基于多子网复合复杂网络模型的互联网拓扑演化模型及相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,复杂网络的理论研究已经被广泛应用于社会学、生物学、交通、计算机和通信等领域。但在各领域中,理论研究成果在实际中的应用还不够深入,因此,将复杂网络理论付诸十具体的应用之中必将成为今后复杂网络的研究热点。
     互联网是一个典型的复杂系统,应用复杂网络理论研究互联网拓扑结构、理解互联网演化机制、建立互联网拓扑演化模型将对评估网络抗毁性、优化网络性能、设计高效网络协议等方面具有重要的实际意义。互联网拓扑因划分粒度的粗细,可分为自治系统级拓扑和路由器级拓扑。目前已有的自治系统级或路由器级拓扑演化模型普遍存在模型所生成的网络与实际网络之间在某些网络拓扑特征性质方面差异较大、不能确切反映网络演化内在成因规律等问题。针对互联网中存在着不同类个体间多种关系的特点,本文利用我子网复合复杂网络模型,从网络拓扑特征分的的角度展开研究,对互联网自治系统级拓扑和路由器级拓扑进行了实证分析,根据实证分析结果提出了互联网自治系统级和路由器级拓扑演化模型,并在此基础上对互联网中的级联失效现象进行了研究。本研究为基于复杂网络的互联网的研究提供了理论支撑,具有重要的理论意义与应用价值。论文的主要研究工作如下:
     (1)互联网自治系统级拓扑和路由器级拓扑的实证研究。利用权威的CAIDA-Skitter项11拓扑实测数据,对自治系统级互联网拓扑的的度、簇系数等网络特征量度进行分析。通过自主研发的网络拓扑测量软件CERNET-MTR,对中国教育和科研计算机网(CERNET)进行测量并得到其路由器捅扑和网站页面链接的实测数据,对CERNET中路由器级互联网拓扑的度、最短路径长度、介数等基本特征量度进行分析。由上述分析结果,发现了新加入的自治系统节点受地理位置影响、自治系统级互联网中存在服务提供方节点构成的连通骨干子网、实际网络设备性能制约路由器节点的连接度最大值等影响网络拓扑演化的现象,为后续自治系统级和路由器级互联网拓扑演化模型的提出提供可靠依据。
     (2)基于多子网复合复杂网络模型的路由器级互联网拓扑演化模型研究。基于(1)中得到的实证分析结果,提出了基于多子网复杂网络模型的路由器级互联网拓扑演化模型,该模型利用多子网复合复杂网络模型的子网加载运算,将网站子网加载到路由器子网中,综合考虑路由器负载、路由器硬件限制等实际影响因素,从网络流量传输优化的角度出发,由路由器间所需流量传输带宽及路由器负载决定新增路由器节点的偏好择优机制。通过计算机仿真实验农明,该模型在度分布、簇系数、平均最短路径、最大连接度、叶子节点数量等网络特征量度与同等规模实际互联网较为吻合,能够较好的体现实际路由器网络拓扑结构的幂律特性、小世界特性层次性等网络特征
     (3)基于多子网复合复杂网络模型的自治系统级互联网拓扑演化模型研究。自治系统节点类型、网络的增长和老化、局域世界特性等都是自治系统级互联网演化过程中必须考虑的实际影响因素。针对这些因素,提出了基于多子网复合复杂网络模型的自治系统级互联网拓扑演化模型,在该模型中将互联网中的自治系统节点根据其功能分为两类:服务提供方节点和服务消费方节点,自治系统节点问连边的关系分为网络服务消费方——网络服务提供方关系(C2P)和对等关系(P2P)。借鉴经典的BA演化模型思想,将地理位置、价格和服务质量等因素作为偏好择优机制的影响因子,对不同类型的新增节点采用小同的建立连边的策略,并利用删除节点和和边体现网络老化现象。通过对该模型200次仿真实验结果所取的平均值与实际自治系统级互联网的网络特征值进行对比,结果显示该模型能够较好的模拟出自治系统级互联网的度分布、簇系数、平均最短路径、核数、介数、叶子节点数量等网络拓扑特征量度,准确有效的刻画了实际自治系统级互联网的节点度分布、小世界特性、异配性、聚合性、层次性、富入俱乐部性等网络特征。
     (4)基于多子网复合复杂网络模型的级联失效研究。级联失效是网络脆弱性的一个重要表现。基于多子网复合复杂网络模型,提出了一个带有可调参数的级联失效策略,并引入了一种新的度量网络鲁棒性的测度——级联失效阈值。通过仿真和理论分析证明,该策略可以有效地评估网络产生级联失效的阈值,为有限资源下的网络拓扑结构优化,抑制网络拥塞提供有效的建议,可指导实际网络拓扑的负荷分配,从而达到提高网络鲁棒性的目的。该级联失效策略也可应用于随机网络、小世界网络、无标度网络等多种,典型复杂网络拓扑,并通过仿真实验证明相对于上述3种典型复杂网络拓扑结构,基于多子网复合复杂网络模型的路由器级互联网演化模型所生成的网络拓扑结构具有更强的鲁棒性。
     本文提出的基于多子网复合复杂网络模型的自治系统级和路由器级互联网演化模型解决了现有互联网演化模型无法描述互联网中多类个体间多种关系的问题,体现了由多类个体、个体间多种关系共同决定互联网演化的思想,能够较为真实的揭示互联网的形成机理和演化规律,所生成的网络拓扑结构与同规模实际网络拓扑特征较为吻合。
At present, the theoretical study of complex networks has been widely used in the fields of sociology, biology, communications, computer and communication. But in those fields, theoretical research results are not enough deep in practice, therefore, complex network theory is applied into specific application, which will become the research focus in the future.
