O_3胁迫下太阳辐射减弱对冬小麦光合荧光特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前气溶胶的辐射效应是众多学者关注的焦点,太阳辐射减弱通过直接或间接作用影响并造成作物光合能力下降,进而导致作物减产;而在未来环境变化背景下,地表03浓度呈持续增加趋势,O3对作物的生长发育及代谢过程都有强烈的负面效应,直接威胁粮食作物的安全。为进一步探明地表O3浓度增加和大气气溶胶所产生的太阳辐射减弱效应对农作物光合能力及荧光特性的影响机制,本研究采用完全随机分组的方法,在大田试验条件下,设置了(CK, OTC不通臭氧不加遮光网)、T1(80%自然光)、T2(60%自然光),T3(40%自然光)和T4(通100nL·L-1O3),T5(80%自然光和通100nL·L-1O3),T6(60%自然光和通100nL·L-1O3),T7(40%自然光和通100nL·L-1O3)8个不同太阳辐射减弱和高浓度臭氧处理,对大田生长的冬小麦进行太阳辐射减弱和臭氧熏气处理,较为系统的研究了太阳辐射减弱和高浓度O3对冬小麦光合作用、荧光参数、光响应曲线的影响作用,为防治太阳辐射减弱和高浓度O3对我国农业生产的影响提供科学依据。主要结论如下:
     (1)O3浓度增加和太阳辐射减弱显著降低了生长前期各处理组冬小麦叶片中光合色素含量,而增加了冬小麦叶片耗散色素尤以叶黄素的含量增加最明显,更好地通过增加叶黄素循环以在逆境中适应性生长。
     (2)太阳辐射减弱和高浓度臭氧均显著降低了各处理组的光合速率(Rn)、Gs、Ls,而各处理组的Ci较CK显著升高。拔节期T1-T2处理组的WUE较CK升高显著,T3-T4较CK显著降低;抽穗期T1-T3较CK显著升高,T4较CK降低。T5-T7处理组的WUE在拔节期和抽穗期较CK均显著增大。以上表明,太阳辐射减弱单因子和高浓度O3同时作用均显著降低了生长前期冬小麦的光合能力,但不同程度地增加了WUE;高浓度O3明显抑制了冬小麦叶片的WUE。
     (3)太阳辐射减弱和高浓度臭氧降低了qP、Y(NO)、实际光量子效率(Yield)、初始斜率、Ik,而(1-qP)/NPQ、NPQ和Y(NPQ)较CK显著升高。可见,太阳辐射减弱和高浓度臭氧胁迫下冬小麦叶片会下调PSⅡ原初光化学反应的电子传递效率来适应光能不足的逆境胁迫(光化学猝灭系数qP的下降),同时增加叶片热耗散能力(叶黄素循环增加、NPQ和Y(NPQ)显著升高)适应逆境。在臭氧胁迫下太阳辐射减弱对冬小麦叶片的光合色素、净光合速率和蒸腾速率等的影响起到主导地位。
     (4)太阳辐射强度减弱和高浓度臭氧胁迫下冬小麦叶片吸收的光能分配方向也发生显著的变化,T1-T4处理组较CK吸收的光能逐渐由D转向E,而T5-T7由E转向D部分以更好地适应逆境。
Aerosol is currently one of the major environmental issues of concern to the world, and atmospheric aerosol through direct or indirect effects to affect crop photosynthetic capacity decreased, which led to the reduction of crop yield; But in the context of environmental change in the future, the surface concentration of O3showed a continuous increase trend has strong negative effects on crop growth and metabolic process, which will be a direct threat to the food crops security. In order to further prove the effects increase in surface O3concentration and atmospheric aerosols generated by solar radiation attenuation on crop photosynthesis and fluorescence characteristics of impact mechanism. This study, in the field experiment conditions by using a completely randomized grouping method, set (CK, OTC without ozone and shading net), T1(80%natural light), T2(60%natural light), T3(40%natural light) and T4(100nL·L-1O3), T5(80%natural light and100nL·L-1O3), T6(60%natural light and100nL·L-1O3), T7(40%natural light and100nL·L-1O3)8different reduced solar radiation and high concentrations of ozone treatments. On the growth of Winter Wheat in field weakening solar radiation and ozone fumigation treatments, systematic research the effects of the solar radiation attenuated and high concentration of O3on winter wheat photosynthesis, chlorophyll fluorescence parameters, light response curve effect and mechanism for the prevention and control of atmospheric aerosols and high concentration of O3on agricultural production in China and provide scientific basis. Main conclusions are as follows:
     (1)The increased O3concentration and reduced solar radiation significantly reduced photosynthetic pigment content in winter wheat leaves in each treatment group at the growth stage, and increased dissipation pigment especially lutein increased obviously, to better adaptive growth by increasing the xanthophyll cycle in adversity.
