继电保护可靠性及其风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电保护作为电力系统的第一道防线,应具有选择性、快速性、灵敏性和可靠性。其中,保护系统的可靠性是影响电力系统稳定运行的重要因素之一,也是优化保护设计和运行的重要参考依据。论文在分析继电保护可靠性需求的基础上,针对如何建立客观、准确的可靠性模型及符合保护系统工作特点的可靠性与风险评估方法开展研究。
     首先从继电保护系统可靠性的概念和特点入手,提出了主要针对继电保护硬件系统可靠性分析的“3RF技术”,即继电保护故障模式及影响分析(RFMEA)、保护可靠性故障树分析技术(RFTA)和继电保护故障报告、分析与纠正措施系统(RFRACAS)。研究了3RF技术在保护可靠性分析中的应用,从可靠性预防、分析、处理及数据收集与初步挖掘等方面将其发展成一整套继电保护可靠性程序。其中,RFMEA分析各种失效模式及其影响,主要为RFTA提供定性的建模依据。RFTA方法涵盖了保护系统可靠性模型及其求解方法:动态故障树与马尔可夫(Markov)状态空间相结合的微机保护系统动态可靠性模型能反映实际保护系统的故障与修复过程、拓扑与逻辑关系、备用及闭锁等特性,建模简单,易实现模块化;而基于动态故障树结构函数与蒙特卡罗(Monte Carlo)仿真的模型求解方法在发挥Markov方法与Monte Carlo仿真方法优势的同时,降低了Markov状态划分的难度及系统级故障树模型的求解复杂度,能为寻找系统薄弱环节、提高保护设计可靠性及制定更为合理的检修周期提供参考。RFRACAS是一个信息系统,保证保护的失效信息、缺陷信息能及时准确的收集、分析,为评估和改善保护可靠性提供基础数据支撑。总体上,3RF技术适用于继电保护的设计、研制、应用及维护过程,有助于在相同可靠性要求下缩减研发时间和费用,相同投资情况下提高保护系统的可靠性。
     其次,提出了继电保护原理性失效的双层概率模型,在真实反映保护原理及时序特性的基础上,根据系统运行情况和保护定值,定量计算保护原理与特定故障或系统运行状态匹配程度的随机性。其第一层是赋时Petri网描述的保护逻辑动态层,用于处理保护逻辑关系和时序关系,反映保护逻辑的动态过程;第二层是模糊信息层,在模糊Petri网中体现各保护逻辑元件及其组合的概率信息。双层模型克服了常规可靠性评估方法只反映某些固定模式下的长期可靠性水平、而忽略实时运行条件及保护时间定值等因素对可靠性影响的不足,旨在为提高保护运行可靠性提供参考。
     第三,立足新形势下基于通信系统实现的继电保护发展现状,针对至关重要但目前关注有限的该类保护重要支撑技术的可靠性,即保护通信系统的可靠性,以连通可靠性为切入点,以能较全面反映各层次通信系统的区域集中式广域保护的通信系统为载体,进行了分层分析和综合评估。
     最后,为使保护系统各种失效模式及其对保护系统可靠性的影响可以在一个统一的模型中得以综合反映,从保护失效机理出发提出了基于失效模式竞争的保护可靠性综合分析方法。并在继电保护可靠性分类分析和综合分析的基础上,考虑保护失效发生的可能性及失效后果的严重程度,将脆弱性评估方法与继电保护可靠性分析相结合、将继电保护风险评估与其在电力系统中的动作行为和配合关系相结合进行保护风险的集成评估,评估流程严格模拟相关保护的动作时序特性,旨在提高保护风险评估的准确性。算例表明风险评估可为保护系统运行能力的在线监控与分析、保护定值在线校验等提供可参考的冗余信息,并有助于对保护系统潜在问题的认知和理解。
As the first defense line of the power system, protective relays should be selective, speedy, sensitive and reliable. The reliability of protection systems is one of the most important factors that effect the stable operation of power systems, as well as an important reference for protection design and operation. Based on investigation of the reliability requirement of protection systems, this thesis focuses on the research of objective and accurate reliability model and reliability assessment method according with the characteristics of protection systems.
