超深亚微米CMOS器件ESD可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在IC(集成电路)工业中,ESD(Electro-Static Discharge,静电放电)是影响IC芯片可靠性的主要因素之一,已经成为开发新一代工艺技术的一个难点。在超深亚微米工艺下,缺乏对ESD损伤失效物理机制的理解在很大程度上限制了设计经验从一代工艺传递到下一代工艺,而对失效机理的理解正是超深亚微米工艺ESD保护结构设计的关键。因此,本文主要对超深亚微米CMOS工艺MOSFET的ESD失效物理机制进行了研究。
     论文首先建立了一个混合模式的仿真平台,为ESD保护结构的研究提供了一个很好的分析和设计工具,同时搭建了一个TLP(传输线脉冲)测试系统,以得到一些细节的数据帮助理解ESD失效机理。本文对ESD应力下超深亚微米NMOSFET器件内部载流子的强电场非本地输运进行了分析和研究,根据其特点可以将电子能量驰豫时间看作是电子能量的函数,然后使用蒙特卡罗模拟方法得到了电子能量驰豫时间和高场迁移率的经验模型,并使用新的参数模型加入ESD混合仿真平台,仿真结果与实验符合较好。最后利用改进的仿真模型对TLP测试的各项关键参数进行了混合模式仿真,详细分析了TLP实验中的若干问题及其物理过程。
     论文通过对短沟道Silicided(金属硅化物) NMOSFET的研究发现,Silicided扩散区栅侧边缘附近会出现电流集中现象,在源端复合效应的促进下,源端会出现一个不同于漏端的新的热点。这个热点温度甚至可能超过漏端温度,造成NMOSFET的源端热击穿。通过对non-Silicided器件的研究发现,其漏端的镇流电阻可以增加寄生分段BJT的导通均匀性,同时使主要电流通路深入衬底内部,远离Si-SiO2表面,避免了氧化层和表面沟道的过早失效,因此改善了器件的ESD失效阈值。DCGS(漏接触到栅边缘的间距)可以增大镇流电阻,提高ESD失效阈值;但是SCGS(源接触到栅边缘的间距)变大时,源端电阻的增加不利于源衬结的正向导通和分段晶体管的导通均匀性,因此源端镇流电阻增大带来的好处有限。当沟道长度变大时,由于寄生双极晶体管电流增益减小,因此ESD失效电流也减小。
     论文使用DC和脉冲应力对90nm NMOSFET的ESD潜在损伤进行了测量和分析。分析认为雪崩热空穴注入栅氧化层,会产生界面态和大量中性电子陷阱,引起阈值电压增大、亚阈值电流减小。Snapback应力期间产生的氧化层陷阱将会引起SILC(应力引起的泄漏电流)增加、Qbd(击穿电荷)减少,它也会造成关态漏泄漏电流的退化。HE(热电子)产生的界面态可以在snapback(突发回扫击穿)应力期间屏蔽热空穴注入栅氧化层,导致MOSFET退化速度比未加HE应力的情况小。而栅氧化层损伤不仅在漏区一侧产生,而且也会在源区一侧产生。使用脉冲TLP应力对NMOSFET器件进行测量发现,脉冲周期越长,其退化越大。分析认为这主要是温度效应造成的,脉冲TLP应力周期越长,器件内部温度越高,NMOSFET栅氧化层的注入机制越强,则引起的损伤更大。
     超深亚微米CMOS工艺的器件特征尺寸小,结深较浅,这就要求ESD保护结构快速开启以顺利的泄放ESD电流的要求。论文最后一部分在以前章节的研究基础上,使用混合仿真方法设计了一款芯片的ESD保护结构。文中采用了ESD检测电路使ESD保护结构更快开启,以避免内部电路损伤。通过混合模式仿真对电路中器件进行了参数调整并验证了保护结构的有效性,测试结果符合设计要求。
Electrostatic Discharge (ESD) induced failure is one of the most important reliability problems of the ICs (integrated circuits), which have become one of the most difficult problems for developing the new generation technology. Under the ultra-deep-submicron technology, the absence of understanding on the ESD damage mechanism limits the transfer of the design experience between generations, which is just the key point of the design of the ESD protecting structure. So this paper investigates the ESD failure mechanism of the MOSFET under the ultra-deep-submicron technology.
