模拟太阳辐射减弱对冬小麦光合荧光生理特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶是目前世界所关注的重大环境问题之一,大气气溶胶会通过直接或间接作用影响造成作物光合作用下降,导致作物减产。为进一步探明大气气溶胶所产生的太阳辐射减弱对农作物光合生理及荧光特性的影响机制,本研究采用完全随机分组的方法,在大田试验条件下,设置了(CK,自然光)、处理1(T1,15%自然光)、处理2(T2,20%自然光),处理3(T3,40%自然光)和处理4(T4,60%自然光)五个不同太阳辐射减弱处理,对大田生长的冬小麦进行太阳辐射减弱处理,较为系统的研究了研究了太阳辐射减弱对冬小麦光合作用、荧光参数、营养物质及抗氧化体系的影响作用及其机制,为防治大气气溶胶及其产生的太阳辐射减弱对我国农业生产的影响提供科学依据。主要结果如下:
     (1)太阳辐射减弱显著增加了冬小麦光合色素的含量,增强光能的吸收,是作物对太阳辐射减弱的适应性反应,即通过提高叶绿素含量促进光能的吸收能力,弥补光能不足,尽量维持物质的正常代谢。同时冬小麦叶绿素a/b比值降低,降低幅度也随遮阴强度的增加而加大,表明其受到光抑制的可能性增大。另外增大了植物类胡萝卜素Car和叶黄素含量,延缓了冬小麦叶片的老化速度。
     (2)太阳辐射减弱显著降低了光合速率(Pn)。不同辐射减弱条件下冬小麦Pn日变化差异较大,日最高值表现为CK>60%自然光>40%自然光>20%自然光>15%自然光,其中CK呈双峰曲线变化,有明显的“午休”现象,其他各处理均呈单峰型曲线变化,“午休”现象不明显,但峰值出现时间滞后。相关分析表明,太阳辐射减弱是影响Pn日变化的主导因子,但其他因子也显著影响Pn。与CK相比,60%和40%自然光处理中光合有效辐射(PAR)、叶温(T1)、气孔导度(Gs)和蒸腾速率(Tr)与Pn均呈显著正相关,表明上述因子对Pn有正效应,Ci和Ls在上述两处理中与Pn呈显著负相关,但在20%和15%自然光处理中与Pn呈显著正相关,说明太阳辐射强度高于40%自然光时冬小麦叶片胞间二氧化碳浓度和气孔导度限制值对Pn有负效应,太阳辐射强度低于40%自然光时则为正效应。
     (3)太阳辐射减弱效应显著降低了Chla/Chlb和光合速率(Pn)。Fv/Fm、qP、Y(NO)、(1-qP)/NPQ及实际光量子效率(Yield)均随太阳辐射强度下降而呈现下降的趋势,而NPQ、Y(NPQ)和L (PFD)呈上升趋势。可见,太阳辐射减弱时冬小麦叶片会下调PSⅡ原初光化学反应的电子传递效率来适应光能不足的逆境胁迫(光化学猝灭系数qP的下降),同时降低电子递体(PQ)的活性(量子效率Yield降低),增加叶片热耗散,导致光合能力降低。
     (4)太阳辐射强度减弱抑制冬小麦叶片可溶性糖和可溶性蛋白的合成,增加作物总游离氨基酸的含量,冬小麦植株的代谢由碳代谢为主转向氮代谢为主,不利于冬小麦叶片内有机营养物质的合成与积累。同时抗氧化酶防御系统CAT、POD等保护酶活性降低,丙二醛含量降低,电导率下降,冬小麦植株体内抗氧化防御体系处于较低活性状态。
In the recent years, global dimming of solar irradiance is growing due to increase of aerosols, air pollutants and population density. In order to elucidate the effects of reduced solar irradiance on diurnal changes of photosynthetic rate of winter wheat cultivar, we conducted a field experiment in Nanjing city by using the Triticum aestivum L. (cv.Yang mai 13) as the experimental plants. Starting from jointing to maturity, the plants were subjected to 5 shading treatments, i.e. 100%(CK),60%(T1),40%(T2),20%(T3) and 15%(T4) of total incident solar radiation, with the first one as control (CK). The growth of winter wheat field on to solar radiation is systematically weakened processing, studied the solar radiation abate study on winter wheat photosynthesis, fluorescence parameters, nutrients and antioxidant system, its impact and mechanism for prevention and control of atmospheric aerosol its solar radiation weaken the influence of agricultural production in China to provide scientific basis. Main results are as follows:
     1) Reducing solar radiation significantly increases chlorophyll and lutein content of winter wheat in the grain filling stage, The sun radiation weakened significantly increased winter wheat photosynthetic pigment content, strengthen the light energy absorption, is weakening of solar radiation of crop that is by improving the adaptie response to promote chlorophyll content and make the light energy absorbing ability insufficiency, try to maintain material light the normal metabolism. Meanwhile winter wheat chlorophyll a/b ratio lower reduction with shade, the increase of strength and that their popularity, and increase the possibility of photoinhibition increase. Another increased plant carotenoids and lutein content, delaying the winter wheat leaf aging speed.
