半导体桥火工品静电危害特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索半导体桥(SCB)火工品在静电环境下的作用机理、易损特性和评估方法等,为SCB的静电防护提供有效的参考依据,使其更好的适应日益复杂的电磁环境,本文就静电脉冲对典型半导体桥(TSCB)和微型半导体桥(MSCB)的影响进行了研究。具体如下:
     (1)研究了静电作用下判别SCB失效的判据,主要包括:微光显微镜(EMMI)、烧蚀面积、I-V曲线和电阻变化等。
     (2)通过ESD作用前后半导体桥的点火实验,对点火时间和点火能量进行t-检验,得到:TSCB承受静电放电电压阈值为22kV,MSCB的失效阈值电压为14kV。
     (3)通过D-最优点火实验,得到:静电作用后TSCB和MSCB的全发火电压降低,电流峰值对应时间延迟,说明静电作用使得桥的感度提高,点火可靠性下降;在等离子体点火情况下,静电作用后的TSCB和MSCB,其形成等离子体的电压二次峰延后,非等离子体点火时,TSCB的峰值电压和峰值电流延后,而MSCB的峰值电压和峰值电流基本不变;随着静电电压的增大,静电作用后TSCB的I-V曲线斜率变小,而MSCB的I-V曲线斜率变大;模拟人体静电放电对TSCB和MSCB作用,发火概率为0,表明人体静电对TSCB和MSCB安全。
     (4)探讨了多次静电放电对TSCB和MSCB'性能的影响。对于TSCB而言,即使放电次数达到12次,桥区仍然不产生任何影响其性能的损伤;而对于MSCB来说,随着放电次数的增多,桥区的烧蚀面积呈指数增长,当达到8次时,桥区爆发,且静电后的MSCB电阻变化很大,相应的I-V曲线斜率差别很大,因此,I-V特性曲线和电阻的变化可以作为多次静电放电对SCB性能影响的判据。
It is important to reveal the mechanism, features and evaluation methods of semiconductor bridge (SCB) under the electrostatic field for the design of the protection measures against the electrostatic discharge (ESD), thus it would be widely used in the increasingly complicated electromagnetic environment. In this thesis, the influence of the ESD on the typical semiconductor bridge (TSCB) and Micro semiconductor bridge (MSCB) is discussed as follows:
     (1) The invalidation criteria of SCB with ESD is studied, which includes emission microscope (EMMI), the ablation areas of the bridges, I-V curve and the resistance fluctuations.
     (2) T-test was employed to test the ignition energy and function time, and obtained that: 22kV is the invalidation threshold voltage of TSCB with ESD, however, the invalidation threshold voltage of MSCB is 14kV.
     (3) The features of SCB with ESD were evaluated by ignition experiments via D-optimal method, and concluded that:compared with the bare bridge, SCB which suffered ESD have the lower whole ignition voltage, longer response time of current peak, which indicated that the electrostatic make the bridge more sensitive and reduce the ignition reliability of SCB; In the case of plasma ignition, the secondary peak of voltage (the formation of plasma) about SCB with ESD was delayed; meanwhile, in non-plasma ignition, there is a difference between TSCB and MSCB. For TSCB, the peak current and voltage were delayed a little, but for MSCB, they were almost invariant. In additional, the I-V curve character of TSCB with ESD decreased along with the increasing of discharging voltage, but the different results was obtained in MSCB; Besides, SCB was taken to the experiment of human being discharge, and found that the firing probability is 0, so the human being discharge is safe to SCB.
     (4) Finally, the effect of multiple discharging on SCB was disscussed in this thesis. It is found that there was no melting zone about the film of TSCB until the times of discharging achieved to 12. But for MSCB, the ablation areas of the bridge is enlarging by exponential growth along with the increasing of discharging times, the resistance of the bridge have changed dramatically, and there is a significant difference about I-V curve character among the MSCB which suffered different discharging times. What's more, MSCB would be break out when the discharging times reaches to 8. Therefore, I-V curve character and the resistance fluctuate evaluation are considered as the criteria of the SCB which suffered multiple discharging.
引文
[1]叶迎华.火工品技术[M].北京:北京理工大学出版社,2007:1.
    [2]蔡仁刚.电磁场对航空电子设备干扰的预测研究[M].第一版.北京:北京航空航天大学出版社,1995:2-7.
    [3]杨贵丽.微型半导体桥换能及发火规律研究[D].北京:北京理工大学,2010.
    [4]Kim J, Navn K S, Jungling K C. Plamm electron density generated by a semiconductor bridge as function of input energy and landmateriaI[J]. IEEE Transactions on Electron Devices,1997,44(6):1022-1026.
    [5]Jongdae Kim, Tae Moon Roh, Kyoung-IK Cho, et al. Optical characteristics of silicon semiconductor bridge under high current density conditions [J]. IEEE Transactions on Electron Devices,2001,48(5):852-857.