     (2)Reduced solar radiation and high O3concentration significantly decreased photosynthetic rate (Pn), Gs, Ls, in each treatment group but Ci in each group was significantly elevated contrasted to CK. the WUE of T1-T2treatment groups were higher than CK in the jointing stage and T3-T4significantly reduced; In heading stage T1-T3significantly increased contrast to CK, T4was lower than CK. WUE of T5-T7treatments in jointing and heading stage were significantly increased compared with CK. The above shows, reduced solar radiation and high concentration of O3all significantly reduced winter wheat photosynthetic capacity in early growth period, but increased the WUE at different degrees. High concentration O3significantly inhibited the WUE of Winter Wheat Leaves.
     (3)Reduced Solar radiation and high concentration ozone decreased qP, Y (NO), the actual light quantum efficiency (Yield), initial slope, Ik, but the (1-qP)/NPQ, NPQ and Y (NPQ) significantly increased compared with CK. Under the stress of solar radiation attenuation and high concentration ozone, winter wheat leaves would by PSⅡ primary photochemical reactions of electron transfer efficiency to meet the energy deficiency stress (photochemical quenching coefficient qP decline), while increasing the heat dissipation capabilities (leaf xanthophyll cycle increased, NPQ and Y (NPQ) significantly increased adapt to adversity.
     (4) The absorbed light energy distribution direction in winter wheat leaves also produced marked change under the stress of reduced solar radiation and high concentration ozone. Light energy which T1-T4treatments group absorp shifted from D to E, but T5-T7treatments group gradually shifted from E to D in order to better adapt to adversity.
引文
1.白月明,霍治国,王春乙等.臭氧浓度增加对冬小麦叶片影响的试验研究[J].中国农业气象,2000,11(4):20-27.
    2.白月明,郭建平.水稻与冬小麦对臭氧的反应及其敏感性试验研究[J],中国生态农业学报,2002,10(1):34-39
    3.董琦,王爱萍,贺文强,等.不同遮阴强度对小麦产量的影响[J].山西农业科学,2007,35(10):29-30.
    4.冯兆忠,小林和彦,王效科等.小麦产量形成对大气臭氧浓度升高响应的整合分析[J].科学通报,2008,53(24):3080-3085.
    5.冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究.2002,20(4):14-31
    6.冯兆忠,王效科,郑启伟等.油菜叶片气体交换对03浓度和熏蒸方式的响应[J].生态学报,2006,2(6):823-829.
    7.冯颖竹,谢振文,贺立红等.光强因子对甜糯玉米光合作用和产量构成的影响[J].华北农学报,2007,22(3):132-136.
    8.高绍森,朱延姝,冯辉等.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究[J].辽宁农业科学,2005,6(3):31-32.
    9.郭翠花,高志强,苗果园等.花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响[J].作物学报,2010,36(4):673-679.
    10.韩志国.20种湿地植物的叶绿素荧光特性[D].广东:暨南大学.2006,61.
    11.胡莹莹,赵天宏,徐玲等.臭氧浓度升高对小麦光合作用和产量构成的影响[J].农业现代化研究,2008,29(4):498-502.
    12.贺明荣,王振林,高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析[J].作物学报,2001,27(5):640-644.
    13.贾士芳,董树亭,王空军等.弱光胁迫对玉米产量及光合特性的影响[J].应用生态学报,2007,18(11):2456-2461.
    14.金赛花,樊曙先,王自发.青海瓦里关地面臭氧浓度的变化特征[J],中国环境科学,2008,28(3):198-202.
    15.金东艳,赵天宏,付宇等.臭氧浓度升高对大豆光合作用及产量的影响[J].大豆科学,2009,28(4):632-635
    16.姜闯道,高辉远,邹琦等.叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制[J].生态学报,2005,25(2):319-325.