     2) Aditionally, the main factors responsible for photosynthetic rates of each shading treatments were also tested via correlation analysis. Results show that reduced solar irradiance significantly increased the contents of chlorophyll and lutein, but decreased the net photosynthetic rate (Pn) of winter wheat. The diurnal changes of photosynthetic rate varied significantly according to the shading treatments, in which the maximums of Pn presented a pattern of CK>T60>T40>T20> T15. During the experimental periods, the Pn from CK exhibited a "double peak" diurnal curve, while the curves for all the other shading treatments generally showed a change of "single peak", and their maximum Pn were lagged behind that of CK. Correlation analysis shows that reduced solar irradiance was the main factor that influenced the Pn diurnal curves significantly, although physiological parameters also played important roles in determining the variation of Pn. Compared with CK, the photosynthesis active radiation (PAR,) leaf temperature (TL), stomatal conductance (Gs) and Transpiration rate (Tr), in the treatment of T6o and T40 were significantly positively correlated to Pn, indicating that these parameters have positive impact on Pn under reduce solar irradiance condition. On the contrary, the intercellular CO2 concentration (Ci) and stomatal limitation (Ls) were significantly negatively correlated to Pn in T60 and T4oas compared to CK, and in T40 and T20, the correlations reversed, implying that the Ci and Ls had negative(or positive) impact on Pn when solar irradiance was higher (or lower) than 40% of incident solar irradiance.
     3) Reducing solar radiation significantly decreases the Chla/Chlb and photosynthetic rate (Pn). Fv/Fm, qP, Y (NO), (1-qP)/NPQ and the actual photochemical efficiency (Yield) are increased with solar radiation intensity decreased,and show a downward trend, but NPQ, Y (NPQ) and L(PFD) was rise. Visible, less solar radiationis cut in winter wheat leaves, when the primary photochemical reaction of PSⅡelectron transfers efficiency to meet the energy shortage of Stress (a decline in photochemical quenching qP).meanwhile, reducing the electronic delivery of the body (PQ) activity (quantum efficiency Yield was lower),is to increase the heat dissipation leaves, resulting in reduced photosynthetic capacity.
     4) Reducing solar radiation significantly influences synthesis of soluble protein and soluble sugar of winter wheat leaves, increases the content of total crop free amino acid winter wheat plant metabolism mainly by carbon metabolism to nitrogen metabolism is given priority to, unfavorable to organic nutrients in winter wheat blade of synthesis and accumulation. Meanwhile antioxidant defense system, Such as CAT and POD, Protective Enzyme Activity of reducing and malondialdehyde content of reducing and conductivity of decline in winter wheat plants in a state of Lower Activity of Antioxidant defense system.
引文
1. Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water vapor and CO2 in determing transpiration of cotton leaves. Agric. Meteorol.,1965,2:259-270.
    2. Bilger W, Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photo. Res.1990,25:173-186.
    3. Boardman N K. Photosynthesis on sun and shading plant. Annal Reviews Inc,1977,28: 355-371.
    4. Bohning R H. Burn side CA. Am J Bot,1956,43:557-561.
    5. Demmig-Adams B, Adams W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum,1996,98:253-264.
    6. Flore J A, Kesner C. Orchard design for stone fruit based on light interception. Compact FruitTree,1982,25:159-165.
    7. Flore J A, Layne D R. Photo assimilate production and distribution in cherry. Hort. Sci., 1999,34:1015-1019.
    8. Genty B, Harbinson J M, Cailly A L, Rizza F. Fate of excitation at PSII in leaves:the non-photochemical side. Presented at The Third BBSRC Robert Hill Symposium on Photosynthesis, March 31 to April 3,1996, University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield, UK, Abstract no.:28.