     Internet is a typical complex system, complex network theory is used to study the topology and evolution mechanism of Internet, establishment of the network topology evolution model will has important practical significance for estimating network security and survivability, optimizing network performance, designing an efficient network protocol. According to different granularity, Internet topology can be divided into autonomy system-level topology and router-level topology. For the existing autonomy system-level or router-level topology evolution model, there are a lots of problems that some network topological characteristics are different between network generated by model and actual network, and network evolution inherent causes and laws are not accurately reflected. In this dissertation, for the characteristics of different kinds entities and their relationships in Internet, Internet autonomy system-level topology and router-level topology are studied by multi-subnet composited complex network model. Based on these, the cascading failure of Internet is studied. The above studies could improve the development of complex system, which having theoretical and applied significance. The main works in this dissertation include:
     (1) Empirical research of Internet autonomy system-level topology and router-level topology. Through obtaining authoritative CAIDA-Skitter project topology measured data, from the perspective of network characteristics analysis, the basic characteristics, such as degree, clustering coefficient and so on, of autonomy system-level Internet topology is analyzed. Through self-developed network topology measurement software CERNET-MTR, the measured data of router topology and website page link of the China Education and Research Network (CERNET) are obtained. Using the theory of Multi-subnet Composited Complex Network, the basic characteristics such as degree, shortest path length, betweenness and so on, of topology of CERNET router-level Internet are analyzed. Based on these, accurate understanding of Internet autonomy system-level and router-level topology and its evolution law are obtained. The above studies could act as the theoretical foundation for follow-up Internet autonomy system-level and router-level topology evolution models.
     (2) Research of router-level Internet topology evolution model based on Multi-subnet Composited Complex Network Model. Based on the basic characteristics of topology and its evolution law from empirical research of Internet router-level topology, using the theory of Multi-subnet Composited Complex Network, through loading router subnet to website subnet, a Internet router-level topology evolution model is proposed. The actual impact of factors, such as. router load and limitations of router hardware are considered into the model, from the point of view of network performance optimization, router nodes and network traffic transmitted between nodes are taken into consider together. Through network characteristics contrast between a large number of simulation results and the same scale actual network, it shows that the model can simulate the basic characteristics of the actual router network topology.
     (3) Research of autonomy system-level Internet topology evolution model based on Multi-subnet Composited Complex Network Model. Autonomy system node types, the growth and aging of the network, local-world characteristics must be taken into account the actual impact of autonomy system-levellntemet evolution. A Internet autonomy system-level topology evolution model is proposed. According to their respective functions, autonomy system nodes in the Internet are divided into two categories:service provider node and service customer node, the relationship of line between autonomy system nodes in the Internet are divided into two categories:service provider to service customer relationship and peer to peer relationship. The model is based on the classic BA model, the location, price and service quality act as impact factor of the preferred attachment mechanism, and different strategy of establish connection is used for two different types of nodes, network aging is reflected by deleting nodes and edges. Through theoretical analysis and network characteristics contrast between200times simulation results and the same scale actual network, it shows that the model can simulate the basic characteristics of the actual autonomy system network topology and effectively and accurately portray the actual autonomy system-level Internet network characteristics.