     A mixed-mode simulation platform is built up in this paper which serves as an analysis and design tool for the investigation of ESD protection structure. A TLP(Transmission Line Pulse) measurement system is also set up to get further data for the understanding of the ESD failure mechanism. In this paper, the non-local transport of the NMOSFET under high field is analyzed. The electron energy relaxation time can be regarded as the function of the electron energy due to the characteristic of the non-local transport. Then the empiristic model of the electron energy relaxation time and high field mobility can be got by the Monte Carlo simulation. At last the new parameter models are integrated into the mixed-mode simulation system and the simulation results shows the accordance with the experiment. The critical parameters of the TLP measurement are simulated by the modified simulation model, in which several problems and physical mechanisms are investigated at length.
     The investigation of short channel silicided NMOSFETs shows that the current crowd is appeared in the silicided diffusion edge. With the help of the recombination in the source region, the new hot spot can be found in the source region, whose temperature can even exceed that in the drain region and cause the thermal breakdown of the MOSFETs. The ballasting resistance of the non-Silicided device can enhance the turning on uniformity, which helps to lead the main current path far away from the channel surface and avoid the early failure. The increase of DCGS(Drain Contact to Gate Space) is a way to increase the ballasting resistance, and may improve the ESD failure threshold. However, when the SCGS(Source Contact to Gate Space) increase, the increase of the source resistance goes against the forward turning on and reduces the uniformity of the segmented BJT, so the benefit of ballasting resistance is restrained. In addition, increasing the channel length can decrease the failure current for the current gain of the parasitic BJT’s decreases.
     The measurement and analysis to the ESD latent damage in 90nm technology are performed under the DC and pulse stress. The results show that when the avalanche hot holes inject into oxide, interface states and neutral electron traps are generated, and then threshold voltage increases and sub-threshold current decreases. The increase of the oxide neutral electron traps can cause the increase of SILC(Stress Induced Leakage Current), the decrease of the breakdown charges and the degeneration of the off-state drain leakage current. The generated interface states during the HE(Hot Electron) stress can shield the injection of the hot holes and lead to lower degradation speed than that of the fresh device. Stress induced oxide damage located not only in the region near the drain, but also in the region near the source. The measurement of the MOSFET under the pulsed TLP stress shows that the longer the pulse duration is, the more the degradation there would be, where the temperature effect is the main reason. It means the longer duration of the TLP stress has, the higher temperature the device may generates, which means the stronger injection mechanism and the more severe damage to the ICs.
     The ultra-deep-submicron CMOS devices have the shallow junction depth and small size. So the ESD protection structure must turn on quickly to shunt the ESD current. Based on the former investigation, one ESD protection structure is designed using the mixed-mode simulation in the last part of this dissertation. The ESD detected circuit is used to quicken the turn on of the ESD protection structure to avoid the damage of the core circuit. The parameters are adjusted and the validation of the protection structure is verified by the mixed-mode simulation. The test results accord with the design requirement.
引文
[1.1] GlennWagner, R., Soden, J.M., and Hawkins, C.F., Extent and Cost of EOS/ESD Damage in an IC Manufacturing Process, Proc. EOS/ESD symp.,1993, p49-55.
    [1.2] Green T., A review of EOS/ESD field failures in military equipment, Proc. EOS/ESD symp., 1988,p7–14,.
    [1.3] Merrill R. and Issaq E., ESD design methodology, in Proc. EOS/ESD symp., 1993,p233–237
    [1.4] Welsher T. L., Blondin T. J., G. T. Dangelmayer, and Y. Smooha, Design for electrostatic-discharge (ESD) protection in telecommunications products, AT&T Tech. J., vol. 69, no. 3, pp. 77–96, 1990.
