[J].应用生态学报,2007,18(6):1356-1364.
    [24]何欣,张攀伟,丁传雨,等.弱光下硝铵比对小白菜氮吸收和碳氮分配的影响[J].土壤学报.2009.46(3):452-458.
    [25]何园球.水分与磷素对水稻旱作期间土壤-植株磷素营养的影响[D].南京农业大学博士学位论文,2003.
    [26]金赛花,樊曙先,王自发,等.青海瓦里关地面臭氧浓度的变化特征[J].中国环境科学,2008,,28(3):198-202.
    [27]李果梅,王殳屹,史奕,等.03浓度升高及温度对麦田土壤酶活性及酚酸类物质含量的影响[J].农业环境科学学报,2008,27(1):121-125.
    [28]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(1):47-53.
    [29]李林,张更生.阴害影响水稻产量的机制及其调控技术Ⅱ.灌浆期模拟阴害影响水稻产量的机制[J].中国 农业气象,1994,15(3):5-9.
    [30]刘国顺,乔新荣,王芳,等.弱光对烤烟干物质积累及矿质养分的影响西[J].南农业学报,2008,21(1):130-133.
    [31]刘春光.水分胁迫及复水对作物生长及养分吸收补偿效应的研究[D].西北农林科技大学硕士学位论文,2001.6:1-60.
    [32]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.1999,12.
    [33]牟会荣,姜东,戴廷波,等.遮光对小麦植株氮素转运及品质的影响[J].应用生态学报,2010,21(7):1718-1724.
    [34]南京农业大学,土壤农化分析[M].北京:农业出版社,1998.
    [35]钱妙芬,潘永.塑料遮阳网大棚小气候观测与分析[J].成都信息工程学院学报,,2001,16(2):105-109.
    [36]任万军,杨文钰,徐精文,等.始穗后弱光对不同基因型水稻叶片特性的影响[J].四川农业大学学报,2002,20(3):205-208.
    [37]任万军,杨文钰,张国珍,等.弱光对杂交稻氮素积累、分配和子粒蛋白质含量的影响[J].作物营养与肥料学报,2003a,9(3):288-293.
    [38]任万军,杨文钰,徐精文,等.弱光对水稻籽粒生长及品质的影响[J].作物学报,2003b,29(5):785-790.
    [39]沈明卫,郝飞麟,内外遮阳对连栋塑料温室内光环境的影响[J].农业机械学报.2004.35(5):110-116.
    [40]孙陶芳.FACE条件下O3浓度增高对小麦籽粒产量和源库关系的影响[D].扬州:扬州大学,2009.
    [41]石春红,郑有飞,吴芳芳,等.大气中臭氧浓度增加对根际和非根际土壤微生物的影响[J].土壤学报,2009,46(5):894-898.
    [42]谭建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J].热带气象学报,2007,23(5):515-520.
    [43]王春乙.臭氧对农作物的影响研究[J].应用气象学报,1995,6(3):343-349.
    [44]王春乙,白月明,郑昌玲,等.CO2和03浓度倍增对作物影响的研究进展[J].气象学报,2004.10,62(5):875-881.
    [45]王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社,2007.26-59.
    [46]王体健,李树,刘丽,等.大气棕色云和区域气候变化[J].气候变化研究进展,2010,6(3):230-232.
    [47]王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报,1998,29(1):130-134.
    [48]王小治,张海进,张咸臣,等.大气03浓度升高对稻田土壤有效态微量元素的影响[J].生态学报,2010,30(17):4741-4747.
    [49]王婷,郭红岩.季荣.近地面03含量升高条件下土壤中腐殖质单体儿茶酚转化的放射14C示踪研究[Jl.生态环境学报,2010,19(5):1226-1231.
    [50]王亮,曾青,冯兆忠,等.开放式臭氧浓度升高对2个冬小麦品种光合损伤的研究[J].环境科学,2009,30(2):527-534.
    [51]文军,刘金祥,赵玉红.草本植物遮荫效应的研究进展[J].草业科学,2007,24(9):93-97.
    [52]吴荣军.地表臭氧胁迫下冬小麦生理生态效应及风险评估[D].南京:南京信息工程大学,2009.
    [53]吴兑.华南气溶胶研究的回顾与展望[J].热带气象学报,2003,19(增刊):145-151.
    [54]吴振海,陈家金,徐宗焕.遮阳网的小气候效应及其对蔬菜生长的影响[J].福建农业大学学报,2001,30(2):185-190.
    [55]郁家成,张修峰.江淮地区连栋大棚遮阳网覆盖的降温效应[J].中国农业气象,2004,25(3):56-58.
    [56]杨连新,王余龙,石广耀,等.近地层高臭氧浓度对水稻生长发育影响研究进展[J].应用生态学报,2008,19(4):901-910.