     (4) Research of cascading failure based on Multi-subnet Composited Complex Network. Cascade failure is an important symbol of network vulnerability. A cascading failure ploy with an adjustable parameter based on Multi-subnet Composited Complex Network Model is proposed, and a new measure of network robustness is introduced. Through simulation and theoretical analysis, the ploy can effectively estimate the threshold of the network generated by cascading failure, effective recommendations for network topology optimization under limited resources and for suppressing network congestion are provided. The research can guide the actual network topology and load distribution for achieving the purpose to improve network robustness. The cascading failure model can be applied to a variety of typical complex network topologies, such as ER random networks, small-world networks, scale-free networks, the simulation results show that network topology generated by router-level Internet topology evolution model based on Multi-subnet Composited Complex Network Model are more robust than the three typical complex network topology.
     Autonomy system-level and router-level Internet topology evolution model based on Multi-subnet Composited Complex Network Model proposed in this dissertation solve the problem that existing Internet evolution models can not describe different kinds entities and their relationships in Internet, reflec the method that Internet evolution is jointly decided by different kinds entities and their relationships in Internet. They can reveal the evolution mechanism of Internet, and the network topology characteristics generated by evolution models are consistent with the same scale actual network.
引文
[1]Bertalanffy L. V. The Theory of open systems in physics and biology [J]. Science,1950,11 1(2872):23-29.
    [2]Bertalanffy L. V. An Outline of General System Theory[J]. British Journal of Philosophy ofScience,1950,1(1):134-164.
    [3]Bertalanffy L. V. General system theory[M]. New York:George Braziller,1968.
    [4]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[Jl.自然杂志,1990,13(2):3-10.
    [5]谭跃进,高世楫,周曼殊.系统学原理[M].长沙:国防科技大学出版社,1996.
    [6]苗东升.系统科学精要[M].北京:中国人民大学出版社,1998.
    [7]许国志.系统科学[M].上海:上海科技教育出版社.2000.
    [8]姜璐,李克强.简单巨系统演化理论[M].北京:北京师范大学出版社,2002.
    [9]Holland J. H. Emergence:From Chaos to Order[M]. Oxford:Oxford University Press,1998.
    [10]张嗣瀛.复杂系统与复杂性科学简介[J].青岛大学学报.2001.16(4):25-28.
    [11]戴汝为.系统利-学及系统复杂性研究[J].系统仿真学报,2002,14(11):1411-1415.
    [12]朱涵,王欣然,朱建阳.网络“建筑学”[J].物理,2003,32(6):364-369.
    [13]方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究[J].科技导报,2004,22(2):9-12.
    [14]吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):1 8-46.
    [15]史定华.网络——探索复杂性的新途径[J].系统工程学报,2005,20(2):115-119.
    [16]刘涛,陈忠,陈晓荣.复杂网络理论及其应用研概述[J].系统工程,2005,23(6):1-7.
    [17]汪秉宏,周涛,何大韧.统计物理学与复杂系统研究最新发展趋势分析[J].中国基础科学,2005,7(3):37-43.
    [18]郑金连,狄增如.复杂网络研究与复杂现象[J].系统辩证学报,2005,13(4):8-13.
    [19]陈禹.人类对于网络的认识的新发展[J].系统辩证学报,2005,13(4):18-22.
    [20]方锦清.网络科学的诞生与发展前景[J].广西师范大学学报:自然科学版,2007,25(3):2-6.
    [21]Waxman BM. Routing of multipoint connections[J]. IEEE Journal on Selected Areas in Communications, 1988, 6(9): 1617-1622.
    [22]Krioukov D. Chung F, Claffy KC. The workshop on Internet topology (WIT) report[C]. ACM SIGCOMM Computer Communication Review, 2007, 37(2): 69-73.
    [23]Alderson D, Li L, Willinger W. Understanding Internet topology. Principles, models and validation[J]. ACM Trans, on Networking, 2005, 13(6): 1205-1218.
    [24]Guo L, Xu XM. The Complex Network[M]. Shanghai: Shanghai Scientific and Technological Education Publication, 2006.
    [25]Dall' Asta L, Hamelin IA, Barrat A. Exploring networks with traceroute-like probes: Theory and simulations[J]. Theoretical Computer Science, 2005,35(5):6-24.
    [26]Oliveira R. Zhang BC, Zhang LX. Observing the evolution of Internet AS topology[C]. In: Proc. of the ACM SIGCOMM. 2007.
    [27]Mahadevan P, Krioukov D, Fomenkov M. The Internet AS-level topology: Three data sources and one definitive metric[J]. Computer Communication Review, 2006,36(1): 17-26.