    17.贾立平.太阳辐射与植物生长发育的关系[J].科研动态,2004,4(1):40.
    18.吕晓静,任安详,王羽梅等.不同光照强度下辣木光合作用及与其相关生理指标的日变化[J].2009,45(2):142-144.
    19.刘悦秋,孙向阳.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学报,2007,27(8):3457-3464.
    20.刘文海,高东升.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学2006,39(10):2069-2075.
    21.李潮海,赵亚丽,杨国航等.遮光对不同基因型玉米光合特性的影响[J].应用生态学报,2007,18(6):1259-1264.
    22.梁晶,曾青,朱建国等.开放式臭氧浓度升高对水稻叶片气体交换和叶绿素荧光的影响[J].光谱学与光谱分析,2010,30(4):991-995.
    23.郑有飞,胡程达,吴荣军等.地表臭氧浓度增加对冬小麦光合作用的影响[J],生态学报2010,30(4):0847—0855
    24.郑有飞,刘宏举,吴荣军等.地表臭氧胁迫对冬小麦籽粒品质的影响研究[J],农业环境科学学报2010,29(4):619-624
    25.郑有飞,张金恩,地表臭氧胁迫对北方冬小麦光合及生理特征的影响[J],农业环境科学学报,2010,29(8):1429-1436
    26.刘建栋,周秀骥,于强,颜鹏,郭建平,丁国安.近地层大气臭氧对水稻光合作用影响的数值模拟.[J].环境科学学报,2003.23(3):289-294.
    27.牟会荣.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008,41(2):599-606.
    28.孙小玲,许岳飞.植株叶片的光合色素构成对遮阴的响应[J].植物生态学报,2010,12(8):989-999..
    29.眭晓蕾.弱光对甜椒不同品种光合特性的影响.园艺学报,1999,26(5):314-318.
    30.眭晓蕾,张振贤,张宝玺等.不同基因型辣椒光合及生长特性对弱光的响应[J].应用生态学报,2006,17(10):1877-1882.
    31.石广玉,王标,张华等.大气气溶胶的辐射与气候效应[J].大气科学,2008,32(4):826-840.
    32.谈建国,陆国良,耿福海等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J].热带气象学报,2007,23(5):515-520.
    33.谭卫锋,陈文音,陈章和.光照强度对水鬼蕉(Hymenocallis littoralis)生长及生理生态特性的影响[J].生态学报,2009,29(3):1321-1331.
    34.王体健,李树,刘利等.大气棕色云团和区域气候变化[J]。气候变化研究进展,2010,6(3):230-232.
    35.王建林,于贵瑞,王伯伦等.北方粳稻光合速率、气孔导度对光强和CO2浓度的响应[J].植物生态学报,2001,29(1):16-25.
    36.王会祥,唐孝炎,王木林等.长江三角洲痕量气态污染物的时空分布特征[J].中国科学(D辑),2003,7(2):114-118.
    37.王利,解孝水,李世伟.遮荫对小麦影响的研究进展[J].安徽农学通报,2010,6(21):53-54.
    38.吴荣军.地表臭氧胁迫下冬小麦生理生态效应及风险评估[D].南京:南京信息工程大学,2009.
    39.王亮,曾青,冯兆忠等.开放式臭氧浓度升高对2个冬小麦品种光合损伤的研究[J].环境科学,2009,30(2):527-534
    40.王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社.2007.
    41.王春乙,郭建平,白月明,等.O3浓度增加对冬小麦影响的实验研究[J].气象学报.2002,60(2):238-242.
    42.王春乙,白月明,郑昌玲,等.CO2和O3浓度倍增对作物影响的研究进展[J].气象学报.2004,62(5):875-881.
    43.许大全.光合作用效率[M].上海:上海科学技术出版社,2002:157-261.
    44.徐晓斌,丁国安,李兴生等.龙凤山大气近地层O3浓度变化及与其它因素的关系[J].气象学报,1998,56(5):12-18
    45.杨鹏辉,李贵全.环境生态对大豆生长发育的影响[J].山西农业科学,2004,32(1):18-21.
    46.杨关盈,樊曙先,汤洁.临安近地面臭氧变化特征[J].环境科学研究.2008,21(3):13-18.