     Based on the concept and features of protection system reliability,'3RF'technique, i.e. Relay Failure Mode Effect Analysis (RFMEA), Relay Fault Tree Analysis (RFTA), Relay Failure Reporting, Analysis and Corrective Active System (RFRACAS) is firstly proposed mainly for reliability assessment and improvement of protection hardware system. It is a set of cooperative procedures related to failure prevention, failure analysis, failure elimination and basic data collection, which could be used for design, development and maintenance of protection systems. The RFMEA supplies modeling basis for the RFTA by analyzing failure modes and their effect. The RFTA with stronger adaptability includes reliability model of protection system and its analysis methods, the model integrating Markov state space and Dynamic Fault Tree(DFT) takes into account dynamic characteristics of protection system such as fault and repair, topology and logic, spare and block, each part of which has a definite physical signification, so it is easy to implement modular modeling; the indices calculation method based on the structure function of DFT and the sequential Monte Carlo simulation takes advantage of Markov chain and Monte Carlo simulation while reduces the state-division difficulty of Markov method and solution complexity of system-level fault tree model. By quantitative calculation of reliability indices, they could supply reference for weakness identification, design improvement and maintenance cycle establishment. The RFRACAS is an information system which supplies data basis for protection reliability assessment by collecting timely and exact failure information and defect information. As a whole, the3RF technique helps to save time and cost under the same reliability requirement, while to improve protection system reliability under the same investment.
     Secondly, a two-level calculation model on failure probability of protection principle is built, which is based on Programmable Time Petri Net (PTPN) finishing dynamic simulation of protection logic and sequential characteristics, and Fuzzy Petri Net(FPN) finishing probability calculation of protection elements and their combination. It could be used to simulate protection logic as well as to calculate instantaneous failure probability of protection principle according to system operation mode and protection settings. It supplies reference to research on matching degree between protection characteristics and specific faults or operation modes, and overcomes the shortage of routine method which ignores the effect of real-time operating conditions and protection settings on protection systems reliability.
     Thirdly, on the basis of recent development on communication-based protection, the reliability assessment of the support technique in this type of protection systems, i.e. the reliability of communication systems is presented. The major focus is put on the hierarchical analysis and synthenic assessment of connection reliability of the communicateon system in limited wide area protection which could comprehensively reflect related communication systems.