    [28]Mahadevan P, Krioukov D, Fall K. Systematic topology analysis and generation using degree correlations[C]. In: Proc. of the ACM SIGCOMM. 2006.
    [29]邵峰晶.孙仁诚,李淑静.多子网复合复杂网络及其运算研究[J].复杂系统与复杂性科学,2012,13(4):20-25.
    [30]邵峰晶.多子网复合复杂网络[C].第13届海峡两岸资讯技术研讨会,台湾桃园县,2011.
    [31]李淑静.多子网复合复杂网络模型与应用[博士学位论文]青岛:青岛大学博士学位论文,2011.
    [32]Maslov S, Sneppen, K. Specificity and stability in topology of protein networks[J]. Science, 2002, 296:910-913.
    [33]Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet[J]. Physical Review Letters, 2001, 87: 258701.
    [34]Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet[J]. Physical Review E, 2002, 65: 066130.
    [35]Newman M.E.J. Assortative mixing in networks[J]. Physical Review Letters, 2002, 89(20): 208701.
    [36]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature. 1998. 393: 440-442.
    [37]Wasserman S. Faust K. Social Network Analysis[M]. Cambridge: Cambridge University Press. 1994.
    [38]Barrat A. Weigt M. On the properties of small—world network models[J]. European Physical Journal B, 2000, 13(3): 547-560.
    [39]Zhou S, Mondragon R J. The rich-club phenomenon in the Internet topology[J]. IEEE Communication Letters, 2004, 8(3): 180-182.
    [40]Colizza V, Flammini A, Serrano M A, Vespignani A. Detecting rich-club ordering in complex networks[J]. Nature Physics. 2006. 2(2): 110-115.
    [41 ]Zhou S. Characterising and modelling the Interact topology—the rich-club phenomenon and the PEP model[J]. Bt Technology Journal. 2006. 24(3): 108-1 15
    [42]McAuley J, Costa L. D. E,CaetanoT. S. Rich-club phenomenon across complex network hierarchies[J]. Applied Physics Letters, 2007, 91(8): 084103.
    [43]Jiang Z. Q. Zhou W. X. Statistical significance of the rich-club phenomenon in complex networks[J] . New Journal of Physics. 2008. 10(4): 043002.
    [44]P.Erdos . A.Renyi. On the evolution of random graphs[J]. Bulletin of the International Statistical Institute. 1960, 38(4): 343-347.
    [45]Albert R. Jeong H, Barabasi A. L. Diameter of the World Wide Web[J]. Nature, 1998, 401: 130-131.
    [46]Jeong H, Mason S.P. Barabasi A. L. Lethality and centrality in protein networks[J]. Nature. 2001. 411(6833): 41-42.
    [47]Guimera R, Nunes Amaral L.A. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028): 859-900.
    [48]Krause A, Frank K.A, Mason D.M, Ulanowicz R.E. Taylor W.M. Compartments exposed in food-web structure[J]. Nature. 2003. 426: 282-285.
    [49]Newman M.E.J. The structure of scientific collaboration networks[J]. Proceedings of the National Academy of Science, 2001, 98(2): 404-409.
    [50]Guimera R. Mossa S, Turtschi A, Luis. Amaral A. N. The worldwide air transportation network: Anomalous centrality, community structure, cities" global roles[J]. Proceedings of the National Academy of Science USA.2005.102(22):7794-7799.
    [51]Gastner M. T., Newman M. E. J. The spatial structure of networks[J]. The European Physical Journal B-Condensed Matter and Complex System.2006.49(2):247-252.
    [52]Barabasi A. L. Albert R. Emergence of Scaling in Random Networks[J]. Science.1999,286: 509-512.
    [53]Dorogovtsev S.N, Mendes J.F.F, Samukhin A.N. Structure of Growing Networks with Preferential Linking[J]. Physical Review Letters,2000,85(21):4633-4636.
    [54]Krapivsky P.L., Redner S. Connectivity of growing random networks[J]. Physical Review Letters, 2000,85(21):4629-4632.
    [55]Li X. Chen G.R. A local-world evolving network model[J]. Physica A,2003,328(1-2):274-286.
    [56]Pan Z. F, Li X, Wang X. F. Generalized local-world models for weighted networks[J]. Physical Review E,2006,73(5):05609.
    [57]Li M. H, Wang D. H, Fan Y, Di Z. R, Wu J. S. Modelling weighted networks using connection count[J]. New Journal of Physics,2006,8(5):72-81.