    [6]卢斌,洪志敏,任小明,等.SCB换能元应用于微型固体推进器中的研究[J].兵工学报,2009,30(2):305-307.
    [7]Thomas A, Baginski. RF Characterization of The Semiconductor Junction Igniter in the 2.75 Folding Fin Aircraft Rocket[J]. IEEE Transactions on Electromagnetic Compatibility,1995,37(1):80-84.
    [8]James E.Vinson, Juin J. Liou. Electrostatic discharge in semiconductor devices:an overview[J]. Proceedings of the IEEE,1998,86(2),399-413.
    [9]L.E. Hollander Jr.. Semiconductor explosive igniter[P]. US,336605530,1968.
    [10]K.Willis, D.Whang. Semiconductor Bridge Technologies[P]. AIAA-95-2548,1995.
    [11]Bickes, Jr., Alfred C. Schwarz. Semiconductor Bridge (SCB) Igniter[P]. US,4708060, 1987.
    [12]R W Brickes, Jr., M.C.Grubelich, S.M.Harris et al. An Overview of Semiconductor Bridge, SCB, application at Sandia Labortories[C]. AIAA-95-2549,1995.
    [13]D.A.Benson, ME Larsen, A M Renlund, et al. Semiconductor bridge:a plasma generator for the ignition of explosives [J]. Journal Appl Phys,1987,62(5):1622-1632.
    [14]叶林.半导体桥火工品静电射频加固技术研究[D].南京:南京理工大学,2009.
    [15]刘西广,徐振相,宋敬埔,等.半导体火工品的发展[J].爆破器材,1995,24(4):12-17.
    [16]岳素格.新一代火工品即半导体桥的机理研究与研制[M].成都:成都电讯工程学院,1994:55-60.
    [17]D. A. Benson. Semiconductor Bridge Discharge Characterization[P]. DE-87-005620, 1987.
    [18]严谨容.半导体桥作用特性及其规律研究[D].南京:南京理工大学,2007.
    [19]G. J. Galvin, M. O. Thompson, et al. Phys[J]. Rev.,1979, B27:1079.
    [20]Ewick David W, Walsh Brendan M. Optimization of the bridge powder interface for a low energy SCB device[C]. American Institute of Aeronautics and Astronautics,1997, 97-283.
    [21]刘尚合,武占成等.静电放电及危害防护[M].北京:北京邮电大学出版社,2004:83-90.
    [22]曹玉武.结型半导体换能元研究[D].南京:南京理工大学,2010.
    [23]任召峰.静电危害及防护[J].现代电子技术,2010(21):203-206.
    [24]齐杏林,刘尚合.电火工品人体静电放电实验进展研究[J].火工品,1997(2):40-43.
    [25]Billon H., Redman L.. Electrostatic testing of M52A3B1 primers. DSTO Aeronautical and Maritime Research Laboratory[C]. Melbourne Victoria 3001 Australia.1994.
    [26]McAteer O J. Electrostatic discharge control[M]. New York:McGraw-Hill Publishing Company,1989:34-50.
    [27]Crokett R G M, Smith J G, Hughes J F. Latent effects observed in HCMOS input protection circuits[C]. In:Sixth EOS/ESD Symposium Proceeding. America:Vaneal, 1984.
    [28]Song M, Eng D C, Macwilliams K P. Quantifying ESD/EOS latent damage and integrated circuit leakage currents [C]. In:EOS/ESD Symposium. America: Mcgvaw-Hill,1995,304-310.
    [29]Guitard N, Tremouilles D, Bafleur M. Low frequency noise measurements for ESD latent defect detection in high reliability applications[J]. Microelectronics Reliability, 2004,44(6):1781-1786.
    [30]M.I.Gorlov, I.V.Vortontsov, and A.V. Andreev. Effect of electrostatic discharge on semiconductor devices and subsequent annealing of electrostatic defects[J]. Appl. Measurement techniques.1998,41(1):65-67.
    [31]W C. Prinse, R H B. Bouma, T. T. Griffiths, et al. Constant current testing of a SemiConducting Bridge initiator[C].51st Annual Fuse Conference, Nashville, TN. 2007.
    [32]Craig J. Boucher, David B. Novotney. Next generation semiconductor bridge initiators[P]. AIAA2000-3731,2000.
    [33]谭伟,魏光辉,刘尚合.静电放电刺激对桥丝式电火工品发火可靠性的影响[J].火 工品,1997(1):34-36.
    [34]胡学先.电火工品小电流无损检测的可行性[J].含能材料,2003,11(1):40-42.
    [35]YAN Nan, JIANG Min-rong. Discussion on failure sensitive parameters of an EED life performance in storage[J]. Journal of Beijing Institute of Technology,2005,14(1): 59-62.