     Finally, a protection system reliability assessment method considering competition of failure modes is presented based on protection failure machanism analysis, which gives full consideration of combined effects of different failure modes on protection reliability in an unified model. A new way of integrated protection risk assessment method is proposed in succession which takes into account the combination of reliability analysis and vulnerability assessment as well as the combination of risk assessment, protection action sequence and protection coordination, it strictly follows the sequential characteristics of associated relay actions and therefore improves the authenticity and accuracy of protection risk assessment. The study cases show that the risk assessment contributes to the online monitoring and analysis of protection reliability level, the protection setting verification and the awareness of potential problems of protection systems and power systems.
引文
[1]王明俊.大电网继电自动装置的隐藏故障、脆弱性和适应性问题[J].电力自动化设备,2005,25(3):1-5
    [2]候慧.应对灾变的电力安全风险评估与应急处置体系[D].武汉:华中科技大学,2009
    [3]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6
    [4]CIGRE Report. An international survey of the present status and the perspective of long-term dynamics in power systems[R]. CIGRE Task Force 38-02-08,1995
    [5]Koval D O, Chowdhury A A. Assessment of transmission-line common-mode, station-originated, and fault-type forced-outage rates[C], Industrial & commercial power systems technical conference, Calgary,2009:1-7
    [6]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003
    [7]Thorp J S, Bae K. An importance sampling application:179 bus WSCC system under voltage based hidden failures and relay misoperation[C]. Proceeding of the 31st Hawaii International Conference-on System Science,1998,39-46
    [8]Alessandro B. Reliability Engineering:Theory and Pratice[M]. The 5th edition. New York:Springer,2007
    [9]Yu X and Singh C. A practical approach for integrated power system vulnerability analysis with protection failures[J]. IEEE Transactions on Power Systems,2004,19(4):1811-1820
    [10]Billinton R. Tatla J. Composite generation and transmission system adequacy evaluation including protection system failure modes[J], IEEE Transactions on Power Apparatus and Systems,1983, PAS-102:1823-1830
    [11]尹项根,陈德树.主设备保护运行情况评价方法的讨论[J].电力自动化设备,1996,60(4):17-19
    [12]陈德树.继电保护运行状况评价方法的探讨[J].电网技术,2000,24(3):1-2,65
    [13]Chang Y, Suprasad V A, and Kuo S. Computing System Failure Frequencies and Reliability Importance Measures Using OBDD[J], IEEE Transactions on Computers,2004,53(1):54-68
    [14]Robert B, John C, and George A. Basic fault free analysis for use in protection reliability[J]. International Journal of Reliability and Safety,2008,2(1/2):64-78
    [15]Borges C L T, Falcao D M, and Mello J C O. Composite reliability evaluation by sequential Monte Carlo simulation on parallel and distributed processing environments[J]. IEEE Transactions on Power Systems,2001,16(2):203-209
    [16]Mahfoud Chafai, Larbi Refoufi, and Hamid Bentarzi. Reliability assessment and improvement of large power induction motor winding insulation protection system using predictive analysis[J]. WSEAS Transactions on Circuits and Systems,2008,7(4):184-193
    [17]孙福寿,汪雄海.一种分析继电保护系统可靠性的算法[J].电力系统自动化,2006,30(16):32-35,76
    [18]王超,高鹏,徐政等.GO法在继电保护可靠性评估中的初步应用[J],电力系统自动化,2007,31(24):52-56,85
    [19]李永丽,李致中,杨维.继电保护装置可靠性及其最佳检修周期的研究[J].中国电机工程学报,2001,21(6):63-65,71
    [20]丁茂生,王钢,贺文.基于可靠性经济分析的继电保护最优检修间隔时间[J].中国电机工程学报,2007,27(25):44-47
    [21]王树春.双重化继电保护系统可靠性分析的数学模型[J].继电器,2005,3(18):6-10,14
    [22]熊小伏,欧阳前方,周家启,等.继电保护系统正确切除故障的概率模型[J].电力系统自动化,2007,31(7):12-15
    [23]王钢,丁茂生,李晓华,等.数字继电保护装置可靠性研究[J].中国电机工程学报,2004,24(7):47-52