    [58]Li M. H, Wu J. S, Wang D. H, Zhou T, Di Z. R, Fan Y. Evolving model of weighted networks inspired by scientific collaboration networks[J]. Physica A,2007,375(1):355-364.
    [59]Wang W. X, Wang B. H, Hu B, Yan G, On Q. General dynamics of topology and traffic on weighted technological networks[J]. Physical Review Letters.2005,94(18):188702.
    [60]方锦清.非线性网络的动力学复杂性研究的若干进展[J].自然科学进展,2007,17(7):841-857.
    [61]方锦清,毕桥,李永,卢新彪,刘强.复杂动态网络的一种和谐统一的混合择优模型及其普适特性[J].中国科学G辑,2007,37(2):230-249.
    [62]http://www.caida.org/tools/measurement/skitter/
    [63]http://route-views.oregon-ix.net/
    [64]Chen Q, Chang H, Govindan R, Jamin S. The origin of power laws in Internet topologies revisited[C]. Proc. of IEEE INFOCOM, New York,2002,608-617.
    [65]Siganos G, Faloutsos M, Faloutsos P. Faloutsos C. Power laws and the AS-level Internet topology[J]. IEEE/ACM Transactions on Networking, 2003, 11(4): 514-524.
    [66]Mahadevan P. Krioukov D, Fomenkov M. Lessons from three views of the Internet topologyfJ]. arXiv:cs.N1/0508033.2005.
    [67]Mahadevan P, Krioukov D, Fomenkov M. The Internet AS-level topology: three data sources and one definitive metric[C]. SIGCOMM CCR, 2006, 36(1): 17-26.
    [68]Dorogovtsev S. N., Mendes J. F. F. Evolution of Networks: From Biological Nets to the Internet and WWW[M]. Oxford University Press, 2003.
    [69]Carmi S, Havlin S, Kirkpatrick S. A model of Internet topology using k-shell decomposition[C]. Proc. of the National Academy of Sciences of the USA. 2007. 104(27): 1 1150-11 154.
    [70]Chang H, Govindan R, Jamin S. Toward capturing representative AS-level Internet topologies[J]. Computer Networks, 2004. 44(6): 737-755.
    [71 ]Chang H, Jamin S. Willinger W. Internet connectivity at the AS-level: An optimization-driven modeling approach[C]. In: Proc. of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research. 2003.
    [72]Dimitropoulos X, Riley G. Modeling autonomous-system relationships[C]. In: Proc. of the 20th Workshop on Principles of Advanced and Distributed Simulation, Vol.26. 2006. 143-149.
    [73]Gkantsidis C, Mihail M, Zegura E. The Markov chain simulation method for generating connected power law random graphs[C]. In: Proc. of the 5th Workshop on Algorithm Engineering and Experiments (ALENEX). 2003.
    [74]Gao L. On inferring autonomous system relationships in the Inteme[J]t. ACM Trans. on Networking, 2001,9(6): 733-745.
    [75]Li L, Alderson D, Willinger W. A first-principles approach to understanding the Internet's router-level topology[C]. In: Proc. of the ACM SIGCOMM. 2004.
    [76]Chang H, Jamin S. Willinger W. An empirical approach to modeling inter-AS traffic matrices[C]. In: Proc. of the Internet Measurement Conf. (IMC) 2005.
    [77]Waxman BM. Routing of multipoint connections[J]. IEEE Journal on Selected Areas in Communications. 1988.6(9): 1617-1622.
    [78]Medina A. Matta I. Byers J. On the origin of power laws in Internet topologies[J]. Computer communication review.2000.32(2):18-28.
    [79]Doar M. A better model for generating test networks[C]. In:Proc. of the IEEE GLOBECOM. 1996.
    [80]Calvert KL. Doar M. Zegura E. Modeling Internet topology[J]. IEEE Communications Magazine, 1997,35(6):160-163.
    [81]Winick J, Jamin S. Inet-3.0:Internet topology generator[J]. Technical Report. CSE-TR-456-02, Department of EECS, University of Michigan.2002.
    [82]Albert R, Barabari A.L. Topology of evolving networks:local events and university [J]. Physical Review Letters,2000,85(24):5234-5237.
    [83]Medina A, Lakhina A. Matta I, Byers J. BRITE:An approach to universal topology generation[C]. In:Proc. of the IEEE MASCOTS.2001.
    [84]Bu T, Towsley D. On distinguishing between Internet power-law topology generators[C]. In:Proc. of the IEEE INFOCOM.2002.
    [85]Park ST, Pennock DM, Giles CL. Comparing static and dynamic measurements and models of the Internet's AS topology[C]. In:Proc. of the IEEE INFOCOM.2004.