    47.杨晓青,张岁岐,梁宗锁等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    48.姚金保,马鸿翔,姚国才等.硬粒小麦缺失4A蜡质蛋白对直链淀粉含量及淀粉品质特性的影响[J].麦类作物学报,2009,29(1):58-62.
    49.杨兴洪,邹琦,赵世杰等.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,2005,29(1):8-15.
    50.姚芳芳,王效科,逯非等.臭氧对农业生态系统影响的综合评估:以长江三角洲为例[J].生态毒理学报,2008,3(2):189-195.
    51.姚芳芳,王效科.农田冬小麦生长和产量对臭氧动态暴露的响应.[J]植物生态学报,2008,32(1):212-219.
    52.张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社,2007:98-101.
    53.周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社.2004.
    54.战吉成,弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J].植物生态学报,2005,29(1):26-31
    55.张国民,王连敏,王立志等.苗期低温对玉米叶绿素含量及生长发育的影响[J].黑龙江农业科学,2000,7(1):10-12
    56.周晓红,王国祥.光照对菹草幼苗生长发育和光合荧光特性的影响[J].生态环境,2008,17(4):1342-1347.
    57.郑有飞,张金恩,地表臭氧胁迫对北方冬小麦光合及生理特征的影响[J],农业环境科学学报,2010,29(8):1429-1436
    58.郑有飞,孙健,王福然等.太阳辐射减弱对灌浆期冬小麦光合特性及膜脂过氧化水平的影响[J].环境科学研究,2011,24(11):1283-1290
    59.郑有飞,赵泽,麦博儒等.臭氧胁迫对冬小麦叶绿素荧光及气体交换的影响[J].环境科学,2010,31(2):472-479.
    60.战吉成,黄卫东,王秀芹等.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J].植物生态学报,2005,29(1):26-31.
    61.郑启伟,王效科,冯兆忠等.臭氧对原位条件下冬小麦叶片光合色素、脂质过氧化的影响[J],西北植物学报,2005.25(11):2240-2244.
    62.郑启伟,王效科,冯兆忠等.臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响[J].环境科学学报,2007.27(9):1544-1548.
    63.赵春生,彭丽,孙爱东等.长江三角洲地区对流层臭氧的数值模拟研究.环境科学学报,2004.24(3):157-165.
    64.周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社.2004.
    65. Adriano S F, Bartolomeo D, Cristos X, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J].Plant cience,2004,16(6):293-302.
    66. Calatayud A, Barreno E. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomy [J]. Environmental Pollution,2001,115(2):283-289.
    67. Calatayud A, Iglesias D J, Talon M, et al. Effects of long-term ozone exposure on citrus: chlorophyll a fluorescence and gas exchange [J]. Photosynthetica,2006,44(4):548-554.
    68. Calatayud A, Barreno E. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid per oxidation[J]. Plant Physiology and Biochemistry,2004,30: 549-555.
    69. Calatayud A, Iglesias D J, Talon M, et al. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation [J]. Plant Physiology and Biochemistry,2003, 41(9):839-845.
    70. Demmig-Adams B, Adams W. Photoprotection and other responses of plants to high light stress [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,4(3):599-626.
    71. Fiscus E L, Booker F L, Burkey K O. Crop responses to ozone:uptake, modes of action, carbon assimilation and partitioning. Plant cell and environment,2005,2(8):997-1011.
    72. Feng Z., Kobayashi, K., Ainsworth, E.A. et al.Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.):a meta-analysis. Global Change Biology 2008,1(4):2696-2708.
    73. Forcel L, Critchley C, Jack J S. New fluo rescence parameters for monito ring pho tosynthesis in plants [J].Pho tosynthesis Research,2003,7(8):17-24
    74. Flore J A, Layne D R. Photo assimilate production and distribution in cherry. Hort. Sci.,1999, 34:1015-1019.
    75. Govindjee. Chlorophyll a Fluorescence:A Bit of Basics and History [A]. In:Papageorgiou G C, Govindjee.Chlorophyll Fluorescence:a Signature of Photosynthesis[C]. Netherlands:Kluwer Academic Publishers,Dordrecht,2004,1-42.
    76. Heagle, A. S. Ozone and crop yield. Annual Review of Phytopathology,1989,27:397-423.
    77. Hassan I A, Ashmore M R, Bell J N B. Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanussativus L. cv. Baladey) and turnip (Brassica rapa L. cv. Sultani) [J]. New Phytologist,1994,128:243-249.