    [24]Anderson P M. Chintaluri G M, Magbuhat S M, and Ghajar R F. An improved reliability model for redundant protective system-Markov models[J]. IEEE Transactions on Power Systems,1997,12(2):573-578
    [25]Anderson P. M and Agarwal S K. An improved model for Protective-system reliability[J]. IEEE Transactions on Reliability,1993,41(3):422-426
    [26]Billinton R, Fotuhi-Firuzabad M, and Sidhu T S. Determination of the optimum routine test and self-checking intervals in protective relaying using a reliability model[J]. IEEE Transactions on Power Systems,2002,17(3):663-669
    [27]Damchi Y. and Sadeh J. Considering failure probability for back-up relay in determination of the optimum routine test interval in protective system using Markov model[C]. Proc.2009 IEEE Power & Energy Society General Meeting, 2009:1-5
    [28]Kumm J J, Weber M S, Hou D and Schweitzer E O. Predicting the optimum routine test interval for protective relays[J]. IEEE Transactions on Power Delivery,1995,10(2):659-665
    [29]Kangvansaichol K, Pittayapat P. and Eua-Arporn B. Optimal routine test intervals for pilot protection schemes using probabilistic methods[C]. Proc. seventh international conference on Developments in power system protection,2001,254-257
    [30]Tan J C, Crossley P A, Hall I, and et al. Intelligent wide area back-up protection and its role in enhancing transmission network reliability[C]. Proc. Seventh international conference on Developments in power system protection,2001, 446-449
    [31](加)李文沅.电力系统风险评估:模型、方法和应用.周家启,卢继平,胡小正等译[M].北京:科学出版社,2006
    [32]Billinton R, Fotuhi-Firuzabad M, and Bertling L. Bibliography on the Application of Probability Methods in Power System Reliability Evaluation, 1996-1999[J]. IEEE Transactions on Power Systems,2001,16(4):595-602
    [33]Fu W H, Zhao Y, MeCalley J D. Risk Assessment for Special Protection Systems[J]. IEEE transactions on Power Systems,2002,17(1):63-70
    [34]McCalley J D, Vittal V, Wan, etal. Voltage risk assessment[C]. Pro. IEEE Power Engineering Society Summer Meeting. Edmonton, Canada,1999:179-184
    [35]段献忠,杨增力,程逍.继电保护在线整定和离线整定的定值性能比较[J].电力系统自动化,2005,29(19):58-61
    [36]吴文传,吕颖,张伯明.继电保护隐患的运行风险在线评估[J].中国电机工程学报,2009,29(7):78-83
    [37]易俊,周孝信,肖逾男.用连锁故障搜索算法判别系统的自组织临界状态[J].中国电机工程学报,2007,27(25),1-5
    [38]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估[J].电网技术,2006,30(13):14-19
    [39]沈智健,周家启,卢继平,等.距离保护运行风险评估模型[J].电力系统自动化.2008,32(12):7-11
    [40]沈智健,卢继平,赵渊,等.阶段式电流保护运行风险评估模型[J].中国电机工程学报,2008,28(13):70-77
    [41]贺国芳,许海宝.可靠性数据的收集与分析[M].北京:国防工业出版社,1995
    [42]Micheal C. Increasing the effectiveness of FRACAS[C]. In pro.2008 Annual Reliability and Maintainability Symposium,2008:59-63
    [43]Huang G Q, Shi J. and MakK. L.. Failure mode and effect analysis over the WWW[J]. The International Journal of Advanced Manufacturing Technology.2000,16:603-608
    [44]Jiang K, Singh C. Reliability Modeling of All-Digital Protection Systems Including Impact of Repair[J], IEEE Trans. Power Delivery,2010,25(2):579-587
    [45]孙福寿.复杂厂区电网继电保护智能化与可靠性研究[D].浙江大学硕士学 位论文,2006
    [46]洪梅,丁明,戴仁赦.保护系统的概率模型及其对组合系统可靠性的影响[J].电网技术,1997,21(8):44-48
    [47]贺家李,郭征,杨晓军,等.继电保护的可靠性与动态性能仿真[J].电网技术,2004,28(9):18-22
    [48]Billinton R, Tatla J. Composite generation and transmission system adequency evaluation including protection system failure modes[J]. IEEE Transactions on Power Apparatus and Systems,1983,102(6):1823-1830