    [36]李淦,代华,王维刚,等.电火工品电磁脉冲危害的测试实验[J].自动测量与控制,2006,25(11):79-80.
    [37]魏光辉,国海广,孙永卫.电火工品静电安全性评价方法研究[J].火工品,2005,(2):21-24.
    [38]王韶光,魏光辉,陈亚洲.电火工品电磁危害的光纤测试方法[J].高压电技术,2007,33(5):6-10.
    [39]常悦,高聪杰,陈志文,等.电火工品电磁脉冲危害检测及评估方法研究[J].弹箭与制导学报,2007,27(5):183-185.
    [40]穆丽军,高俊国,张玉令.静电放电对电火工品作用机理分析与试验研究[J].工业安全与环保,2010,36(5):39-40.
    [41]涂延林,马峰,黄能斌.电子工业静电防护技术[M].西安:陕西科学技术出版社,1994.
    [42]来萍,刘发.探索用端口I-V特性对CMOS电路的静电放电(ESD)潜在损伤进行分析诊断[J].电子产品可靠性与环境试验,1999(6):25-29.
    [43]杨洁,刘尚合,刘红兵,等.静电放电次数与半导体器件潜在性失效的关系[J].河北大学学报(自然科学版),2007,27(6):620-624.
    [44]杨士亮,张欣卉,姬国庆,等.微电子器件静电损伤实验[J].半导体技术.2008,33(9):801-802.
    [45]花永鲜,庄奕琪,杜磊,等.MOS器件静电潜在损伤的1/f噪声监测方法[J].西安电子科技大学学报(自然科学版),2001,28(5):621-624.
    [46]任振.基于有限元方法的半导体器件电-热分析[J].计算机仿真,2009,26(10):330-333.
    [47]冯军宏,简维廷,张荣哲.产品ESD决速低成本测试方法[J].半导体技术,2009,34(12):1216-1219.
    [48]王振雄.功率器件芯片封装和静电放电失效分析[J].复旦学报(自然科学版),2009,48(1):78-81.
    [49]赵石彬,张存林,伍耐明,等.红外热波无损检测技术用于聚丙烯管道缺陷的检测[J].光学学报,2010,30(2):456-460.
    [50]辛娟娟,韦旎妮,刘抒,等.FIB与PEM联用在半导体器件失效分析中的应用[J]. 半导体技术,2010,35(7):703-706.
    [51]徐禄,张琳,冯红艳,等.降低药剂SCB点火能量的研究进展[J].含能材料,2008,16(5):639-646.
    [52]祝逢春,秦志春,陈西武,等.半导体桥的设计分析[J].爆破器材,2004,33(4):22-25.
    [53]D.A.Benson, ME Larsen, A M Renlund, et al. Semiconductor Bridge:a plasma generator for the ignition of explosives[J]. Journal Appl Phys,1987,62(5):1622-1632.
    [54]周彬,徐振相,刘西广,等.半导体桥对粒状炸药的微对流传热数值模拟[J].南京理工大学学报,1996,12(6):493-496.
    [55]M. J. Msrtinez, M. R. Baer. Microconvective Heating of Granular Explosives by a Semiconductor Bridge[P]. SAND-89-2033, US,2008.
    [56]周蓉,岳素格,秦卉竿,等.半导体桥的研究[J].半导体学报,1998,19(11):857-860.
    [57]马鹏,朱顺官,徐大伟,等.叠氮化铅半导体桥点火研究[J].火工品,2010,2(1):10-13.
    [58]张文超,王文,周彬,等.半导体桥生成等离子体温度的测量[J].含能材料,2009,3(17):344-348.
    [59]FENG H Y, ZHANG L, ZHU S G, et al. Research of the Semiconductor Bridge (SCB) Plasma Temperature and Duration[J]. IEEE Transactions on plasma science,2009, 37(9):3180.
    [60]吴蓉,李燕,张琳,等.等离子体电子温度的发射光谱法诊断[J].光谱学与光谱分析,2008,28(4):731.
    [61]WU R, Li Y, ZHU S G, et al. Experimental Investigation on the Temperature of Semiconductor Bridge (SCB) Plasma[J]. Theory and Practice of Energetic Materials (Vol.Ⅶ), Beijing:Science Press,2007.
    [62]冯红艳,朱顺官,张琳,等.斯蒂芬酸铅的半导体桥点火研究[J].兵工学报,2010,31(6):674.
    [63]FENG H Y, ZHU SHUN G, ZHANG L, et al. Atomic Emission Spectra Diagnosis and Electron Density Measurement of SCB Plasma[J]. Plasma Science and Technology, 2010,12(1):49.
    [64]Peng Ma, Lin Zhang, Shunguan Zhu, et al. Non-Plasma Ignition of Lead Styphnate by Semiconductor Bridge and its Comparison with Plasma Ignition[J]. Combustion, Explosive, and Shock Waves,2011,47(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700