    [57]杨延杰,李天来,林多等.弱光对不同类型番茄干物质积累及矿质营养分配的影响[J].华北农学报,2006,21(3):121-124.
    [58]杨伟红,郭晋平,贾鹏飞.遮阴对盆栽茶梅叶片内营养物质的影响[J].山西农业科学.2009,37(12):18-19, 24.
    [59]杨关盈,樊曙先,汤洁,等.临安近地面臭氧变化特征分析[J].环境科学研究,2008,21(3):31-35.
    [60]杨林丰,钟南.根系生长与土壤物理性状之间的关系[J].农机化研究,2007,(8):22-34.
    [61]姚芳芳,王效科,陈展,等.农田冬小麦生长和产量对臭氧动态暴露的响应[J].植物生态学报,2008,32(1):212-219.
    [62]姚芳芳,王效科,冯宗炜,等.臭氧对农作物影响的模型[J].生态学杂志,2007,26(4):571-576.
    [63]叶树春,高长君,凌霄霞.臭氧胁迫对农作物影响研究中的试验方法[J].中国气象学会2007年年会大气成分观测、研究与预报分会场论文集,2007:409-412.
    [64]尹青,张华,何金海.近48年华东地区地面太阳总辐射变化特征和影响因子分析[J].大气与环境光学学报,2011,6(1):37-46.
    [65]尹微琴,王小治,孙伟,等.大气03浓度升高对稻季耕层土壤溶液Ca、Mg浓度的影响[J].农业环境科学学2010,29(10):2005-2010.
    [66]于忠吾,胡萌夫,许一鸣.等.遮阳网覆盖的小气候调控效应[J].中国农业气象,1993,14(2):21-22.
    [67]翟薇.大气气溶胶辐射效应对长江三角洲地区主要作物生产的影响[D].中国气象科学研究院硕士学位论文,2007:1-65.
    [68]张艳玲.遮阳网对夏季温室小气候影响的研究[D].南京农业大学硕士学位论文,2008.
    [69]张咸臣,张海进,尹微琴,等.大气03浓度升高对麦季土壤和植株氮磷钾的影响[J].生态学杂志,2011,30(8):1637-1641.
    [70]赵全志,高桐梅,殷春渊,等.水分对早稻土壤及植株中主要营养元素含量的影响[J].干旱地区农业研究,2006,24(2):61-65.
    [71]赵东,罗勇,高歌,等.1961至2007年中国日照的演变及其关键气候特征[J].资料科学,2010,32(4):701-711.
    [72]赵俊晔.冬小麦植株-土壤氮素循环及产量与品质形成的生理基础的研究[D].山东农业大学博士学位论文.2004.
    [73]赵春生,彭丽,孙爱东,等.长江三角洲地区对流层臭氧的数值模拟研究[J].环境科学学报,2004,24(3):157-165.
    [74]曾希柏,候光炯,青长乐.土壤-植物系统中光照与氮素的相互关系研究[J].生态学报,2000,20(1):103-108.
    [75]郑启伟,王效科,冯兆忠,等.用旋转布气法开顶式气室研究臭氧对水稻生物量和产量的影响[J].环境科学,2007,28(1):170-175.
    [76]郑有飞,石春红,吴芳芳,等.大气臭氧浓度升高对冬小麦根际土壤酶活性的影响[.J].生态学报,2009,29(8):4386-4391.
    [77]郑有飞,胡程达,吴荣军,等.臭氧胁迫对冬小麦光合作用、膜脂过氧化和抗氧化系统的影响[J].环境科学,2010a,31(7):1643-1651.
    [78]郑有飞,胡程达,吴荣军,等.地表臭氧浓度升高对冬小麦光合作用的影响[J].生态学报,2010b,30(4):0847-0855.
    [79]郑有飞,赵泽,吴荣军,等.臭氧胁迫对冬小麦叶绿素荧光及气体交换的影响[J].环境科学,2010c.31(2):472-479.
    [80]郑有飞,刘瑞娜,吴荣军,等.臭氧胁迫对冬小麦干物质生产和产量构成的影响[J].农业环境科学学报,2010d.29(3):409-417.
    [81]郑有飞,刘宏举,吴荣军,等.地表臭氧胁迫对冬小麦籽粒品质的影响研究[J].农业环境科学学报,2010e,29(4):619-624.
    [82]郑有飞,张金恩,吴荣军,等.地表臭氧胁迫对北方冬小麦光合及生理特征的影响[J].农业环境科学学报,2010f 29(8):1429-1436.
    [83]周春菊,张嵩午,王林权.冷、暖型小麦不同器官的磷素含量及其转运研究[J].土壤通报,2010,41(4):947-951.