    [49]Wang H, Thorp J S. Optimal locations for protection system enhancement:A simulation of cascading outages[J]. IEEE Transactions on Power Delivery, 2001,16(4):528-533
    [50]Bloemhof G A, Leitloff V. Simulating protection systems:effects on voltage dips and reliability, a case study[C]. Developments in Power System Protection, Seventh international conference on(IEE),2001:258-261
    [51]周玉兰,王玉玲,赵曼勇.2004年全国电网继电保护与安全自动装置运行情况[J].电网技术,2005,29(16):42-48
    [52]周玉兰,詹荣荣,舒治淮,等.2003年全国电网继电保护与安全自动装置运行情况与分析[J].电网技术,2004,28(20):48-53
    [53]张沛.基于概率的可靠性评估方法[J].电力系统自动化,2005,29(4):92-96
    [54]Castro L R, Crossley P A. Reliability evaluation of substation control System[J]. IEE Proceedings-Generation, Transmission and Distribution,1999, 146(6):626-632
    [55]Billinton R, Allan R. Reliability Evaluation of Engineering Systems:Concepts and Techniques (second edition)[M]. New York:Plenum Press,1992
    [56]陈少华,马碧燕,雷宇等.综合定量计算继电保护系统可靠性[J].电力系统自动化,2007,31(15):111-115
    [57]Johnson G F. Reliability considerations of multifunction protection[J]. IEEE Transactions on Industry Applications,2002,38(6):1688-1700
    [58]Haarla L, Pulkkinen U, Koskinen M, et al. A method for analyzing the reliability of a transmission grid[J]. Reliability Engineering and System Safety,2008, 93(2):277-287
    [59]祁达才.南方电网连锁故障大扰动及应对措施[J].南方电网技术,2010,4(5):1-6
    [60]Sykes J. Madani V. Burger J and et al. Reliabilty of protection systems (what are the real concerns)[C].63rd annual conference for protective relay engineers, Texas,2010:1-16
    [61]张玮.防止大电网连锁跳闸事故的广域后备保护策略研究[D].济南:山东 大学,2008
    [62]刘晓放.继电保护静态特性监视及隐藏故障诊断方法研究[D].重庆:重庆大学,2009
    [63]蔡伟贤.继电保护隐藏故障风险分析及电网扰动记录方法研究[D],重庆:重庆大学,2008
    [64]殷志良,刘万顺,杨奇逊,等.一种遵循IEC 61850标准的合并单元同步的实现新方法[J].电力系统自动化,2004,28(11):57-61
    [65]IEC61850, Communication networks and systems in substation-part 9-2:specific communication service mapping (SCSM)-sampled analogue values over ISO 8802-3[S]
    [66]高翔,张沛超.数字化变电站主要技术特征和关键技术[J].电网技术,2006,30(23):67-71
    [67]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析[J].中国电机工程学报,2008,28(1):77-82
    [68]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93
    [69]Tan J C, Crossley P A, Kirschen D, et al. An expert system for the backup protection of transmission network[J]. IEEE Transactions on Power Delivery, 2000,15(2):508-514
    [70]吴科成,林湘宁,鲁文军,等.分层式电网区域保护系统的原理和实现[J].电力系统自动化,2007,31(3):72-78
    [71]Giovanini R, Hopkinson K, Coury D V, et al. A primary and backup cooperative protection system based on wide area agents[J]. IEEE Transactions on Power Delivery,2006,21(3):1222-1230
    [72]Adamia K M G, Apostolov A P, Begovic M M. Wide area protection: technology and infrastructures[J]. IEEE Transactions on Power Delivery,2006, 21(2):601-609
    [73]陆志峰,阳少华,等.多元件备用系统可靠性计算研究[J].中国电机工程学报,2002,22(6):52-55,61
    [74]赖业宁,薛禹胜,王海风.电力市场稳定性及其风险管理[J].电力系统自动化,2003,27(12):18-24
    [75]McCalley J. D., Vittal V., Abi-Samra N.. An overview of risk based security assessment[C]. IEEE Power Engineering Society Summer Meeting.1999, I: 173-178
    [76]Ni M, Mccalley James D, Vittal V, et al. On-line risk-based security assessment[J]. IEEE Transactions on Power Systems,2003,18(1):258-265
    [77]The New IEEE Standard Dictionary of Electrical and Electronic Terms[S].5th ed.1993
    [78]刘思革.基于风险评估理论的输电网络扩展规划研究[D].上海:上海交通大学,2009
    [79]杨为民,盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990:12-54
    [80]彭正标,袁竹林.基于蒙特卡罗法的脱硫塔内气固流动数值模拟[J].中国电机工程学报,2008,28(14):6-14