    [86]Zhou S, Mondragon RJ. Accurately modeling the Internet topology[J]. Physical Review E,2004, 70(6):066108.
    [87]Sagy B, Mira G, Avishai W. An incremental super-linear preferential Internet topology model[C]. In:Proc. of the Passive and Active Measurement Workshop (PAM).2004.
    [88]Aiello W, Chung F, Lu L. A random graph model for massive graphs[C]. In:Proc. of the ACM Symp. on Theory of Computing(STOC).2000.
    [89]Palmer C, Steffan G. Generating network topologies that obey power laws[C]. In:Proc. of the IEEE GLOBECOM.2000.
    [90]Faloutsos C, Faloutsos M, Faloutsos P. On power-law relationships of the Internet topology[C]. In:Proc. of the ACM SIGCOMM.1999.
    [91]Pansiot J, Grad D. On routes and multicast trees in the Internet[J]. ACM SIGCOMM Computer Communication Review,1998,28(1):41-50.
    [92]Magoni D. Pansiot JJ. Internet topology modeler based on map sampling[C]. In:Proc. of the IEEE Symp. on Computers and Communications Conf. (ISCC).2002.
    [93]Broido A. Claffy KC. Internet topology:Connectivity of IP graphs[C]. In:Proc. of the Int'l Symp on Convergence of IT and Communication (ITCOM).2001.
    [94]Fabrikant A, Koutsoupias E. Papadimitriou CH. Heuristically optimized trade-offs:A new paradigm for power laws in the Internet[C]. In:Proc. of the Int'l Colloquium on Automata, Languages and Programming (ICALP).2002.
    [95]Chang H, Jamin S, Willinger W. Internet connectivity at the AS-level:An optimization-driven modeling approach[C]. In:Proc. of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research.2003.
    [96]Li L, Alderson D, Willinger W. A first-principles approach to understanding the Internet's router-level topology[C]. In:Proc. of the ACM SIGCOMM.2004.
    [97]Alderson D. Li L, Willinger W. Understanding Internet topology:Principles, models and validation[J]. ACM Trans, on Networking,2005,13(6):1205-1218.
    [98]Mei YK. Router-Level topology modeling and assessment [MS. Thesis]. Hong Kong:City University of Hong Kong.2007.
    [99]Siganos G. Faloutsos M, Faloutsos P. Faloutsos C. Power laws and the AS-level Internet topology[J]. IEEE/ACM Transactions on Networking,2003.11(4):514-524.
    [100]Newman M. Properties of highly clustered networks[J]. Physical Review E,2003,68:026121.
    [101]Jin S.D., Bestavros, A. Small-world Internet topologies:possible causes and implications on scalability of end-system multicast[C]. Technical report, BUCS-TR-2002-004,2002.
    [102]Carlson JM, Doyle J. Complexity and robustness[C]. Proc. of the National Academy of Sciences of the USA,2002,99(1):2539-2545.
    [103]Bollobas B, Riordan O. Robustness and vulnerability of scale-free random graphs[J]. Internet Math.2003,1:1-35.
    [104]Zhou S. Mondragon R J. Structural constraints in complex networks[J]. New Journal of Phys. 2007,9(172):1-11.
    [105]Albert R. Jeong H. Barabasi AL. Error and attack tolerance in complex networks[J]. Nature,2000, 406:387-482.
    [106]Dorogovtsev SN. Clustering of correlated networks[J]. Physical Review E, 2004, 69(2): 027104.
    [107]Bollobas B, Riordan OM. Mathematical results on scale-free random graphs[M]. In: Handbook of Graphs and Networks. Berlin: Wiley-VCH, 2003.
    [108]关沫.李波,赵海nternet的复杂网络统汁规律研究与分析[J].计算机工程,2008,34(21):92-96.
    [109]Blondel VD. Guillaume JL. Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment 2008 (10): 1000-1008.
    [110]http://www.nic.edu.cn/DS/cindex.html
    [111]Albert R, Jeong H, Barabsi AJ. Diameter of the World Wide Web[ J] . Nature, 1999, 401( 9): 130-131.
    [112]张宁.复杂网络实证研究——中国教育网[J].系统工程学报,2006,21(4):337-340.
    [113]隋毅.多予网复合复杂网络模型及其相关性质的研究[博士学位论文]青岛:青岛大学博士学位论文,2012.
    [114]http://www.cnnic.net.cn/
    [115]Guha S, Khuller S. Approximation algorithms for connected dominating sets[J]. Algorithmica. 1998,20(4): 374-387.