    [1.5] Kim S. U., ESD induced gate oxide damage during wafer fabrication process, in Proc. EOS/ESD Symp., Sept. 1992, vol. EOS-14, pp. 99–105.
    [1.6] Greason W. D., Electrostatic discharge: A charge driven phenomenon, in Proc. EOS/ESD Symp., 1991, p1–9.
    [1.7] Amerasekera A., Duvvury C., ESD in Silicon Integrated Circuits, Second Edition, England: John Wiley & Sons, Ltd., 2002, p106.
    [1.8] Ghandhi S. K, Semiconductor Power Devices, New York: John Wiley & Sons, 1977.
    [1.9] Vinson J. E., Liou J J. Electrostatic discharge in semiconductor devices: protection techniques. Proc. Of the IEEE, 2000; 88(12): 1878-1900
    [1.10] Polgreen T. L. and Chatterjee A., improving the ESD failure threshold of silicided NMOS output transistor by ensuring uniform current flow, IEEE trans, Electron Device, 1992, 29(2),p379-388
    [1.11] Notermans G.,“On the use of N-well resistors for uniform triggering of ESD protection Proc. Of the IRPS, 1992 p141-150
    [1.12] Chen J.Z., Amerasekera A., and Duvvury C., Design methology fo roptimizing gate driven ESD protection circuits in submicron CMOS processes, Proc. Of the EOS/ESD symp., 1997, p230-239
    [1.13] Amerasekera A.,Duvvury C., Reddy V., et.al , Substrate triggering and salicide effects on ESD performance and protection circuit design in deep submicronCMOS processes, IEDM tech. Dig., 1995, p547-550
    [1.14] Amerasekera A., Chang M. C. , Seitchik J. A., et al, Self-heating effects in basic semiconductor structures,”IEEE trans. Electron Device, 2000,40(10),p1836-1844
    [1.15] Amerasekera A., Ramaswamy S., Chang M. C. et al, Modeling MOS snapback and parasitic bipolar action for circuit-level ESD and high current simulations, Proc. Of IRPS, 1996 p318-326
    [2.1] MIL-STD-883E, Method 3015.7, Electrostatic Discharge Sensitivity Classification, Dept. of Defence, Test Method Standard, Microcircuits. 1989
    [2.2] Roozendaal L.J. van, Amerasekera E.A., Bos P., et al, P. Kersten, E. Korma, P. Rommers, P. Krys, U. Weber and P. Ashby, Standard ESD testing, Proc. EOS/ESD symp., 1990, p119–130,.
    [2.3] Verhaege K., Roussel P., Groesenecken G., et al, Analysis of HBM ESD Testers and Specifications Using 4th Order Lumped Element Model, Proc. EOS/ESD symp., 1993.p129–138,
    [2.4] ESD Association WG 5.1, ESD STM5.1-2001: Standard Test Method for Electrostatic Discharge Sensitivity Testing- Human Body Model (HBM) Component Level, 2001.
    [2.5] JEDEC Solid State Technology Association, JESD22-A114-B: Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM), 2000.
    [2.6] Automotive Electronics Council, Human Body Model Electrostatic Discharge Test; AEC-Q100-002 - REV-C, 2001.
    [2.7] ESD Association WG 5.2, ESD STM5.2-1998: Standard Test Method for Electrostatic Discharge Sensitivity Testing- Machine Model (MM) Component Level, 1998.
    [2.8] JEDEC Solid State Technology Association, JESD22-A115-A: Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM), 1997.
    [2.9] Automotive Electronics Council, Machine Model Electrostatic Discharge Test; AEC-Q100-03 Rev E, 2001.