    [81]Billinton R, Li W.. Reliability assessment of electric power systems using Monte Carlo methods[M]. New York, USA:Plenum Press,1994:33-72
    [82]刘洋,周家启,谢开贵,等.基于Beowulf集群的大电力系统可靠性评估蒙特卡罗并行仿真[J].中国电机工程学报,2006,26(20):9-14
    [83]宋晓通.基于蒙特卡罗方法的电力系统可靠性评估[D],济南:山东大学,2008
    [84]Mello J C O, Leite da Silva A M, Pereira M V F. Efficient loss-of-load cost evaluation by combined Pseudo-sequential and state transition simulation[J].IEE Proceedings-Generation, Transmission and Distribution.1997,144(2):147-154
    [85]温秀峰.基于云理论的电力系统运行风险评估的研究[D].保定:华北电力大学硕士学位论文,2008
    [86]李庚银,高亚静,周明.可用输电能力评估的序贯蒙特卡罗仿真法[J].中国电机工程学报,2008,28(25):74-79
    [87]赵渊,周家启,刘志宏.大电网可靠性的序贯和非序贯蒙特卡罗仿真的收敛性分析及比较[J].电工技术学报,2009,24(11):127-133
    [88]Clifton A. Ericson. Fault Tree Analysis-A History[C]. Proceedings of the 17th International System Safety Conference, August 1999
    [89]Petri C A. Kommunikation mit Automaten. Bonn:Institut fur Instrumentelle Mathematik, Schriften des IIM Nr.3,1962. Also, English translation, Communication with Automata[R]. New York:Griffiss Air Force Base. Tech. Rep. RADC-TR-65-377,1966
    [90]Lin C, Marinescu D C. Stochastic high-level Petri nets and applications[J]. IEEE Transactions on Computers.1988,37(7):815-825
    [91]Tsai J J P, Yang S J, Chang Y H. Timing Constrant Petri Nets and Their Application to Schedulability Analysis of Real-Time System Specifications[J]. IEEE Transactions on Software Engineering.1995,21(1):32-49
    [92]Looney C G. Fuzzy Petri Nets for Rule-Based Decision making[J]. IEEE Transactions on Systems, Man and Cybernetics.1988,18(1):178-183
    [93]郭创新,朱传柏,曹一家,等.电力系统故障诊断的研究现状与发展趋势[J].电力系统自动化,2006,30(8):98-103
    [94]任惠,米增强,等.基于编码PETRI网的电力系统故障诊断模型研究[J].中国电机工程学报,2005,25(20):44-49
    [95]孙静,秦世引,宋永华.模糊PETRI网在电力系统故障诊断中的应用[J].中国电机工程学报,2004,24(9):74-79
    [96]赵洪山,米增强,牛东晓,等.利用混杂系统理论进行电力系统建模的研究[J].中国电机工程学报.2003,23(1):20-25
    [97]袁崇义.Petri网原理[M].北京:电子工业出版社,1998
    [98]方培培.Petri网理论在电力系统输电网络故障诊断中的应用[D],天津:天津大学,2005
    [99]JOEL K, DUNCAN S. A practical approach to fire hazard analysis for offshore structures [J]. Journal of Hazardous Materials,2003,10(4):107-122
    [100]Xenofon D K, Kevin X H, Michael D L, et al. Timed petri net in hybrid systems:stability and supervisory control[J]. Discrete event dynamic systems, 1998,8(2):137-173
    [101]Amit konar, Ajit K Mandal. Uncertainty Management in Expert Systems Using Fuzzy Petri Nets[J]. IEEE Transaction and Data Engineering,1996,8(1): 96-104
    [102]韩耀军,罗雪梅,蒋昌俊.扩展Petri网在实时数据库并发控制中的应用[J].系统仿真学报,2003,15(S1):63-66
    [103]S. Benjamin. Logistics Engineering and Management[M]. New Jersey:Prentice Hall,2004
    [104]郭健彬,曾声奎,陈云霞.基于PDM的FRACAS平台研究[J].计算机工程,2008,34(4):254-256
    [105]刘敬军,孙权,周经伦.产品质量闭环管理系统研究[J].微计算机信息,2006,22(18):140-142
    [106]周海翔.核电厂数字化反应堆保护系统结构与可靠性研究[D].哈尔滨:哈尔滨工程大学,2007
    [107]金碧辉.系统可靠性工程[M].北京:国防工业出版社,2004
    [108]Siu N. Risk assessment for dynamic-systems—an overview[J]. Reliability Engineering and System Safety,1994,43(1):43-73
    [109]Pasquet S, Chatelet E. How to use neural networks to study the reliability of dynamic systems. [C], Proceedings of IEEE International Joint Conference On Neural Networks, Anchorage:IEEE World Congress on Computational Intelligence,1998:226-230
    [110]Marseguerra M, Zio E, Devooght J and et al. A concept paper on dynamic reliability via Monte Carlo simulation[J]. Mathematics and Computers in Simulation,1998,47(2):371-382
    [111]Devooght J, Labeau P E. Theoretical basis of reliability problems[C], Fifth International Workshop on Dynamic Reliability:Future Directions, Maryland: 1998:130-136