    [116]Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., illinger, W. The origin of power laws in Internet topologies revisited[C]. Proceeding of IEEE INFOCOM, 2002.
    [117]Alexei, V., Romualdo. P.S., Alessandro, V. The large scale topological and dynamical properties of Internet[J]. Phys. Rev. E, 2002, 65: 066130.
    [118]Chen, G., Fan, Z.P., Li,X. Modeling the complex Internet topology. In Complex Dynamics in Communication Networks[M], G. Vattay, L. Kocarev(Eds). Berlin: Springer-Verlag, 2005.
    [119]Broder A, Kumar R, Maghoul F. Graph structure in the Web[J]. Computer Networks, 2000, 33(1): 309-320.
    [120]Magoni D. Tearing down the Internet[J]. IEEE j. Sel. Areas Commun., 2003, 21(6): 949-960.
    [121]Newman ME J, Forrest S. Balthrop J. Email networks and the spread of computer viruses [J]. Phys. Rev. E, 2002, 66(3): 035101.
    [122]Samant K, Bhattacharyya S. Topology, search, and fault tolerance in unstructured P2P networks[C]. Proceedings of the Hawaii International Conference on System Sciences, 2004.
    [123]Jeong H, Mason s, Barabdsi A L. Lethality and centrality in protein networks[J]. Nature. 2001. 411:41-42.
    [124]Dunne J A, Williams R J, Martinez N D. Network structure and biodiversity loss in food webs: robustness increases with connectance[J]. Ecology Letters. 2002. 5(4): 558-567.
    [125]Holme P, Kim B J, Yoon C N. Attack vulnerability of complex netvvorks[J]. Pliys. Rev. E. 2002. 65(5): 056109.
    [126]Barthelemy M. Betweenness centrality in large complex networks[J]. Euro. Phys. J. B, 2004. 38(2): 163-168.
    [127]Freeman L C. A set of measures of centrality based upon betweenness[J]. Sociometry. 1997. 40: 35-41.
    [128]Goh K, Oh E, Jeong H. Clarification of scale—free networks[J]. Proc. Natl. Acad. Sci. USA. 2002,99: 12583-12588.
    [129]Lee W. H, Michels K. M, Bondy C. A. Localization of Insulin Like Growth Factor Binding Protein2 Messenger-Rna During Postnatal Brain Development Correlation with Insulin Like Growth Factor-1 and Factor-Ii[J]. Neuroscience, 1993, 53(1): 251-265.
    [130]Chvatal. Tough graphs and hamiltonian circuits[J]. Discrete Mathematics. 1973, 5: 215-228.
    [131]Brouwer A. E. Toughness and spectrum of a graph[J]. Linear Algebra and Its Applications. 1995, 226:267-271.
    [132]许进.论图的坚韧度(1)——基本理论[J].电子学报,1996,24(1):23-27.
    [133]Choudum S.A, Priya N. Tough-maximum graphs[J]. Ars Combinatoria. 2001, 61: 167-172.
    [134]Barefoot C. A, Entringer R, Swart H. Vulnerability in graphs-a comparative survey[J]. Journal of Combinatirial Mathematics and Combinatorial Computing, 1987.1: 13-22.
    [135]Bagga K. S, Beineke L. W, Goddard W. D, Lipman M. J, Pippert R. E. A survey of integrity[J]. Discrete Applied Mathematics, 1992,37-38: 13-28.
    [136]Bagga K. S, Beineke L. W. Lipman M. J, Pippert R. E. Edge Integrity-a Survey[J]. Discrete Mathematics. 1994. 124(1-3): 3-12.
    [137]Goddard W. Measures of VuJnerability-the Integrity Family[J]. Networks, 1994, 24(4): 207-213.
    [138]Beineke L. W, Goddard W, Lipman M. J. Graphs with maximum edge-integrity[J]. Ars Combinatoria, 1997,46: 119-127.
    [139]Atici M, Crawford R, Ernst C. New upper bounds for the integrity of cubic graphs[J]. Internationa! Journal of Computer Mathematics, 2004, 81(11): 1341 -1348.
    [140]Dundar P, Aytac A. Integrity of total graphs via certain parameters[J]. Mathematical Notes. 2004. 76(5-6): 665-672.
    [141]Ray S, Kannan R, Zhang D. Y, Jiang H. The weighted integrity problem is polynomial for interval graphs[J]. Ars Combinatoria, 2006, 79: 77-95.