    [2.10] EIAJ-Standard, IC-121-1988, Testing Method 20: Electrostatic Destructive Test Electrostatic Discharge,1988
    [2.11] Bossard P., Chemelli R., and Unger B., ESD damage from Triboelectrically Charged IC Pins, Proc. EOS/ESD symp.,1980,p17-22
    [2.12] M. Chaine, K. Verhaege, L. Avery, M. Kelly, H. Gieser, K. Bock, L.G. Henry, T. Meuse, T. Brodbeck and J. Barth, Investigation into Socketed CDM (SDM) Tester Parasitics, Proc. EOS/ESD symp., 1998, p301–310,.
    [2.13] ESD Association, ESD STM5.3.1-1999: Standard Test Method for Electrostatic Discharge Sensitivity Testing-Charged Device Model (CDM) Component Level, 1999.
    [2.14] JEDEC Solid State Technology Association, JESD22-C101-A: Field-Induced Charged Device Model Test Method for Electrostatic Discharge-Withstand Thresholds of Microelectronic Components, 2000.
    [2.15] Automotive Electronics Council, Charged Device Model Electrostatic Discharge Test; AEC-Q100-011 Rev A, 2001.
    [2.16] C. Diaz, S. M. Kang, and C. Duvvury, Tutorial electrical overstress and electrostatic discharge, IEEE Trans. Reliability, 1995, 44,p2–5.
    [2.17] S. U. Kim, ESD induced gate oxide damage during wafer fabrication process,”in Proc. EOS/ESD Symp., 1992, p99–105.
    [2.18] A. Ito, E. W. George, R. K. Lowry, and H. A. Swasey, The physics and reliability of fusing polysilicon, in Proc. Int. Reliability Physics Symp.,1984, p17–29.
    [2.19] E. W. Chase, Electrostatic discharge mechanisms and onchip protection techniques to ensure device reliability, J. Electrostatics, 1990,24, p111–130
    [2.20] M. Song, D. C. Eng, and K. P. MacWilliams, Quantifying ESD/EOS latent damage and integrated circuit leakage currents, in Proceedings of the EOS/ESD Symposium, 1995, p304–310.
    [2.21] O. J. McAteer, R. E. Twist, and R. C. Walker, Latent ESD failures, in Proceedings of the EOS/ESD Symposium, 1982, p44–48
    [2.22] T Maloney and N Khurana, Transmission Line Pulsing Techniques for Circuit Modeling of ESD Phenomena, in Proceedings of the EOS/ESD Symposium ,1985, p49–54.
    [2.23] N Khurana, T Maloney, and W Yeh, ESD on CHMOS Devices–Equivalent Circuits, Physical Models and Failure Mechanisms, in Proceedings of IEEE IRPS, 1985,p212.
    [2.24] J Barth et al., TLP Calibrations, Correlation, Standards and New Techniques, in Proceedings of the EOS/ESD Symposium, 2000,p85–96.
    [2.25] G Notermans, P de Jong, and F Kuper, Pitfalls When Correlating TLP, HBM and MM Testing, in Proceedings of the EOS/ESD Symposium,1998,p170–176.
    [2.26] C. Y. Chu and E. R. Worley, Ultra low impedance transmission line tester, in Proceedings of the EOS/ESD Symposium,1998, p. 311–319.
    [3.1] A. Wang and C. Tsay, A novel design methodology using simulation. for on-chip ESD protection for ICs, in Proc. IEEE 5th Int. Solid-State. Integrated Circuits Technol. Conf., 1998, pp. 509–512.
    [3.2] Beltman R., Mouthaan A., and Vlist H. V. D., Simulation of thermal. runaway during ESD events, in Proc. Electrical Overstress/Electrostatic. Discharge (EOS/ESD) Symp., Lake Buena Vista, FL, 1990, pp. 157–161.