    [112]贺家李,李永丽,李斌,等.特高压输电线继电保护配置方案(二)保护配置方案[J].电力系统自动化,2002,26(24):1-6
    [113]Doyle S A, Dugan J B. Combinatorial-Models and Coverage:A binary Decision Diagram(BBD) Approach[C], Proceedings of the Reliability and Maintainability Symposium. Washington,1995:82-89
    [114]Dugan J B, Coppit D. Developing a low-cost high-quality software tool for dynamic fault-tree analysis[J]. IEEE Transactions on Reliability,2000,49(1): 49-59
    [115]Salvatore D, Antonio P. Dependability evaluation with dynamic reliability block diagrams and dynamic fault tree[J]. IEEE Transactions on Dependable and Secure Computing,2009,16(1):4-17
    [116]所旭,张萍.微机继电保护软件可靠性探讨[J].继电器,2004,32(12):43-46
    [117]沈晓凡,舒治淮,刘宇,等.2008年国家电网公司继电保护装置运行情况[J].电网技术,2010(3):173-177
    [118]沈晓凡,舒治淮,吕鹏飞,等.2006年国家电网公司继电保护装置运行情况[J].电网技术,2008,32(3):18-21
    [119]沈晓凡,舒治淮,刘宇,等.2007年国家电网公司继电保护装置运行情况[J].电网技术,2008,32(16):5-8
    [120]周玉兰.2004年全国电网元件保护运行情况分析[J].中国电力,2006,39(5):23-26
    [121]Musa J D, Iannino A and Okumoto K. Software Reliability:Measurement, Prediction, Application[M]. New York:McGraw Hill,1987:190-197
    [122]Bowles J B. A combined hardware, software and usage model of network reliability and availability[C], Proceedings of Ninth Annual International Phoenix Conference on Computers and Communications,1990:649-654
    [123]易宏,袁远.以最小割集为基础的可靠性数值仿真[J].上海交通大学学报,1997,31(9):117-121
    [124]Kjolle G H, Gjerde O, Hjartsjo B T. Protection System Faults-a Comparative Review of Fault Statistics[C]. International Conference on Probabilistic Methods Applied to Power Systems, Stockholm,2006:1-7
    [125]陈豫龙,何旭洪,赵炳全.核电厂设备可靠性数据采集库的设计[J].原子能科学技术,2002,36(1):80-84
    [126]李俊芳.基于概率建模的电网安全性风险评估[D].武汉:华中科技大学, 2010
    [127]王玉锋,杜光明.一例继电保护”误整定”的解决措施[J].电力系统保护与控制,2009,37(23):172-175
    [128]林湘宁,何战虎,刘世明,等.复式电流比例差动保护判据的可靠性评估[J].中国电机工程学报,2001,21(7):99-102
    [129]索南加乐,张怿宁,焦在滨.分段比率制动的电流差动保护[J].电力系统自动化,2006,30(17):54-58
    [130]尹项根,邰能灵,杨书富.标积制动量的应用与分析[J].中国电机工程学报,2000,20(1):85-88
    [131]徐习东,颜伟林.基于波形识别的变压器自适应比率差动保护原理[J].电力系统自动化,2002,26(23):37-41
    [132]陆于平,李玉海,李鹏,袁宇波.差动保护灵敏度与启动电流、制动系数和原理之间的关系[J].电力系统自动化,2002,26(8):51-55
    [133]沈智健.继电保护失效概率及对输电系统运行可靠性的影响[D].重庆:重庆大学,2008
    [134]薛禹胜,肖世杰.综合防御高风险的小概率事件:对日本相继天灾引发大停电及核泄漏事件的思考[J].电力系统自动化,2011,35(8):1-11
    [135]Horowitz S, PhadkeA, Renz B. The Future of Power Transmission[J]. IEEE Power and Energy Magazine,2010,8(2):34-40
    [136]Alur R, Henzinger T, Sntag E. Hybrid system Ⅲ-Verification and control[M]. New York:Springer,1996
    [137]Antsaklis P, Kohn W, Nerode A and et al. Hybrid system Ⅳ[M]. New York: Springer,1997
    [138]Pettersson S, Lennartson B. Hybrid modeling focused on hybrid Petri Nets[C]. In 2nd European Workshop on Real time and Hybrid system. Grenoble,1995:303-309
    [139]蒋昌俊.离散事件动态系统的PN机理论[M].北京:科学出版社,2000
    [140]Iordache M V, Antsaklis P J. Decentralized control of Petri Nets[R]. ISIS Technical Report ISIS-2002-005,2002
    [141]Koutsoukos X D, Antsalis P J, He K. Programmable timed Petri Nets in the analysis and design of hybrid control systems[C]. In Proceedings of the 37th IEEEConf. on decision and control,1998,1617-1622
    [142]邹俊雄,蔡泽祥,孔华东,等.基于图形平台的电力系统继电保护动作逻辑仿真[J].电力系统自动化,2002,26(8):61-64
    [143]杨胜春,王力科,张慎明,等.DTS中基于定值判断的继电保护仿真[J].电力系统自动化,1998,22(8):30-32
    [144]王为国,代伟,万磊,等.DTS中继电保护和安全自动装置仿真方法的分 析[J].电力系统自动化,2003,27(5):58-60
    [145]刘宇,舒治淮,程逍,等.从巴西电网“2·4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(8):12-15