    [142]Cozzen M, Moazzami D, Stueckle S. The tenacity of a graph. Seventh International Conference on the Theory and Applications of Graphs[C]. New York: Wiley, 1995.
    [143]Choudum S. A, Priya N. Tenacity of complete graph products and grids[J]. Networks, 1999, 34(3): 192-196.
    [144]李银奎,张胜贵,李学良,武赞.粘连度与一些其他脆弱性参数之间的关系[J].纺织高校基础科学学报.2004,17(1):1-4.
    [145]李银奎.笼子图的粘连度的讨论[J].青海师专学报,2006,26(5):3-5.
    [146]周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(11):31-36.
    [147]Freeman L. A set of measures of centrality based upon betweenness. Sociometry[J]. 1977. 40: 35441.
    [148]Holme P, Kim B J, Yoon C N. Attack vulnerability of complex networks[J]. Phys. Rev. E, 2002. 65(5): 056109.
    [149]Cohen R, Erez K, ben-Avraham D. Resilience of the Internet to random breakdowns[J]. Phys. Rev. Lett., 2000, 85(21): 4626-4628.
    [150]Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications[J]. Phys. Rev. E, 2001, 64(2): 26118.
    [151]Broadbent S R, Hammersley J M. Percolation processes: Ⅰ. Crystals an mazes[J]. Proc. Cambridge Philos. Soc, 1957, 53: 629-641.
    [152]Hammersley J M. Percolation processes: Ⅱ. The connective constant[J]. Proc. Cambridge Philos. Soc, 1957,53:642-645.
    [153]Paul G, Sreenivasan S, Stanley H E. Resilience of complex networks to random breakdown[J]. Phys. Rev. E., 2005, 72(5): 056130.
    [154]Callaway D S, Newman M E J, Strogatz S H. Network robustness and fragility: percolation on random graphs[J]. Pliys. Rev. Lett., 2000. 85(25): 5468-5471.
    [155]Schwarte N, Cohen R, Ben-Avraham D. Percolation in directed scale-ree networks[J] . Phys. Rev. E, 2002, 66(1): 015104.
    [156]Gallos L K, Cohen R, Argyrakis P, Stability and topology of scale-free networks under attack and defense srategies[J]. Phys. Rev. Lett., 2005. 94( 18): 188701.
    [157]Vazquez A, Moreno Y. Resilience to damage of graphs with degree correlations[J]. Phys. Rev. E, 2003,67(1): 015101.
    [158]Warren C P, Sander L M, Sokolov I. Geography in a scale-free network model[J]. Phys. Rev. E, 2002, 66(5): 056105.
    [159]Rozenfeld A F, Cohen R, Ben Avraham D. Scale-free networks on lattices[J]. Phys. Rev. Lett.. 2002,89:218701.
    [160]Shargel B, Sayama H, Epstein I R. Optimization of robustness and connectivity in complex networks[J]. Phys. Rev. Lett., 2003, 90(6): 068701.
    [161]Paul G, Tanizawa T, Havlin S. Optimization of robustness of complex networks[J]. Eur. Phys. J. B, 2004, 38(2): 187-191.
    [162]Valente A X C N, Sarkar A, Stone H A. Two-peak and three-peak optimal complex networks[J]. Phys. Rev. Lett., 2004, 92(11): 118702.
    [163]Tanizawa T, Paul G, Cohen R. Optimization of network robustness to waves of targeted and random attacks[J]. Phys. Rev. E., 2005, 71(4): 047101.
    [164]Wang B, Tang H W, Guo C H. Entropy Optimization of Scale-free Networks Robustness to Random Failures[J]. Physica A, 2005, 363: 591-596.
    [165]Sole R V, Alverde S V. Information theory of complex networks: on evolution and architectural constraints [J]. Lect. Notes. Phys., 2004, 650: 189-207.
    [166]Motter A E. Cascade-based attacks on complex networks[J]. Phys. Rev. E, 2002. 66(8): 65-102.
    [167]Motter A E. Cascade control and defense in complex netvvorks[J]. Physical Review Letters. 2004. 93(9): 098701.
    [168]Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks[J].Physical Review E, 2004, 69(7):045104.
    [169]Jianwei Wang, Lili Rong. Cascade-based attack vulnerability on the US power grid[J]. Safety Science,2009,47(10):1332-1336.
    [170]Z J BAO. Y J Cao. L J Ding. G Z Wang. Comparison of cascading failures in small world and scale-free networks subject to vertex and edge attacks[J]. Physica A.2009.388(20):4491-4498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700