    [3.3] Albert Z. H., On-Chip ESD Protection for Integrated Circuits: An IC Design Perspective, England:Kluwer Academic Publishers,2002, p219
    [3.4] Diaz C. H., Kang S. M., and Duvvury C. Simulation of Electrical Overstress Thermal Failures in Integrated Circuits, IEEE trans, Electron Device, 1994, 41(3),p359-366
    [3.5] Silvaco International, 2005 ATLAS user’s manual, Santa Clara: Silvaco International, p3-63
    [3.6] Ajith Amerasekera, Amitava Chatterjee, Mi-Chang Chang,“Prediciton of ESD robustness in a Process using 2-D Device Simulations”, in Proc. Int. Reliability Physics Symp., Las Vegas, NV, 1993, pp. 161–167
    [3.7] Wang A., Tsay C., and Deane P., A study of NMOS behaviors under ESD stress: Simulation and characterization, Microelectron. Reliabil., 1998, 38, p1183–1186,
    [3.8] Ramaswamy S., Li E., Rosenbaum E., et al, Circuit-level simulation of CDM-ESD and EOS in submicron MOS devices, Proc. EOS/ESD Symp., pp. 316-321, 1996
    [3.9] V. Axelrad, A. Shibkov, Mixed-Mode Circuit-Device simulation of ESD Protection Circuits with Feedback Triggering, International Conference on Solid State Devices and Materials, 2004,p390-391
    [3.10] Salman A?Gauthier R, Stadler W et al. Characterization and investigation of the interaction between hot electron and electrostatic discharge stresses using NMOS devices in 0.13um CMOS technology[C], International Reliability Physics Symposium,2001:219-225.
    [3.11]叶良修,小尺寸半导体器件的蒙特卡罗模拟,北京:科学出版社,1997第一版
    [3.12] Baccarani G and Wordeman M R 1985 An investigation of steady-state velocity overshoot in silicon Solid-State Electron. 28 407
    [3.13] Ruch J G 1972 Electron dynamics in short channels field-effect transistors IEEE Trans. Electron Devices 19 652
    [3.14]张兴译,用于VLSI模拟的小尺寸MOS器件模型:理论与实践,北京:科学出版社, 1999,p109
    [3.15] Ge L, Fossum JG, Liu B. Physical compact modeling and. analysis of velocity overshoot in extremely scaled CMOS. devices and circuits. IEEE Trans Electron Dev 2001;. 48(2):2074–2080
    [3.16] Hofmann K.R., Werner C., Weber W., et al, Hot electron and hole-emission effects in short n-channel. MOSFETs, IEEE Trans.Electron Devices, 1985, 32(3), p691-699.
    [3.17] T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr. A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc.IEEE, 91(2):251-274, 2003
    [3.18] COOK, R.K., AND FREY, J. An Efficient Technique for Two-Dimensional Simulation of Velocity Overshoot Effects in Si and GaAs Devices. COMPEL 1, 2 (1982), 65-87
    [3.19]郭宝增,用全带Monte Carlo方法模拟GaN和ZnO特性,物理学报,2002. 51(10):2345-2348
    [3.20]刘恩科.朱秉升,罗晋生,半导体物理学
    [M].北京:国防工业出版社,1994.
    [3.21] M. V. Fischetti and S. E. Laux,“Monte Carlo analysis of electron transport in small. semiconductor devices including band-structure and space-charge effects,”Physical. Review B, 1988 38 (14), p 9721-9745
    [3.22] J.C.Lee, M.A.Hoque, et al. A method for determining a transmission line pulse shape that produces equivalent results to human body model testing methods, EOS/ESD Symposium Proceedings, 2000:97.
    [3.23] Charvaka Duvvury, ESD protection device issues for IC designs, IEEE 2001 custom integrated circuits conference, 2001:41.
    [3.24] Tung-Yang Chen, Ming-Dou Ker, Investigation of the Gate-Driven Effect and Substrate-Triggered Effect on ESD Robustness of CMOS Devices , IEEE transactions on device and materials reliability, 2002, 1(5):190.
    [3.25] C.Musshoff,H.Wolf,.et al, Risetime effects of HBM and square pulses on the failure thresholds of GGNMOS transistors, Microelectronics Reliability, 1996,36(1):1743.