    9. George S, Bai S(白嵩). Foreign Agriculture-Oil Crops,1992,5(2):50-51.
    10. Grunhage L, Jager H J. From critical levels to critical loads for ozone:a discussion of a new experimental and modeling approach for establishing flux-response relationships for agricultural crops and native plant species. Environ Pollut,2003,235(1):99-110.
    11. Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research,2004,82: 73-81.
    12. Jackson D I. Environmental and hormonal effects on development of early bunch stem necrosis. Am. J. Ecol. Vitic.1991,42:290-293.
    13. Jackson J E, Palmer J W. Effects of shade on the growth and cropping of apple trees. J. Hort. Sci.,1977,52:253-266.
    14. Jiang G M. Temperature and determine of plant. Plants,1998,6(1):30-31.
    15. Kappel F, Flore J A. Effect of shade on photosynthesis, specific leaf weight, leaf chlorophyll content and morphology of young peach trees. J.Am. SocHort. Sci.,1983,108:541-544.
    16. Kasim K, Dennett M D. Radiation absorption and growth of Vicia faba under shade at two densities. Ann. Appl. Biol.,1986,109:639-650.
    17. Kiniry J R. Effect of shading on use of non-structural carbohydrate of wheat during grain filling stage. Agronomy Journal,1993,85:844-848.
    18. Klughammer C, Schreiber U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Application Notes,2008,1:27-35
    19. Kramer D M, Johnson G, Kiirats O, Edwards G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004,79:209-218.
    20. Kuang T Y, Lu C M, Li L B. Photosynthetic Efficiency of Crops and its Regulations. Jinan: Shandong Scientific & Technical Publishers,2004:90-115.
    21. Kuang T Y. Mechanism and Regulation of Primary Energy Conversion Process in Photosynthesis. Nanjing:Jiangsu Scientific & Technical Publishers,2003:3-43.
    22. Lehnherr B, Machler F, Grandjean A. The regulation of photosynthesis in leaves of field-grown spring wheat (Triticum aestivum L., cv Albis) at different levels of ozone in ambient air. Plant Physiology,1988,88,1115-1119.
    23. Li C M, Pu X M, Ma S W. Preliminary study on diurnal variations of the photosynthetic efficiency of plastic multching cultivation on fodder sugar beet (Beta vulgaris) in alpine region. Journal of Northwest University for Nationalities, (Natural Science),2005,26 (1): 46-48.
    24. Ody Y. Effects of light intensity CO2 concentration and leaftemperature on gas exchange of strawbery plants:feasibility studieson CO2 enrichment in Japanese conditions. Acta Horticultrae,1997,439:563-573.
    25. Parr L B, Perkins R G, Mason C F. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Research,2002,36: 1735-1742.
    26. Pfundel E, Bilger W. Regulation and possible function of the vioxanthin cycle. Photosynth Res,1994,42:89-109.
    27. Rascher U, Liebig M, Luttge U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell and Environment,2000,23:1397-1405.
    28. Sabine D M, Marie H J. Effects of nitrogen and radiation on drymatter and nitrogen accumulation in the spike of winter wheat. Field Crops Research,2004,87:221-233.
    29. Salvucci M E, Portis A R, Ogren W L. Light and CO2 response of ribulose-1,5-bisphosphate carboxylase-oxygenase activation in arabidopsis leaves. Plant Physio,1986,80:655-659.
    30. Salvucci M E, Portis A R, Ogren W L. Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in arabidopsis leaves. Plant Physio,1986,80:655-659.
    31. Schnyder H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling-areview. New Phytologist,1993,123(2):233-245.
    32. Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[A]. In:Schulze, E D and Caldwell, M M (eds). Ecophysiology of Photosynthesis[C]. Springer, Berlin,1994.49-70.
    33. Schreiber U, Bilger W, Neubauer G. In:Ecophysiology of Photosynthesis. (eds Schulze, E-D and Caldwell, MM.). Springer-Verlag, Berlin,1994.