    [84]周治国,孟亚利,陈兵林,等.麦棉两熟共生期对棉苗叶片光合性能的影响[J].中国农业科学,2004,37(6):825-831.
    [85]周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社.2004:175-185.
    [86]周辉,朱建国,孙媛媛,等.大气03浓度升高对麦田土壤重金属Cu生物有效性和生理毒性的影响[J].农业环境科学学报,2009,28(1):21-25.
    [87]周礼恺.土壤酶学[M].北京:科学出版社,1987,266-270.
    [88]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [89]朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J].麦类作物学报,2005,25(2):46-50.
    [90]Ashmore, M.R.Assessing the future global impacts of ozone on vegetation [J]. Plant, Cell and Environment. 2005,28(8):949-964.
    [91]Ashmore M, Toet S, Emberson L. Ozone-a significant threat to future world food production [J]. New Phytologist,2006,170(2):201-204.
    [92]Burger J.A, Kelting D.L. Using soil quality indicators to assess forest stand management [J]. Forest Ecology and Management 1999,122:155-166.
    [93]Banziger M, Feil B, Stamp P. Competition between nitrogen accumulation and grain growth for carbohydrates during filling of wheat [J]. Crop Science,1994,34(2):440-446.
    [94]Chen Zhan, Wang Xiaoke, Feng Zhaozhong, et al. Impact of Elevated O3 on Soil Microbial Community Function Under Wheat Crop [J]. Water, Air and Soil Pollution,2009,198(1-4):189-198.
    [95]Edwards G S,Sherman R E, Kelly J M.Red spruce and loblolly pine nutritional responses to acidic precipitation and ozone [J]. Environmental Pollution,1995,89(1):9-15.
    [96]Fiscus, E.L., Booker, F.L., Burdey, KO. Crop responses to ozone:uptake, modes of action, carbon assimilation and partitioning [J]. Plant, Cell and Environment,2005,28(8):997-1011.
    [97]Feng Z.W., Jin M.H., Zhang F Z. et ai. Effects of ground-level ozone pollution on the yields of rice and winter wheat in the Yangtze River Delta [J]. Journal of Environmental Science (In China) 2003,15(3): 360-362.
    [98]Feng Z Z, Kobayashi K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis [J]. Atmospheric Environment,2009,43(8):1510-1519.
    [99]Fangmeier A, Temmerman L, Black C, et al. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes [J]. European Journal of Agronomy,2002,17(4):353-368.
    [100]Fangmeier A, Gruters U, Hertstein U, et al. Effects of elavated CO, nitrogen supply and tropospheric ozone on spring wheat.I. Growth and yield [J]. Environmental Pollution,1996,91(3):381-390.
    [101]Fangmeier A, Gruters U, Hogy P. et al. Effects of elevated CO2. nitrogen supply and tropospheric ozone on spring wheat-II. nutrients(N,P,K,S,Ca,Mg,Fe,Mn,Zn) [J].Environmental Pollution,1997,96(l):43-59.
    [102]Fuhrer J, Lehnherr B,Moeri P B, et al. Effects of ozone on the grain composition of spring wheat grown in open-top field chambers [J].Environmental Pollution,1990,65(2):181-192.
    [103]Fuhrer J, Skarby L, Ashmore M R. Critical levels for ozone effects on vegetation in Europe [J]. Environmental Pollution,1997,97(1-2):91-106.
    [104]Fuhrer J, Booker F. Ecological issues related to ozone:agricultural issues [J]. Environment International, 2003,29(2-3):141-154.
    [105]Ghosal M.K, Tiwari GN, Srivastava N.S.L. Modeling and experimental validation of a greenhouse with evaporative cooling by moving water film over external shade cloth [J]. Energy and Buildings,2003, 35(8):843-850.
    [106]Heagle A S, Miller J E, Pursley W A.Atmospheric pollutants and trace gases:Growth and yield responses of potato to mixtures of carbon dioxide and ozone [J]. Journal of Environmental Quality,2003, 32(5):1603-1610.
    [107]IPCC Fourth Assessment Rrport (AR4). Solomon s, Qin D, Manning M, etal.Climate Change 2007:The physical scientice Basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    [108]Inclan R, Glimeno B S, Dizengremel P, et al. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress [J]. Environmental Pollution,2005,137(3):517-524.
    [109]Kiniry J R. Nonstructural carbohydrate utilization by wheat shaded during grain growth [J].Agronomy Journal,1993,85(4):844-849.
    [110]Keutgen A J, Noga G, Pawelzik E. Cultivar-specific impairment of strawberry growth, photosynthesis, carbohydrate and nitrogen accumulation by ozone [J]. Environmental and Experimental Botany,2005, 53(3):271-280.
    [111]Liu F, Wang X K, Zhu Y G. Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China [J]. Environmental Pollution,2009,157(2): 707-709.