    [3.26] J.Wu,P.Juliano, Breakdown and latent damage of ultra-thin gate oxides under ESD stress conditions, Microelectronics Reliability,2001,41:1771.
    [3.27] Jon Barth, Koen Verhaege, TLP calibration, correlation, standards and new techniques, EOS/ESD Symposium Proceedings, 2000:85
    [4.1] C.K. Lau, Y.C. See, D. Scott, J. Bridges, S. Perna and R.D. Davies, Titanium disilicide self-aligned source/drain and gate CMOS technology, Tech. Dig. IEDM, 714–717, 1982.
    [4.2] R. Rountree, ESD Protection for Submicron CMOS Circuits Issues and Solutions, Tech. Dig. IEDM, 1988,580-583
    [4.3] Kwang-Hoon Oh, Charvaka Duvvury, Investigation of Gate to Contact Spacing Effect on ESD Robustness of Salicided Deep Submicron Single Finger NMOS Transistors, Reliability Physics Symposium Proceedings, 2002,p148-155
    [4.4] Jon Barth, Koen Verhaege, TLP Calibration, Correlation, Standards and new Techniques, EOS/ESD Symposium Proceedings, 2000:85-96
    [4.5] U.Lindefelt, Heat Generation in Semiconductor Device, J.Appl. Phys ,1994,75(2):942-955
    [4.6] S.Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag,:New York, 1984.
    [4.7] M. Adler, Accurate calculations of the forward drop and power dissipation in thyristors IEEE T. Electron Dev., 1978,25,p16–22
    [4.8] B. Krabbenborg, R. Beltman, P. Wolbert and T. Mouthan, Physics of Electro-Thermal Effects in ESD Protection Devices, in Proceedings of the EOS/ESD Symposium, 1991,p98–103
    [4.9] Tornblad, U. Lindefelt and B. Breitholtz, Heat Generation in Si Bipolar Power Devices: The Relative Importance of Various Contributions, Solid State Electronics, 1996, 39(10):1463-1472
    [4.10] N.艾罗拉用于VLSI模拟的小尺寸MOS器件模型:理论与实践,北京:科学出版社,1999
    [4.11] Ng K. K., Lynch W. T., The impact of intrinsic series resistance on MOSFET scaling, IEEE trans. Electron Device,1987,34(3),p503-511
    [4.12] J.M.Pimbley, E. Cumberbatch,and P.S.Hagan, Analytical Treatment of MOSFET Source-Drain Resistance, IEEE Trans. Electron Device, 1987,34(1)834-839
    [4.13] Varahramyan K. andVerret E. J., A Model for Specific Contact Resistance Applicable for Titanium Silicide-Silicon Contacts, Solid-State Electronics, 1996, 39(11): 1601-1609
    [4.14] Kim S.D., Advanced Model and Analysis of Series Resistance for CMOS Scaling Into Nanometer Regime—Part I:Theoretical Derivation, IEEE Trans. Electron Device, 2002,49(3):457-465
    [4.15] Oh K.H., Investigation of ESD Performance in Advanced CMOS Technology[D], California:stanford University,2002
    [4.16] Oh K. H, Chun J. H, Banerjee K., et al, Modeling of Temperature Dependent Contact Resistance for Analysis of ESD Reliability. Proc. of the International Reliability Physics Symposium, 2003, p249-255,
    [4.17] Oh K, Duvvury C, Banerjee K, et al. Investigation of Gate to Contact Spacing Effect on ESD Robustness of Silicided Deep Submicron Single finger NMOS Transistors. International Reliability Physics Symposium Proceedings, 2002. p148-155.
    [4.18] Oh K., Duvvury C., Salling C., et al, Non-uniform bipolar conduction in single finger NMOS transistors and implications for deep submicron ESD design, IRPS Proc., pp. 226-234, 2001.