    78. IPCC,2007. Climate Change 2001:The Scientific Basis. Contribution of working group to the forth assessment report of the intergovermental panel on climate change.
    79. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kaufman J., Valle M., Bentley W. Evaluation of Porous Microcarriers in Fluidized Bed Reactor for Protein Production by Heik 293 Cells, New Developments and New Applications in Animal Cell Technology,2002,8:381-384
    80. Krupa S V, McGrath M T, Andersen C P, et al. Ambient ozone and plant health [J]. Plant Disease,2001,85(1):4-12.
    81. Groth J V, Krupa S V. Crop ecosystem response to climate change:interactive effects of ozone, ult raviolet-B radiation, sulphur dioxide and carbon dioxide on crops [A]. In: Reddy K R, Hodges H F. (Eds.), climate change and global crop productivity [M]. CAB International, Wallingford,2000, 387-405.
    82. Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes [J]. Photosynthesis Research,2004,7(9):209-218.
    83. Lakshmi Praba M., Vanangamudi M. Effect of low light on yield and physiological attributes of rice[J]. Crop management and physiology,2004,29(2):71-73.
    84. Li huawei, Dong Jiang, Bernd Wollenweber, et al. Effects of shading on morphology, physiology and grain yield of winter wheat[J]. European Journal of Agronomy,2010, 33:267-275.
    85. Luo C, Zhou X J, Lam K S, Wang T, Chameides W L, John J C S.2000. A nonurban ozone air pollution episode over eastern China: Observations and model simulations. Journal of geophysical research,105(D2):1889-1908.
    86. Meehl G A, Stocker T F, Collins W D, et al. Global Climate Projections [M]. Cambridge: Cambridge University Press,2007.747-845.
    87. Neale P J, Hayes D R, Goodrich V R, et al. Biologically effective UV-B in the mid-Atlantic region 1975-1997[A]. In: Abstract 27th Annual Meeting of Am Soc Photobiol Photochem Photobiol[C]. Am Soc Photobiol Photochem Photobiol,1999.69-79.
    88. Ralph P J, Gademann R. Rapid light curves:A powerful tool to assess photosynthetic activity [J]. Aquatic Botany,2005,8(2):222-237.
    89. Srinivasan J., Sulochana Gadgil. Asian brown cloud-fact and fantasy [J].Cerrent Science, 2008,83(5):586-592.
    90. Stockwell W R, Kramm G, Scheel H E, Mohnen V A, Seiler W.1997. Ozone formation, destruction and exposure in Europe and the United States [M]. Ecological Studies, Berlin: Springer,127:1-38.
    91. Schr eiber U, Bilg er W, Neubauer C. Chlo ro phy 11 fluo rescence as a non- inst rusive indicato r for rapid assessment of in vivo photo synthesis[M] Schulze E D,Caldwell M M. Ecophysio lo gy o f Pho tosynthesis. Ber lin,H eideberg:Spring er-Ver lag,1994:49
    92. Schubert H, Er sson M, Snoeijs P. Relationship between photosynthesis and non-photochemical quenching o f chlorophyll fluorescence in two red algae with different carotenoid compositions [J].Marine Biology,2006,149:1003
    93. Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Papageorgiou G C, Govindjee. Chlorophyll Fluorescence:a Signature of Photosynthesis[J]. Dordrecht:Springer,2004:279-319.
    94. Tognetti R. Ecophysiological responses of fagus sylvaticaL seedings to changing light conditions Ⅰ. Interactions between photosynthetic acclimation and photo inhibition during stimulated canopy gap formation[J]. Physiologia Plantarum,1997.101(1):115-123.
    95. UNEP,Impacts of atmospheroc brown clouds on agriculture,2008.
    96. UNEP. Assessment Report, Center for Clouds, Chemistry and Climate (C4)[M]. University of California, San Diego,2002.
    97. XIA xian Gao, LI zhan qing, Brent holben. Aerosol optical properties and radiative effects in the Yangtze Delta Region of China [J]. Journal of geophysical reseach,2007.22(12):1-16.
    98. Zhang J W, Dong S T, Wang K J, et al. Effects of shading on the growth, development and grain yield of summer maize[J].Chinese Journal of Applied Ecology,2006.17(4):657-662

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700