    34. Schreiber U, Bilger W. Progress in chlorophyll fluorescence research:Major developments during the last years in retrospect. Progress in Botany,1993,54:151-173.
    35. Schreiber U, Bilger W. Progress in chlorophyll fluorescence research:Major developments during the last years in retrospect. Progress in Botany,1993,54:151-173.
    36. Schreiber U, Gademann R, Ralph P J. Assessment of photosynthetic performance of prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant and Cell Physiology,1997,38(8):945-951.
    37. Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Papageorgiou G C, Govindjee. Chlorophyll Fluorescence:a Signature of Photosynthesis. Dordrecht:Springer,2004:279-319.
    38. Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview [A]. In:Papageorgiou G C, Govindjee. Chlorophyll Fluorescence:a Signature of Photosynthesis [C]. Netherlands:Kluwer Academic Publishers, Dordrecht,2004. 7:279-319.
    39. Smith, E L. Photosynthesis in relation to light and carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America,1936,22:504-511.
    40. Thayer SS, Bjorkman O. Carotenoid distribution and deepoxition in thylakoid pigment-protein complexes from cotton leaves and hundle-sheath cells of maize. Photosynth Res, 1992,33:213-225.
    41. Tognetti R. Ecophysiological responsesofFagus sylvatica L. Seedingsto changing light conditions Ⅰ. Interactionsbetween photosynthetic acclimation and photoinhibition during stimulated canopy gap formation. Physiologia Plantarum,1997.101(1):115-123.
    42. UNEP Assessment Report:The Asian Brown Cloud:Climate and other Environmental Impacts, Part Ⅱ:Climate and Environmental Impacts.2002b.
    43. Vandermeiren K, Black C, Pleijel H. Impact of rising tropospheric ozone on potato:effects on photosynthesis, growth, productivity and yield quality. Plant, Cell and Environment, 2005,28:982-996.
    44. Vingarzan R. A review of surface ozone background levels and trends. Atmospheric Environment,2004,38(21):3431-3442.
    45. Virginia M L, Rawlings J O, Spruill S E. Ozone effects on agricultural crops:statistical methodologies and estimated dose-response relationships. Crop Science Society of America, 1990,30:148-155.
    46. White A J, Critchley C. Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Research,1999,59:63-72.
    47. Xu D-Q,Ding Y, Wu H. Relationship on wheat leaf daily change of photosynthetic efficiency and photosyntheis " noon-rest" in the field. Acta Phytophysiologica Sinica,1992, 18(3):279-283.
    48. YangC, Yang L. Plasticity of clonalmodules ofLeymus chinensisin response to different environments. Chin J Appl Eco,1998,9(3):265-268.
    49.丁一汇,气溶胶污染空气又抵消温室效应[EB/OL]. http://view.news.qq.com/a/20101006/000004.htm,2009.3.6
    50.郭风鸣.弱光条件下黄瓜的生长解析.吉林农业大学学报,1990,12(1):32-35.
    51.贺明荣,王振林,高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报,2001,27(5):640-644.
    52.金之庆,石春林,葛道阔.长江下游平原小麦生长季气候变化特点及小麦发展方向.江苏农业学报,2001,17(4):193-199.
    53.李合生.叶绿素含量的测定,植物生理生化实验原理与技术.高等教育出版社,2000.
    54.李合生.植物生理生化实验原理与技术.高等教育出版社,2000.
    55.李林,张更生.阴害影响水稻产量的机制及其调控技术Ⅱ.灌浆期模拟阴害影响水稻产量的机制.中国农业气象,1994,15(3):5-9.
    56.刘娥娥,汪沛洪,郭振飞.植物的干旱诱导蛋白.植物生理学通讯,2001,37(2):155-160.
    57.刘文海,高东升.不同光强处理对设施桃树光合及荧光特性的影响.中国农业科学2006,39(10):2069-2075.
    58.刘悦秋,孙向阳.遮荫对异株荨麻光合特性和荧光参数的影响.生态学报,2007,27(8):3457-3464.
    59.鲁显楷,莫江明,彭少麟.鼎湖山季风常绿阔叶林林下层3种优势树种游离氨基酸和蛋白质对模拟氮沉降的响应.生态学报,2006,26(3):743-753.
    60.牟会荣.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008,41(2):599-606.