    [4.19] Oh K., Duvvury C., Salling C., et al, Analysis of Nonuniform ESD Current Distribution in Deep Submicron NMOS Transistors, IEEE Trans. Electron Device, 2002,49(12):2171-2182
    [4.20] Salman, A., Gauthier, R., Stadler, W., et al, Characterization and investigation of the interaction between hot electron and electrostatic discharge stresses using NMOS devices in 0.13μm CMOS technology, IRPS Proc., 2001, p219-225
    [4.21] KO C. Y., Tsai Y.S., Liao P.J., et al, Drain Biased TDDB Lifetime Model for Ultra Thin Gate Oxide, IRPS Proc., 2004,p589-590
    [4.22] S. M. Sze,Physics of Semiconductor Devices,John Wiley & Sons 1981
    [5.1] Salman A A, Gauthier R, Putnam C et al,“NMOSFET ESD Self-Protection Strategy and Underlying Failure Mechanism in Advanced 0.13-_m CMOS Technology”, IEEE Trans. on Device and Materials Reliability, 2002,2(1) ,p2-7
    [5.2] Mistry K R, Krakauer D B, Doyle B S, etc. Impact of Snapback-Induced Hole Injection on Gate Oxide Reliability of NMOSFETs, IEEE electron device letters, 1990,11(10):460
    [5.3] J. Wu, P. Juliano, E. Rosenbaum,“Breakdown and latent damage of ultra-thin gate oxides under ESD stress conditions”, in Proceedings of the EOS/ESD Symposium, pp. 287-295, EOS/ESD 2000.
    [5.4] N. Guitard, D. Tremouilles, S. Alves, M. Bafleur, F. Beaudoin, P. Perdu, A. Wislez,“ESD Induced Latent Defects in CMOS ICs and Reliability Impact”, in Proceedings of the EOS/ESD Symposium, p174–181, EOS/ESD 2004.
    [5.5] Andrea Cester, Gaudenzio Meneghesso,etc. Electrostatic Discharge Effects in Ultra-Thin Gate Oxide MOSFETs, IEEE Transactions on Device and Materials Reliability, 2006 6(1):87
    [5.6] Chen L, Choi J E, Chan T Y, et al. The effect of hot carrier stressing on gate oxide integrity in MOSFET‘s, IEEE Trans. Electron Devices, 1988,35(12):2253
    [5.7] Nishioka Y, Ohji Y, Ma T P, Gate oxide breakdown accelerated by large drain current in n-channel MOSFETs, IEEE Electron Device Lett., 1991,12(3):134
    [5.8] I.C. Chen etc., Electron Trap Generation by Recombination of Electrons and Holes in Si02,J.Appl. Phys.1987,.61(9):4544
    [5.9] Akram A. Salman, Robert Gauthier, ESD-Induced Oxide Breakdown on Self-Protecting GG-nMOSFET in 0.1μm CMOS Technology, IEEE transactions on devices and materials reliability, 2003, 3(3):79
    [5.10] DiMaria D.J., Cartier E., Mechanisms for Stress-Induced Leakage currents in silicon dioxide films, J. Appl. Phys. 1995,78(6):3883
    [5.11] Michel Depas, Tanya Nigam, Soft Breakdown of Ultra-Thin Gate Oxide Layers, IEEE transactions on electron devices, 1996,43(9):1499
    [5.12]王彦刚许铭真谭长华等2005物理学报54 3885
    [5.13] Wang T, Chiang L. P., Zous N.K., A Comprehensive Study of Hot Carrier Stress-Induced Drain Leakage Current Degradation in Thin-Oxide n-MOSFET’s, IEEE transactions on electron devices , 1999,46(9):1877
    [5.14] Luo Y H, Nayak D, Gitlin D et al, Oxide Reliability of Drain Engineered I/O NMOS from Hot Carrier Injection, IEEE electron device letters, 2003, 24(11):686
    [5.15] Chan T Y, Chen J, Ko P K, et al, The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling, IEDM, 1987:718
    [5.16] Hansel G, Villareal E, Cost Effective Failure Analysis Method for Detecting Failure Site Associated with Extremely Small Leakage, Proc. EOS/ESD Symp., 1987:71
    [5.17] Krakauer D B, Mishy K R, On latency and the physical N-channel MOSFETs, EOS/ESD Symp. 1989:121.