    [146]张保会,谭伦农.电力市场环境下后备保护动作的经济性评估及责任承担[J].中国电机工程学报,2003,23(3):43-47
    [147]门鹏,段振华.基于代数的模糊Petri网逆向推理算法[J].系统仿真学报,2007,19(S1):161-167
    [148]熊小伏,田娟娟,周家启等.电力通信系统可靠性模型研究[J].继电器,2007,35(14):28-32
    [149]Khademi M. Reliability of telecommunications for bulk power system teleprotection [J]. IEEE Transactions on Power Delivery,1997,12(2):601-606
    [150]Wang Y, Li W, and Lu J. Reliability Analysis of Wide-Area Measurement System[J]. IEEE Transactions on Power Delivery,2010,25(3):1483-1491
    [151]Kevin S, Chen-Chin L G, Jean-Philippe P. Assessment of interactions between power and telecommunications infrastructures [J]. IEEE Transactions on Power Systems,2006,21 (3):1123-1130
    [152]邢宁哲,闫海峰.电力通信系统可靠性研究[J].电力系统通信.2007,28(176):26-30,38
    [153]Huang N, Li R, Chen W, and Kang R. The Layered Index Method for Network Reliability Analysis[C]. International Conference on Reliability Maintainability and Safety, Chengdu, China,2009
    [154]李向荣,郝悍勇,樊涛,等.构筑数字化电网建设信息化企业[J].电力系统自动化,2007,31(17):1-5,44
    [155]唐跃中,邵志奇,郭创新,曹一家,阮前途.数字化电网体系结构[J].电力自动化设备,2009,29(6):115-118
    [156]朱林,陈金富,段献忠.数字化变电站冗余体系结构的改进及其可靠性和经济性评估[J].电工技术学报,2009,24(10):147-151
    [157]林霞,高厚磊.新型广域后备保护方案的研究[J].继电器,2005,33(7):84-88
    [158]徐天奇,尹项根,游大海.3层式广域保护系统通信网络[J].电力系统自动化,2008,32(16):28-33
    [159]尹项根,汪旸,张哲.适应智能电网的有限广域继电保护分区与跳闸策略[J].中国电机工程学报,2010,30(7):1-7
    [160]Vesely W E, Goldberg F F, Roberts N H, and Haasl D F. Fault Tree Handbook[R]. Washington, D. C., American:U. S. Nuclear Regulatory Commission,1981
    [161]彭静,卢继平,汪洋,刘家伟.广域测量系统通信主干网的风险评估[J].中 国电机工程学报,2010,30(4):84-90
    [162]Michael L C., William W S. Hidden dependence in human errors[J]. IEEE Transactions on Reliability,1989,38(3):296-300
    [163]Man Cheol Kim, Poong Hyun Seong, Erik Hollnagel. A Probabilistic Approach for determing the control mode in CREAM[J]. Reliability Engineering and System Safety,2006,91(2):191-199
    [164]He X., Wang Y., Shen Z., Huang X.. A Simplified CREAM Prospective quantification process and its application[J]. Reliability Engineering and System Safety,2008,93(2):298-306
    [165]王安斯.基于事故链的电网脆弱性评估与稳定控制[D].武汉:华中科技大学,2010
    [166]赵炜炜.电网大停电分析模型及预防应急体系研究[D].北京:华北电力大学,2009
    [167]Peter W J and Peter S. Stochastic Processes:An Introduction. Second Edition, Chapman and Hall/CRC,2006
    [168]Ni M, McCalley J D, Vittal V and et al. Software implementation of online risk-based security assessment[J]. IEEE Transactions on Power Systems.2003, 18(3):1165-1172
    [169]王博.复杂电力系统安全风险及脆弱性评估方法研究[D].武汉:华中科技大学.2011
    [170]赵渊,谢开贵.电网概率风险评估中元件可靠性参数的不确定性分析[J].电力系统自动化,2011(4):6-11
    [171]胡博,谢开贵,赵渊,曹侃.电力系统可靠性评估的动态任务分配并行算法[J].电力系统自动化,2011(10):35-41
    [172]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估[11].中国电机工程学报,2003,23(3):20-25
    [173]汪隆君,李博,王钢,胡子珩,何晓峰.计及电网变化过程的地区电网运行风险评估[J].电力系统自动化,2011(1):18-22
    [174]纪静,谢开贵,曹侃,胡博,吴伟杰.广东电网薄弱环节辨识及可靠性改善分析[J].电力系统自动化,2011(13):98-102
    [175]邹欣,程林,孙元章.基于运行可靠性模型的电力系统连锁故障概率评估[J].电力系统自动化,2011(13):7-11
    [176]丁雪阳,刘新东.基于最优风险指标的连锁故障模型和薄弱辨识[J].电力系统自动化,2011(18):7-10
    [177]张硕.电力系统大停电故障的仿真模型与风险评估研究[D].保定:华北电力大学,2009
    [178]De La Ree J, Elizondo D C. A methodology to assess the impact of hidden failures in protection schemes[A].2004:1782-1783
    [179]林湘宁,刘沛等.面向继电保护的全过程系统振荡仿真[J].电力系统自动化,2003,27(22):56-59
    [180]Wang L, Morison K. Implementation of online security assessment[J]. IEEE Power and Energy Magazine.2006,4(5):46-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700