    61.眭晓蕾等.弱光对甜椒不同品种光合特性的影响.园艺学报,1999,26(5):314-318.
    62.孙小玲,许岳飞.植株叶片的光合色素构成对遮阴的响应.植物生态学报,2010,(8):989-999.
    63.王开峰,廖柏寒,刘红玉.模拟酸雨和Zn复合污染对蚕豆生长及其生理生化特性的影响.环境科学学报,2005.25(2):203-207.
    64.王明星,张仁健.大气气溶胶研究的前沿问题.气候与环境研究,2001,3:6卷.
    65.王利,解孝水,李世伟.遮荫对小麦影响的研究进展.安徽农学通报,2010,6(21):53-54.
    66.王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展.山东农业大学学报,1998,29(1):130-132.
    67.王绍辉,张振贤,于贤昌.遮荫对生姜生理生化特性的影响.西北农业学报,1999,8(2):77-79.
    68.吴海燕.太阳辐射与作物.吉林农业,1997,9:14-15.
    69.夏树林,季本华,马秉鹏.从万寿菊花中提取叶黄素的工艺研究.安徽农业科学,2006,34(19):5029-5030.
    70.徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报,2003,14(10):1645-1648.
    71.许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28:23-24.
    72.许大全.光合作用效率.上海:上海科学技术出版社,2002,57-61.
    73.杨伟红,郭晋,贾鹏飞.遮阴对盆栽茶梅叶片内营养物质的影响.山西农业科学,2009, 37(12):18-19.
    74.杨兴洪,邹琦.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报2005,29(1)8-15.
    75.尹丽.遮阴度对黄连生理生化特性的影响研究.西南农业大学,2005.
    76.袁杰,王登伟,黄春燕.基于高光谱数据的棉花叶绿素密度定量提取研究.干旱地区农业研究,2007,25(3):89-93.
    77.战吉宬,黄卫东.植物弱光逆境生理研究综述.植物学通报,2003,20(1):43-50.
    78.战吉宬,黄卫东,王志龙,王利军.葡萄幼苗对弱光环境的形态和生长反应.中国农学通报,2002a,18(2):1-3.
    79.战吉宬,王利军,黄卫东.弱光环境对葡萄叶片生长及其在强光下光合特性的影响.中国农业大学学报,2002b.7(3):75-78.
    80.张华,赵宗慈,许黎.大气棕色云项目科学组会议简介.气候变化研究进展,2005,1(1):35-44.
    81.张慧,王沛洪.渗透胁迫下小麦叶片蛋白质合成与降解的示踪研究.植物生理学报,1991,17(3):259-266.
    82.张吉立,冯志红.Na2SO4和CaCl2胁迫对黄瓜种子萌发和幼苗影响的研究初报.吉林农业大学学报,2005,27(2):175-178.
    83.张吉立,刘振平,毕海.冬季自然条件下4种彩叶植物抗寒生理研究.山西农业科学,2009,37(7):44-47.
    84.张建萍,王进军.模拟酸雨对朱砂叶蜗寄主植物三月早茄生理生化的影响.应用生态学报,2005,16(3):450-454.
    85.赵明,丁在松.干旱和遮光条件下玉米非光化学荧光猝灭的变化和组成的研究.作物学报,2003,29(1):59-62.
    86.赵春生,彭丽,孙爱东.长江三角洲地区对流层臭氧的数值模拟研究.环境科学学报,2004,24(3):15-16.
    87.赵则海,陈雄伟.遮荫处理对4种草本植物生理生化特性的影响.生态环境,2007,16(3):931-934.
    88.周晓红,王国祥.光照对菹草幼苗生长发育和光合荧光特性的影响.生态环境,2008,17(4):1342-1347.
    89.周兴元,曹福亮.遮荫对假俭草抗氧化酶系统及光合作用的影响.南京林业大学学报(自然科学版),2006,30(3):32-36.
    90.周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学,1998,(04):34-43.
    91.周忆堂,马红群.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征.中国农业科学,2008,41(11):3589-3595.
    92.周忆堂,马红群.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征.中国农业科学,2008,11:3589-3595.
    93.朱英华,屠乃美,肖汉乾.硫对烟草叶片光合特性和叶绿素荧光参数的影响.生态学报,2008,28(3):1000-1005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700