    [112]Luo C, John J C S, Zhou X J, et al. A nonurban ozone air pollution episode over eastern China: Observations and model simulations [J]. Journal of geophysical research.2000,105(D2):1889-1908.
    [113]Meehl G A, Stacker T F, Collins W D, et al.Global Climate Projections [M], Cambridge:Cambridge University Press,2007:747-845.
    [114]McCrady J K, Andersen C P. The effect of ozone on below-ground carbon allocation in wheat [J]. Environmental Pollution,2000,107(3):465-472.
    [115]Manninen A M, Laatikainen T, Holopainen T. Condition of Scots pine fine roots and mycorrhiza after fungicide application and low level ozone exposure in a 2- year field experiment [J]. Trees Structure and Function,1998,12(6):347-355.
    [116]Momen B, Helms J A. Effects of simulated acid rain and ozone on foliar chemistry of field-grown Pinus ponderosa seedlings and mature trees [J]. Environmental Pollution,1996,91(1):105-111.
    [117]Mortensen L, Jorgensen H E. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air [J]. Environmental Pollution,1996, 93(2):121-127.
    [118]Pierre D. Effects of ozone on the carbon metabolism of forest trees [J]. Plant Physiology and Biochemistry, 2001,39(9):729-742.
    [119]Pleijel H, Danielsson H, Emberson L, et al. Ozone risk assessment for agricultural crops in Europe:further development of stomatal flux and flux-response relationship for European wheat and potato [J]. Atmospheric Environment,2007,41(14):3022-3040.
    [120]Pleijel H, Danielsson H, Gelang J, et al. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.) [J].Agriculture, Ecosystems and Environment, 1998.70(1):61-68.
    [121]Plessl M, Elstner E F, Rennenberg H, et al. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants [J].Environmental and Experimental Botany.2007, 60(3):447-457.
    [122]Piikki K,Vorne V, Ojanpera K,et al.Impact of elevated O3 and CO2 exposure on potato(Solanum tuberosum L.cv.Bintje)tuber macronutrients (N,P,K,Mg,Ca) [J]. Agriculture, Ecosystems and Environment,2007, 118(1-4):55-64.
    [123]Qian Y, Wang W, Leung L R, et al.Variability of solar radiation unde cloud-free skies in China:The role of aerosols [J]. Geophysical Research Letters.2007,34(5):L12804, dio:10.1029/2006GL028800.
    [124]Reddy G B, Reinert R A, Eason G Loblolly pine needle nutrient and soil enzyme activity as influenced by ozone and acid rain chemistry [J]. Soil Biology and Biochemistry,1995,27(8):1059-1064.
    [125]Rounsevell M D A, EvansS P, Bullock P. Climate change and agricultural soils:impacts and adaptation [J]. Climatic Change,1999,43(4):683-709.
    [126]Samuelson L J,Kelly J M,Mays P A.et al.Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure [J]. Environmental Pollution,1996,91(3):317-323.
    [127]Thomas V F D, Braun S, Fluckiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica) [J].Environmental Pollution,2006,143:341-354.
    [128]Thomas V F D, Braun S, Fluckiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies) [J]. Environmental Pollution,2005,137(3):507-516.
    [129]Timothy G J, Chris F, Andrew L, et al. Impacts of elevated atmospheric ozone on peatland below-ground DOC characteristics [J]. Ecological Engineering,2009,35(6):971-977.
    [130]UNEP (United Nations Environment Programme), Food and Agriculture Organization of the United Nations. Atlas of International Freshwater Agreements [M]. United Nations Development Programme, Kenya, Nairobi 2002.
    [131]US Environmental Protection Agency. Air Quality Criteria for Ozone and Other Photochemical Oxidants, Vo.l Ⅲ. Report No. EPA/600/P-93/004bF. US Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, USA,1996.
    [132]Vingarzan R. A review of surface ozone background levels and trends [J]. Atmospheric Environment,2004. 38(21):3431-3442.
    [133]Wang, X.K., Manning W, Feng, Z.W. et al. Ground-level ozone in China:distribution and effects on crop yields [J]. Environmental Pollution,2007a,147(2):394-400.
    [134]Wang X K, Zheng Q W, Yao F F, et al. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU) [J]. Environmental Pollution,2007b,148(2):390-395.
    [135]Welfare K, Flowers T J, Taylor G. et al. Additive and antagonstic effects of ozone and salinity on the growth, ion contents and gas exchange of five varieties of rice (Oryza sativa L.) [J].Environmental Pollution,1996, 92(3):257-266.
    [136]Yoneda K, Suzuki N. Effect of temperature and light intensity on the growth and flowering of odontoglossum intergeneric hybrids [J]. Journal of the Japanese Society for Horticultural Science,1998, 67(4):619-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700