    [5.18] Pantisano L, Cheung K P , Stress-Induced Leakage Current (SILC) and Oxide Breakdown: Are They From the Same Oxide Traps?, IEEE Trans. on Devices and Materials Reliability, 2001, 1(2):109
    [5.19] Buchanan D A, DiMaria D J, Chang C A, et al. Defect generation in 3.5-nm silicon dioxide films, Appl. Phys. Lett., 1994, 65:1820
    [5.20] Degraeve R, Kaczerv B, Keersgieter A D,et al. Relation between breakdown mode and location in short-channel NMOSFETs and its impact on reliability specifications,Proc. IRPS, 2001:360
    [5.21] Suehle J S, Zhu B, Chen Y, et al. Acceleration factors and mechanistic study of progressive breakdown in small area ultrathin gate oxides, Proc. IRPS, 2004:95
    [5.22] Crupi F, Kaczer B, Groeseneken G, et al, New insights into the relation between channel hot carrier degradation and oxide breakdown in short channel nMOSFETs, IEEE Electron Device Lett, 2003, 24(4) 278.
    [5.23] Crupi F, Kaczer B, Degraeve R,et al. Location and hardness of the oxide breakdown in short channel n- and p-MOSFETs, Proc. IRPS, 2002:55
    [5.24] Esseni D,Selmi L,Ghetti A, et al. Injection Efficiency of CHISEL Gate Currents in Short MOS Devices:Physical Mechanisms, Device Implications, and Sensitivity to Technological Parameters, IEEE Trans. ElectronDevices, 2000,47(11):2194
    [5.25] Bude J D, Pinto M R, Smith R K, Monte carlo simulation of the CHISEL flash memory cell, IEEE Trans Electron Devices, IEEE Trans. Electron Devices, 2000,47:1873
    [5.26] Chan T. Y., Chen J., Ko P. K., The impact of gate-induced drain leakage current on MOSFET scaling, IEDM, 1987:718
    [5.27] Ernest Wu, Edward Nowak, and Wing Lai, Off-State Mode TDDB Reliability for Ultra-Thin Gate Oxides: New Methodology and The Impact of Oxide Thickness Scaling, Proc. IRPS, 2004:84-94
    [6.1] Duvvury C., ESD Protection Device Issues for IC designs, IEEE Customintegrated circuits conference,2001,p41-48
    [6.2] Vinson J. E., LIOU J. J., Electrostatic Discharge in Semiconductor Devices: An Overview, Proceedings of the IEEE, 1998,86(2), p399-418
    [6.3] Chen T. Y., and Ker M. D., Analysis on the dependence of layout parameters on ESD robustness of CMOS devices for manufacturing in deep-submicron CMOS process, IEEE Trans. on Semiconductor Manufacturing, 2003,16(3),p486-500
    [6.4] Chen J. Z., Amerasekera A., Duvvury C. , Design Methodology For Optimizing Gate Driven Esd Protection, Proc. EOS/ESD Symp., 1997,p 230-239
    [6.5] Chen J. Z., Amerasekera, E. A., Duvvury C., Design Methodology and Optimization of Gate-Driven NMOS ESD Protection Circuits in Submicron CMOS Processes, 1998,p2448-2456
    [6.6] Ker M. D., Chang H. H., Whole-Chip ESD Protection Strategy for CMOS IC’s with Multiple Mixed-Voltage Power Pins, Proc. of International Symposium on VLSI Technology, System, and Application, 1999, p298-301.
    [6.7] Ker M. D., Whole-Chip ESD Protection Design with Efficient VDD-to-VSS ESD Clamp Circuits for Submicron CMOS VLSI, IEEE Trans. on Electron Devices, 1999, 46( 1), p173-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700